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Abstract
We estimate the spreading of the solution of the Schrodinger equation
asymptotically in time, in term of the fractal properties of the associated
spectral measures. For this, we exhibit a lower bound for the moments of
order p at time T for the state i defined by

1 [T o i
7 | ey ar.

We show that this lower bound can be expressed in term of the generalized
Rényi dimension of the spectral measure y,, associated to the Hamiltonian H
and the state 1. We especially concentrate on continuous models.

1. Introduction and brief review

The dynamical properties of quantum electrons in solid media are given by the
spreading of the wave packet 1;, solution at time ¢ of the Schrodinger equation
10,y = H1, with initial condition ¢;—q = ¢. The Hamiltonian H of the system is
a self-adjoint operator acting on a separable Hilbert space H, and v is fixed in H.
In our case, we consider H to be equal either to L?(R?) for continuous models or
¢2(Z9) for discrete one (tight-binding approximation).

A good estimate of the spreading of v, is given by the averaged moments of
order p, (p > 0)
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and its increasing exponents, the so-called lower and upper diffusion exponents

.. Jog{{| X|P) )T . log({| X 1P\ \(T
8y ) = timint DD g g4 o=t sup “EUEDID)

In the particular case p = 2, a behaviour ({|X|P),)(T) ~ T? is representative of
a ballistic motion, i.e. the motion of a free electron; if ({|X|P),)(T) ~ T, we have
a diffusive dynamics, whereas supyo({|X|P)y)(T) < oo is characteristic of the dy-
namical localization.

The first rigorous result connecting the moments of order p and the fine prop-
erties of spectral measures is due to Guarneri ([11]) for discrete models and was
extended by Combes [7] to continuous one. In the case H = ¢?(Z%), the result can
easily be stated.

Guarneri-Combes Theorem [11, 7|. Let H = H* be a self-adjoint operator on
02(Z%). Let o € €*(ZY) be the initial state, ||| = 1. If the spectral measure py
assoctated to v and H verifies

There exists a € [0, 1] such that sup ( sup (,uw(:c i s E)>) <oo, (2

zeR \ £€(0,1) e

then

_ p
B, () > oz (3)

The proof of this result is simple. We sketch it here since more recent results,
including those presented in this paper, use similar approaches. It is based on a
Strichartz estimate ([17]) connecting the local properties (2) of the spectral measure
iy with the Fourier transform of measures absolutely continuous with respect to i,
with density in L?(R, duy). Namely, if u, verifies (2), then there exists C' < oo
such that for any f € L?(R, duy), ||f]l2 <1, and for all T > 1

1 (T, 1 [T
— d t:=—
7| \mpa = [

A very short proof of this result can be found in [15].
For a given N > 1, one now estimates the time averaged probability B, (T, N)
of finding the electron at time T in the ball centered at the origin and of radius N

By(T,N) = -]1:/ Z | (W, en>‘2 dt ,

O pnj<n

2
dt < CcT™° . (4)

[ e @ duot
R

where (e,)ncze is the canonical basis of ¢2(Z%) (remark that for technical reasons,
By (T, N) is defined slightly differently in (29) of Section 4). Noting that for all
n € Z¢ there exists f, € L*(R, duy), |[fallz < 1, such that ([1]) (¥, en) =
Jg €7 fo(z) dpy (), we get by using (4) the following rough estimate

B,(T,N) < 2dCNIT~* | (5)
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Now, the idea is to pick IV not too large so that By (7, N) remains “small enough”.
Therefore, a “sufficiently large” part of the wave packet 1, “lives” at a distance at
least NV of the origin, and contributes significantly to ({|X|P)y)(T"). More precisely

WXPIN ' [ 5 Pl el
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|n|>N

Choosing N = (T/24+1C)"? in (5) gives 1 — By(T, N) > 1/2, therefore, from (6),
we obtain ((|X[P)4)(T) > cT°P/? and thus (3) follows.

The first major improvement of this result is due to Last ([15]) and leads under
the same assumption as in the previous Theorem to

Last Theorem [15]. For H = H* on (2(Z%), v € (*(Z9), ||v| = 1.
By (¥) = dima ()% | ()

where dimpg (py) is the Hausdorff dimension of the spectral measure p, ([10]

This theorem improves the previous one since the Hausdorff dimension of p,, is
not smaller than the largest a such that (2) holds true. A statement for continuous
models is also provided in [15].

The basic strategy to prove (7) remains essentially the same as above, especially
the “trick” (6). The main improvement comes from the estimate of 1 — By(T, N);
dividing spectraly 1 into two orthogonal states ¢ and x, i.e. ¢ = E(I)Y, x =
ER\ I)y, for E(.) spectral family of H and I some Borel set, one estimates
1—By(T,N) by 1 — B,(T, N). In other words, the spreading of v is roughly given
by the one of a piece of ¢». The aim is thus to extract the most relevant spectral
information of ¢ for the dynamics, by fixing a state ¢ = E(I)% such that it spreads
“fast”, i.e., such that p,, verifies (2) with a larger o than the one for p,.

This optimal choice for ¢ finally leads to an « equals to dimpg(u,), which is
a dimension that characterizes only the “most continuous”part of u, (the reader
should refer to [15] or [2] for details).

There exists a similar result to (7) established by Guarneri and Schulz-Baldes
concerning the upper oscillations of ({|X|P),)(T) stating that (see [12, 6])

57 (0) = dimp ()2 | (8)
where dimp(py) > dimp(py) is the packing dimension of py, ([19]).

The bounds (7) and (8) ought to be very satisfactory since apparently, very
refined properties of p,, are involved. However, we are forced to conclude that in
some cases, these bounds are far from being optimal. This remark is based upon
two different observations. First it is known from examples in [9] and [2] that 8, (v)
and (3, (v) can be strictly positive whereas i, is pure point and thus its packing and
Hausdorft dimensions equal zero. Second, some numerics performed by Mantica in
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(16] for one dimensional models of Julia matrices suggest that the variation of the
exponents ﬂ;t(w) may increase in p faster than a linear function, whereas the given
bounds (7) and (8) are both linear in p. This nonlinear behaviour is sometimes
called “intermittency”.

The lower bounds we have established for ({|X|?),)(T) in (3] for discrete mod-
els, and that we present here in details for continuous one, actually appear to be
“intermittent”. These bounds reads as follow (see Theorem 1 and Theorem 2 for a
precise statement)

w20 ()5 o mw2ol (hn)t @

where Djfw are the so called generalized Rényi dimensions of the measure p,. The
monotonicity property Diﬁ(q) > fow(q' ), if ¢ < ¢/, implies that the lower bounds
(9) are intermittent. Furthermore since for all ¢ € (0,1), D, (g) > dimy(uy) and
D (g) > dimp(uy), the result (9) improves notably (7) and (8). In particular it is
possible to construct a self-adjoint operator H on ¢2(Z) and a state 1 € ¢%(Z) such

* (Hi’/d) > 0 for all p > 1, giving rise to a nontrivial

that p, is pure point and D,
lower bound in (9).

The proof is essentially performed in two steps. We sketch it here in the discrete
case; in the continuous case it is basically the same and it is detailed in the next
sections.

The first step (Lemma 1 and 2) consists in estimating sharply 1 — By (T, N) by

an integral expression involving p, and p,, where ¢ = E(I)1 for some Borel set 1.
The estimate is roughly

. 1/2
1= By(T,N) > ||g|* = ON¥ ( / / e (e T duw(x)duw(y)> |
RJR

Actually, this is a more complicated function than the gaussian e~(==¥’T?/4 that
enters the game, due to the fact that the time averaged in (1) is between 0 and
T instead of —T and T. Picking the largest IV so that 1 — By (T, N) > |l¢||*/2,
using the “trick” given in (6) and optimizing the obtained result at fized T over all
possible ¢, leads to the lower bound stated in Lemma 2

{

where L, (T') is a function depending on p, d, v and T and involving local properties
of the measure , (see (26) for the exact definition).

Compared to above methods, the new idea in this step is to optimize in  at a
given time T as in [6], instead of optimizing in ¢ uniformly in T as done in [15, 2].

The second step is the most intricated one. It amounts to prove that the in-
creasing exponents of L, (T) are Diy(wi)/d) E. This is done by performing a fine
analysis of L, (T) and with a good understanding of what part of the measure
contributes essentially to the dimensions D5 (q) for g € (0,1) (see Lemma 3 and 4).

The paper is organized as follows: in Section 2 we define the generalized Rényi
dimensions fo (q) of a measure p and state our two main results. The first one is

X

PYu)(T) = CLy(T) ,
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an extension of Theorem 2.1 in [3] in the case of spectral measures whose support
is not necessarily compact and when H = ¢?(Z9%). Theorem 2 is a statement of
Theorem 2.1 in [3] for continuous Schrédinger operators on L2(R¢). In this case, the
proof given in [3] needs some modifications presented here. In Section 3, we give
some general properties for the generalized Rényi dimensions that will be used in
the proof of the main results. Most of them are not proven here since details can
be found in [3] and [4]. The last section is devoted to technical but crucial lemmas
needed to prove the theorems of Section 2.

2. Main results

We start with the definition of the main object we need to state our theorems,
namely the generalized Rényi dimensions.

Definition.

Let p be a (positive) Borel probability measure. Let ¢ € (0,1) and € € (0,1). We
consider the following function with values in (0, o0]

Lae)= [ ule - e+ dulo)

The lower and upper generalized Rényr dimensions of p are respectively defined as

1 1
D, (q) lim infﬁg—l—“ﬂﬁ and Di(q) = s lim sup l_qg_f,;(_gq_,i)‘ (10)

- 1—q &0 —loge ’

with the understanding that both are +oo, if for some € > 0, I, takes the value
+00.
Remark.

i) Strictly speaking, the Rényi dimensions are defined with a discrete sum instead
of an integral for I,(q,c). However, this leads to the same result since ¢ > 0 (see

[4])-

ii) Actually, these dimensions can be defined for all ¢ € R\ {1}. For our purpose,
it is sufficient to discuss the case ¢ € (0, 1).

Theorem 1. Let H be a self-adjoint operator acting on ¢*(Z%). Let v € (*(Z9),
1wl =1, and let 4, := inf{q > 0| D} (q) < +oo}. Then, for allp € (0,d(1—4y,)/qy),

we have log(([X[7) )
. og »,T P -
1 f———" I >_D
Toe  logT  —d w(1+p/d>’

g (X - p I
1 OBNAT W 5 P e .
ol T g T d e \1 ¥ p/d

and

Remark. If y,;, has compact support, then g, = 0 and the above result is thus valid
for all p > 0 (Proposition 1, iv)).

In the next theorem, we consider continuous models. In this case, a similar result
as Theorem 1 holds if we restrict ourselves to Schrodinger operators H = —A\ + 1~
and under some assumptions on the potential 1"
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Remind that a real-valued measurable function W on R? is said to lie in the
Kato class K} if and only if ([18])

Ifd>3 lima [supxeRd Jxyica | X = Y42 ()] dY] ~0,

ifd=2 limew [supXERz Sx—yica (X = Y)W (V)] dY] =0,
1fd: 1 suPXERfIX—YlSIIW(YHdY < 0.

We say that W is in K¢ if an only if W, is in K, for all [ > 0, where ; is the
characteristic function of the ball in R? of radius [ centered at the origin .
The theorem is as follows

Theorem 2. Let H = —A + V be a self-adjoint Schrodinger operator acting on
L%(R?). We assume that the positive part and the negative part of the potential V
verify V. € K¢ and V_ € Ky. Pick a state ¢ € L*(R?), ||9|| = 1, such that for
some bounded interval I C R, E(I)y =1 (where E(.) is the spectral family of H ),
or equivalently i, s compactly supported. Then, for all p > 0, we have

o Aog{([X P )(T) o 1

1 > P

b inf == e T 2 P \T5p7d) (11)
and

. log{((|X[P)y)(T) _ p 1

1 > =D : 12

Y T logT =d m \T+p/d (12)
Remark.

i) The assumption on bounded support for the spectral measure p,, is crucial in the
continuous case H = L?(R%) since we use the Lemma 2 in the proof of Theorem 2.
Therefore, we need the Hilbert-Schmidt norm estimate (31). Very likely, this as-
sumption can be weakened as soon as a similar relation to (31) holds (see e.g. [7]
for other assumptions). In the other lemmas (1, 3 and 4), the compact support
assumption is not necessary.

ii) There are not many time-independent Schrodinger operators for which we know
that the diffusion exponents ﬂ;f are not trivial (i.e. different from 0, 1 and 2). To
our best knowledge, there exist only two.

The first is a model of Julia matrix H on ¢*(N) treated in [5]. For this model,
the upper and lower fractal dimensions D (q) are equal (:=D,(g)), and continuous
for ¢ € (0,1). Theorem 1 of [5] states that there exists p. > 2 such that for all
0 < p < pe, By (0) < Dy (1 — p). where 4 is the state in ¢%(N) located at n = 0.
Furthermore, we have D,(1/(1 + p)) = D,(1 — p) + o(p) (see [5] and references
therein). Therefore, putting together the above Theorem 1 and Theorem 1 of [5],
we get, for the exponents of any moment of order 0 < p < p. and for the initial
state dy, that

1 . o
D,,, (m) <3, (do) < ,3:(00) < Dugo(l -p).
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and thus for small p > 0,
Dy, (1 —p) +o(p) < B, () < By (80) < Dy, (1=p).

This is the first model treated rigorously for which intermittency is now established,
at least for small p.

The second models form a class of discrete Schrodinger operators of the form
H = —A4 +V acting on ¢2(N\ {0}), where A, stands for the discrete Laplacian
and V is a sparse barrier potential. Roughly speaking, sparse potentials are positive
potentials equal zero on very large regions and are very high in between these regions.
The interplay between the distribution and width of “zero regions” and the height
of V on “nonzero regions”, give rise in some cases to non trivial spectra.

The fine spectral properties of such models where analyzed by Last and Jit-
omirskaya in [14] who proved that for all @ € (0,1), one can construct a sparse
potential V and an initial state v in £2(N '\ {0}) such that dimg(u,) = . Recent
results due to Combes and Mantica pushed further the analysis. They established
that dimp(uy) = 1, and a direct estimate of the lower diffusion exponents: For all
p € (0,2],

_ p+1
B W)fp < an

According to these results and the above theorems it turns out that o < 8, (v)/p <
B (¥)/p =1, and if p is small enough (a being fixed), we are sure that o+ O(p) =
B, (1)/p. Furthermore if one consider e.g. p = 2, we get 3, (¥) € (2a,6a/(20 +
1)) € (0,1/2) if @ < 1/4, giving rise, for the lower oscillations of ({|X|?)4)(T), to
subdiffusive transport, and therefore to anomalous transport.

iii) A result similar to Theorem 1 was proved simultaneously and independently in
[13] under stronger assumptions. The approach is also interesting since in this case,
the main tool is the so-called function f, , singularity spectrum of x,,. However, due
to their assumptions, the result allows only to treat a restricted class of Hamiltonian
H, and is presented in the specific case H = ¢(N).

Proof. The proof of Theorem 1 can be found in [3], and can also be easily recovered
from the one of Theorem 2 which is as follows: Let p be in (0, co). We fix the
function h to be equal to ax(o,i/ * k1, with hy(z) = X[o,l/zle“l/(x(l“zx))z, and a =
([5 X012 ¥~ /#(1-29)% 42)=1 is a normalizing constant, so that h € C§°([0,1]) and
fol h(z)dz = 1. Under the assumptions on H and v, we know from Lemma 2 that
there exists a strictly positive constant C' = C(p, h, d) such that for all 7" > 0

(| XP)p)(T) =2 CLy(T) . (13)
(Note that L,(7T") depends on a function R defined by using h as in (27). Now
remind that v is such that E(I)y = ¢, for I bounded interval. Therefore, the

spectral measure j,, associated to ¢ and H is compactly supported, and thus g, :=
inf{q € (0,1) | D;}(q) < oo} = 0 (see iv) of Proposition 1), and Lemma 4 holds for all
p € (0,00), with R defined by (27). This implies the existence of ¢ = ¢'(¢,p, R) > 0
such that for all € € (0.1)

X C’ (R) 1 1+p/d
12 g () o
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where K ,(f;) is defined by (16) in Proposition 2. We conclude by using Proposition
2 giving an equivalent definition of the generalized Rényi dimensions by help of the
function K ;(lf:); more precisely, we get for some constant ¢(¢q) > 0 and for all T > 0

KR <1+1—p/d’5> > c(q) "1, (1—:]%,5) : (15)

Inequalities (13)-(15) together with the definition (10) of Dy (q) with ¢ =

1
1+p/d
gives (11) and (12).

3. Properties of generalized Rényi dimensions

We first state some basic properties of the generalized Rényi dimensions. As
already mentionned in the introduction, properties ii) and iii) show that our results
in Section 1 are improvement of previous one ([11, 15, 2, 12]). Property i) emphasizes
the possible nonlinear variation in p of the diffusion exponents B;t.

Proposition 1. Let u be a Borel probability measure.

i) D;(q) and D} (q) are nonincreasing continuous functions of q € (0,1).

i) For all q € (0,1), D;(q) > du(u) -

iti) For all ¢ € (0,1), D} (q) > dp(u).

w) If u has a bounded support, then for all g € (0,1), 0 < D, (q) < Di(q) < 1.

The next propostion gives an equivalent definition of the dimension fo(q), by
replacing the characterictic function x_1,) in u(z — e,z +¢) = [p x-1,((z —
y)/€)du(y) by a function R constant on [—1,1] and decaying fast at infinity. This
result allows us to deal with time-averaged between 0 ans 7 in the definition of
({(|X|P)y)(T), instead of time averaged between —T and T as e.g. in [13].

Proposition 2. Let R be a real function on R such that for all z € [-1, 1],
R(z) = 1, sup,eg |R(z)| <1, and R decays faster than any polynomials at infinity.
We define the following function

K (q,e) = /

Suppi

([ e~ y>6“>du<y>)q_’ duz) (16)

then there exists a constant c(q) such that for all € € (0,1), we have

e(q) ' KW (g,e) < / u(le — .2 + €))7 du(x) < (@)K P (q.2) |

The proof of this result is based on an equivalent definition of (10) proven in
[4] using the function ), ., u([ke, (k +1)¢))? instead of I,(g,¢€). See also [3] for an
alternative proof in the case of measure u with compact support.

The last proposition is a technical one used in the proof of Lemma 3 and
Lemma 4.
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Proposition 3. Given a probability measure u, fix a real ¢ € (0,1) and a function
R with the same properties as in Proposition 2. Denote by

b(z,e) := R((z — y)e V)duly) -
suppu
Assume that there ezists ¢’ < q such that D} (q') < oo, then there exists two con-

stants o = alq,¢',R) > 0 and C = C(q,q', R) < 0o dependins only on q, ¢ and R,
such that for all e € (0,1)

/ b(z,e)? 'du(z) < Ce . (17)
{z€suppp | b(z,)<ex}

Proof of proposition 3. By definition of D (¢') and with Proposition 2, for all
small enough, we have

suppy

Therefore, for all € small enough

bz, e)? tdu(z) = b(z, ) " 'b(z, )97 dp(z)

/{ resuppy | blz,¢)<e} /{z‘ESuppu |b(z,e)<ew)

< gla—d)e+3(@-)DI () <e,
for o = (1 -3/2(¢' = 1)Df (¢))(q¢ — ¢)-

4. Technicalities

This section is devoted to technical lemmas needed in the proof of Theorem 1
and Theorem 2. The first two lemmas deal with estimates for ({|X|?),;)(T") and
By(T,N) in term of a function L, involving local properties of the measure p,.
Lemmas 3 and 4 show how this function Ly, is connected with the generalized Rényi
dimensions D, .

Lemma 1. Let H be a self-adjoint operator acting on a separable Hilbert space H.
Let A be a Hilbert-Schmaudt operator in H. For all given vectors ¥, ¢ in ‘H and for
all function h in LY(R), we define for T > 0 the two quantities

D7) = —1T~ / (Ae=H s &=t LV h(t/T)dt (18)
R
U (T) = / / h(z — )T dprg(2)dy (v). (19)

Then, for oll T > 0, we have
h h) 3
DILD)] < 4l (TID)
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where || Al|2 is the Hilbert-Schmidt norm of A.

Proof of Lemma 1. Since A is Hilbert-Schmidt, there exist two orthonormal bases
{¢a}nen and {&,}nen of H and a decreasing sequence {Ej, }nen, En > 0, such that
Yoot E2=1|All3 < +ooand A= 3"77 | En(:, Cu)én. Therefore,

(h) pry _ L
o =L [

+oo X

Y Bale™™ 0, Go) (ns e )R(E/T) . (20)
®  n=1
Furthermore, there exists f, € L*(R,du,) and g, € L*(R,duy) such that ([1])

(e“itH(p7 Cn) = / e_itzfn(x) d/‘w(x) ) and <€TL7 e_itHw> = / eitzgn(_’r)duw(m‘) ’
R R
(21)
Thus

D, (T) = / / h((z — 9)T)S(z, y) dpro(@)duy (v) | (22)
where

S(xw y) = Z Enmgn(y)'

The sum converges in L?(R?, 1, X p1,). Applying the Cauchy-Schwarz inequality to
(22), one gets

h Y ~(h

DY) < USHDISIEe @2, ap, wapy) - (23)

One has
w e
HSH%Z(RaddeW) = Z EnExankbnk
n,k=1
where
ok = / Fe(@) Fa(@) ity () = (Pl Cadoe (24)

where P, is the projection onto the cyclic subspace H, spanned by H and ¢; simi-
larly, we have

bk = (Pylks Puln)n = (& Pon)n-

We have also used the fact that both P, and P, are orthogonal projections. By
Parseval equality,

Z |ankl* = [|PpGell*  and Z bk |* = | Putnll® -
n=1 k=1

Therefore, as ||(k|| = ||€a]| = 1 for all k., n,
[o.9} o0 o0 2
IS 222 s iy < D ERllPoGell® D EallPutall? < (Z Eﬁ) = ||l . (25)
k=1 n=1 n=1

[-10



The statement of the Lemma follows from (23) and (25).

For R being a function as in Proposition 2, and for p > 0 we define the function
Ldj(T) as

Lo(T) = sup { Ly (0, T) |9 € Hy, (6, ) # 0}

. (g, v) o0
Ly(p,T) := % o
AT = R e
and
7E) (T) = / /R R((z - y)T)du(z)du(y) . (26)

and where #, is the cyclic subspace spanned by ¢ and H

Lemma 2. Let H be a self-adjoint Schriodinger operator defined on H = L*(R?)
or H = (*(Z%), and let v be a vector in H, ||| = 1. If H = L*(R?) we further
assume that H = —A + V| where V' fulfil the same assumptions as in Theorem 2,
and we assume that there exists a bounded interval I such that E(I)y = 1, with
E(.) being the spectral family of H. The function ((|X|T’)w)( ) is defined by (1).
Let h € C§°([0, 1]) be a given positive function such that fo z)dz = 1. We suppose
that R verifies

1 if lw| <1
RO ={ e i ol o 1

where h stands for the Fourier transform of h. Then there exists a strictly positive
constant C(,p, h) such that for all T > 1

{IXPN(T) 2 C Ly(T) .

(27)

Proof of Lemma 2. Pick a positive function h € C§°(]0, 1]) such that fo z)dz =

1. The role of h is to supply a fast decaying function |h( )|?2. Note that one
trivially has, for any z € [0,1], h(2) < ||hllcoX(0,1](2). Furthermore, denoting by
F<n (respectively F.y) the multiplication operator by the characteristic function
of the closed ball of center 0 and radius N (resp. of the complementary of the
closed ball of center 0 and radius V), and noting that for all vector ¢ € H we have
”¢|]2 = ”F§N¢l‘2 + “F>Nd)||27 we get

) > e [P (7) 7
m/ll Fon| X PRy |Ph <_>517_f
|[huoo/”F>‘e “oin(z) 7

= ”h”oo (“b“ (T ~V)> ) (28)
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with By (T, N) defined by

By(T,N) = 1, [ ht/T)] Fene |t (29)

We now need to control this quantity By (7, N) which represents the time-averaged
behaviour of the wave-packet in a ball of radius N. Decompose the vector v into
v+ x, with {p, x) =0 and ¢ # 0. Thus

By(T,N) = —B,(T, N) + B(T, N)
2 —i — t
+TR9/R<FSNQ Ho, Fene tHz/J)h(T—
Taking into account that 1/T [;° h(t/T)dt = 1 and h(z) > 0, we have B, (T, N) <
lIxII> = ll¥lI* = ll#ll*>. Then, since —~B,(T, N) <0,

)dt .

By(T,N) < [[|* - |l¢l[? + 2ReDY), (T, N) ,

where D( »(T, N) is defined as in Lemma 1, with A = Fey if H = ¢2(Z4), and
A=E(I )FS n if H = L?(R¢). The statement of Lemma 1 gives immediately

By(T, N) < [lll? — llll? + CN# (U(1)", (30)

where U (h) »(T) is also defined in Lemma 1.

In mequahty (30) we have used the important fact that there exists a constant
C such that for all N € N,

|Alls < CN¥?, (31)

where || Al|2 is the Hilbert-Schmidt norm of the operator A. This estimate is easy to
check in the case H = ¢*(Z%), and is valid in the continuous case H = L%*(R?) due
to the assumptions we made on the potential V' and the fact that E(I)y = ¢ (see
[15, Lemma 6.1] and [18] for details).

As |h(w)| < 1 for all w and by deﬁnition (27) of R, we Clearly have R(w) >
|h(w)|? for all w. Therefore U;hw(T) U(R = g [ R((z — y)T) dpg(z)dpy (y),
and the inequality (30) is valid if we replace Ui,z)p(T) = by Uiﬁp(T), that is with the
function R instead of |h|?.

We are now in position to finish the proof. Recall that T is fixed. The basic
strategy is standard: let N be the largest integer such that CN42Q R)(T) <
lloll?/2, it vields

2
BT, N) < [l - 121 (32

The inequalities (32) and (28) vield with some positive constant C (v, p, h)
ol
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In the more general case (i.e. ¢ is any function of H with (¢, ¢) # 0), one gets the
bound with

(0, ) [2¥2e/d
IO (Tyr -

Ly(p,T) := (34)

Indeed take such a ¢, and then define ¢ = ((p,¥)|l¢||"?)¢. One checks that if
X = ¥ — ¢, then (¢, x) = 0 and thus (33) is valid with ¢ instead of . Taking
into account that [|5]] = (¢, ¥)|ll¢ll~* and that TS)(T) = (e, ) Pllell =g (T),
one finds the announced expression (34). To optimize the lower bound, we take the
supremum of L, (y, T) for a given T over all possible ¢, and this ends the proof.

Lemma 3 Let u be a probability Borel measure. Fiz q € (0,1) and a function R
as in Proposition 2. Let N be in N*. We assume that for some ¢' < q, we have
D,(q') < oo; then there ezists an 1o, a set Q(rq) := {z € suppu|e™+*/N < b(z,¢) <
g™}, where « is the constant given by Proposition 3, and an €y € (0,1) such that
for all € € (0,¢&)

1
— b(z,€)"1d,(2) S/ b(z, ) du(z) (35)
2N Jsuppu Q(ro)
Proof of Lemma 3. Denote by B, := {z € suppu|b(z,e) < e*} and B* := {z €

suppp | b(z,e) > €*}. Then using Proposmon 3 we get

/b(:z: ) 'du(r) /a /Qb(:v £)? Mdu(z) < /B b(z, ) 'du(z) + Ce, (36)

where C' is the constant given by Propositon 3. Now, if we consider the partition
of B® into N sets Q(ka/N) := {z € suppu|e®tV/N < b(z,e) < ek/N} (k €
{0,1,...,N}), we can pick a kg € {0,1,..., N} such that

14 (x l .6V 'd (x
/Q(koa/N) b(z,e) dyu(z) > N/ob( €)1 du(z) . (37)

Since b(z,¢) < 1 and ¢ € (0,1), we have [ b(z,€)?"'d,(z) > 1. Therefore, from (37)
and (36), we get inequality (35) for all 0 < ¢ < &g := 1/(2C), with rg = koa/N.

Lemma 4. Let H be a self-adjoint operator on the separable Hilbert space H =
L*(RY) or H = (*(Z%). Pick a normalized state v € H and denote by py the
spectral measure associated to H and v. Let R be a given function as in Propositz'on
2. Then for all p € (0,00) such that g, := inf{q > 0| D}(q) < +oc} < there

1+ T4p/d’
exists a constant ¢’ > 0 such that for all e € (0,1),

C’ () 1 1+p/d .
e Y £ < Ly(e™),

where the function L, is defined in Lemma 2 by (26), and Kﬁf) 1s defined in Propo-
sition 2
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Proof of Lemma 4. Let a(q, ¢, R) be defined as in Proposition 3, N := [— loge]

be the integer part of —loge, R(z) := |h(2)|?, ¢ be such that ¢ = ﬁ;,—/d, and
© = Xq(ro)(H)¥ (ro given in Lemma 3). We have, by definition of 0;2 given in
Lemma 3

Upry(e™) = /Q( )b(:c,s)d;uw(x) < €y (Qro)) -
ro
Therefore we have

2+2p/d
Lo o _lew) §
V&) 2 T, e =

(Q(TO))1+p/d€—rop/d

1+p/d
> gro(i+2p/d) (/ b(z, e)du¢(ﬂf))
Q(ro)

i 1+p/d
> gro(1+2p/d) (/ b(a:,e)”i’//‘fib(x,g) 1112://;(1“11}(35))
Q(ro)

> E-—ro(1+2p/d)+ro(1+2p/d)+(1+2p/d)a/N (b(.’lf, E) 1—4_;;//% ) 1+p/d

1 c 1
> g(1+2p/d)a/N [ (R) > KR
- Ho 1+p/d’£ ~ |loge| #v 1+p/d’5 ’

where in the last inequality we used Lemma 3 with N being the integer part of
—loge.
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