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Supersymmetry, Witten Complex and Asymptotics
for Directional Lyapunov Exponents in Z?

Wei-Min Wang

Abstract
By using a supersymmetric Gaussian representation, we transform the
averaged Green’s function for random walks in random potentials into a 2-
point correlation function of a corresponding lattice field theory. We study
the resulting lattice field theory using the Witten Laplacian formulation. We
obtain the asymptotics for the directional Lyapunov exponents.

In this talk, I report on my quantitative study of random walks in random
potentials in dimensions d > 1 in [Wa].

1. The analytical formulation and the main results.

In analytical language, which is the language we adopt, this corresponds to the study
of the operator

H = A++vV, on3(Z%), (1.1)
where
Aij =1 li—jla=1

. (1.2)
=0 otherwise;

v is a positive parameter, the potential function V' is a diagonal matrix: V =
diag(vj), j € Z9, where {v;} is a family of independently identically distributed (iid)
real random variables with distribution dg. (dg is only assumed to be a measure.)
From now on, we write || for ||,. ¢ norms will be denoted by || ||. The probability
measure is taken to be

P = [];cz4dg(v;). We use the notation (), to denote the expectation value with
respect to P.

As is well known, the spectrum o(A) is [-2d,2d]. (Note that the Laplacian
defined here differs from the one usually used by the probabilists by the constant
2d times the identity. So the spectrum differs by 2d.) Let supp dg be the support of
dg, then we have the well established fact (See e.g., [CFKS, PF].) that

o(H) =[-2d,2d] +suppdg - (1.3)
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almost surely. Assume E ¢ o(H), then we define G(E) = (E — H)™! and

G(E,u,v) = (6,,(E - H)™S,), p veZd (1.4)

to be the Green’s function (or correlation function) of H at energy E. In this
paper, we take E € R\o(H) (assuming R\o(H) # ) and study the asvmptotics of
(G(E, u,v))q, as |u—v| = oo for vy << 1. ‘

Our result, which is to be stated precisely in the Theorem below, shows that
(G(E, p,v))q can be expressed as the inverse of an effective convolution matriz. Our
work in this paper can therefore be categorized as quantitative homogenization. But
in order to achieve that, we need some technical conditions on dg.

We need to impose conditions on dg to ensure that the resolvent set: R\o(H) #
(. This is satisfied if suppdg is bounded either from below or above. We define the
Laplace transform of dg, §(t) for t > 0 to be

a(t) = / e dg(v), (1.5)

if suppdg is bounded from below; and

a(t) = / evdg(v), (1.6)

if suppdg is bounded from above. We also require that dg has bounded moments,
in order that the derivatives of § have the required properties at infinity.

Remark. This is needed for the Witten Laplacian construction and subsequently for
computing the asymptotics of the Lvapunov exponents. For the present paper as
we do not work to all orders of v, it is sufficient to assume that dg has finite n*t
moment, for some fixed n. But as the construction could be extended to all orders,
we assume that all moments of dg are finite.

Due to the presence of the parameter E, without loss of generality, we may then
assume that

(H1) suppdg C (—o00,0] or suppdg C [0, +00)

(H2) dg has finite moments, i.e.,

|/v"dg(v)| < 00, foralln > 0.

Define

g(a) = / dg(v), (a2 0) (L.7)

—a

in the first case of (H1) and

s = [ dso), (@20) )
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in the second case of (H1). We assume further
(H3) dg is such that g is of regular variation at 0 with exponent p (0 < p < ),

ie.,
9(Ca)
g9(a)

—~ f(C)=C? (1.9)

asa — 0 forall C > 0.

Remark. Since dg is a probability measure, g is a positive monotone function on
[0,00). For such functions, condition (1.9) is much less restrictive than it seems at
first sight. This is because once we assume the limit of g(Ca)/g(a) exists and is
finite as a — 0 for a dense set of C’s in R*, then the limit f(C) is necessarily of the
form C” for some 0 < p < co. For more details on this, see p. 268 of [F].

(H3) enables us to use Tauberian type theorems to deduce the desired properties
of the derivatives of § as t — oo. We note in particular that the Bernoulli distribution

d(v)+d(v+1)
2
_dh(v) +dh(v+1)
B 2
where 4 is the Dirac distribution at 0 and h is the Heaviside function, is of regular.
variation with exponent p = 0.

dg(v) =
(1.10)

For all 6 > 0, define

Is = (2d+ 6, 00) if suppdg C (—oc,0],

1.11
= (—o0, —2d — 9) if suppdg C [0, c0). (1.11)

Assuming (H1-3), our main result is

Theorem 1 For all § > 0, there exists vo > 0, such that for all 0 < v < 7y, all
Ecl;, all p, veZe,
log(G(E, u,v))y =1og(G(E,p—v,0)),
=log (B — A = 7(v)g = v*{(v = (v)9)*)g[(E = A = 7{v)4)7*(0,0)]
=70 = (©)g))l(E = A = 4{0)g) 7 (0,0)12) " (.~ 1,0)
+O()(lu = vl +1) ~
= log(E = A)~H(u = 1,0) + O(v")(|u — v + 1),
(1.12)

where

E S B = i)y =70 = @) )l(E = A = {0))7(0,0)
=7 {0 = () )gl(B = A = 3(0)g) 70, 0) (1.13)
¢ [—2d, 2d)]. ‘
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We stress here that the order of the quantifiers are important, in particular ~, is
uniform in |p — v|.

Remark. We do not require any regularity conditions on dg other than (H1-3) for
the Theorem to hold, in marked contrast to the random Schrodinger case, see e.g.,
[SW1, SW2]. Instead the conditions on dg, in particular (H3) are reminisent of the
conditions that one imposes to obtain Lifshitz tails, see e.g., [PF]. The main reason
for this contrast as we will see in (1.30, 1.31) is that when E € R\o(H), it is the
Laplace transform of dg that is relevant; while when F € C\o(H), RE € o(H), it
is the Fourier transform of dg.

Note the interesting O(y?), O(y®) terms, which we will give a simple explanation
n (1.15)-(1.17). The O(vy) term just corresponds to a shift in E. Note also that

|E = (v)gl = |E| +7|(v)o| > |E] (1.14)

for E € I5. So the rate of decay is better than the naive one; recall that the almost
sure spectrum is contained in [—2d,00) or (—o0,2d]. Hence in some sense, the
“effective” spectrum is further away than the almost sure one. This is related to the
so called Lifshitz tails for the density of states in random Schrédinger operators, see

e.g., [PF].
We now give a simple explanation for the terms O(v), O(7*) and O(+?) in (1.12).
Let Go = (E — A —y(v)g) ' and V' =V — y(v),. By the resolvent series, we have
G(E7 2 V) = GO(#? V) + V(GO‘_/GO)(/'“ I/) + 72(G0‘7G0‘7G0)(ﬂ V)
+’73(G0VG0VG01_’7G0)(}1,, l/) + ’}’4(Gg‘—'G()VGoV'GoVG)(;L, I/),
(1.15)

Let Go = (E — A —y(v),)~! and V' =V — v(v),. Note that the last factor in order
O(v*) is G itself. So

(G(E, 1, v))g = Golp, v) +7*{(v = (v))*)gGo(0,0)(GoGo) (1, v)
+72{(v = (v)9)*)g(Go (0, 0))*(GoGo) (1. v) + O (7).
We hence obtain that for all u, v with |u — v| fixed
(G(E. 1)) = (B~ A= 1{e)y = (1~ (0)9)2)g(E — A = 7)) (0,0)

—73 (1 = ()g)?)g((E = A = 7(v)g)71(0,0))2) ™ (1, v) + O(v").
(1.17)

(1.16)

We see that indeed, the O(v), O(7?), O(7*) terms are identical to the ones in (1.12).
The trouble comes when we let |1 —v| — o0, as the estimate for the remainder O(v*)
is not in the appropriate weighted space due to the appearance of G there. We see
therefore that the Theorem extends the result obtained from perturbation series,
which is valid only for fized |u — v|.

Using the usual method in field theory, in order to obtain the correct behavxour
for (G(E, p,v))g for |u — v| — oo, one needs to expand the infinite series and then’
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resum it. The advantage of our method is that one establishes first the existence of
an effective convolution matrix. It is only when one wants to derive an expression
for this convolution matrix that one expands. Therefore to obtain an accuracy of
the given order, one only needs to expand a finite number of terms. It is not an
infinite series.

For E ¢ o(H), define

n—00 n

(1.18)

if the limit in the RHS exists. Using the FKG inequality [FKG, Li| as stated in
Remark 3.2 on p. 241-242 of [Szl] and subadditivity ergodic theorem, it can be
shown, similar to [Szl, Z] that for all £ ¢ o(H), the limit in (1.18) exists and
moreover by patching of limits:

- 185() + 108(G(E, 0,.)]

jo0 151
The Bg(j) are called the annealed directional Lyapunov exponents. They are in
some sense, natural generalizations of the traditional Lyapunov exponent to higher
dimensions. For a fixed E, 3g defines a norm on R? [Szl, Z]. One can similarly
define ag, the directional Lyapunov exponents in the almost sure case, which we
will not address in this paper. ag are called the quenched Lyapunov exponents.
For more detailed statements, see Theorem 3.4, p. 244 of [Szl] and Theorem A
of [Z]. (We remark here that for E € Is, (1.19) can also be proved by using the
constructions used in the proof of the Theorem, which we will describe in subsect. 3.)

=0. (1.19)

Remark. There also appears to be some connection between the Lyapunov exponents
defined here and the Lyapunov exponents of d-dimensional lattices of coupled, non-
linear oscillators. See [EW1, EW2] and references therein for a discussion and some
confirmation of this connection.

Define

d
Dz ={y € R"|>_ coshy; < |E|}, (1.20)

1=1

where E is as in (1.13). D g is a convex set. We then obtain as a direct consequence
of the Theorem

Corollary 2 For all 6 > 0, there exists vo > 0, such that for all 0 < v < 7, all
E € I,

Be(j) = sup y-j+ O, (1.21)
veD g

where E is as in (1.18). (Note that ||y|| = O(1).) Let
s J o ocdn
j=7= €85 - (1.22)
51l

Bg(j) extends to an analytic function in E for E such that RE € I.
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The above result is new for d > 1. For d = 1, there are similar results in the
continuum by using probabilistic methods [Fr, Po, Sz2]. The case d = 1 is special.
as the (random walk) process is additive. We use lattice field theory (see subsect. 3)
to prove the Theorem; the Corollary is a straight forward consequence.

Proof of the Corollary. (1.21) follows directly from the Theorem and standard convex
analysis as in [Sj1], so we do not repeat it here. (For a general reference on convex
analysis, see e.g., [H].) Analyticity in E (RE € I;) for Sg(j) is a direct consequence
of the above Theorem, (1.21) and the Cauchy Theorem. O

Remark. We note from the Corollary that, to O(y*) the Lyapunov exponent is the
support function of a convex set corresponding to the effective convolution matrix:
E—A. Hopefully it will become clear after the proof of the Theorem that to all orders
in -, the Lyapunov exponent is the support function of a convex set corresponding
to an effective convolution matrix by iterating the procedure used here. (cf. [Sj2] for
a related situation.) Starting from O(~*), the off-diagonal elements of the effective
matrix will be different from A, i.e., there will be corrections to the generator itself.

2. The probabilistic aspect.

Before explaining the proof of the Theorem, we first take a brief detour to elab-
orate on the probabilistic content of the problem. The proof of the Theorem and its
Corollary are purely analytical, so they could be understood independently. How-
ever in order to put the results here in a more general context, it is the probabilitic
point of view which is most natural and most useful. This is not surprising as the
problem originates there.

Definition of random walks in random potentials.
Define P on Z¢ x Z¢ by

Ay
P(i,j) = 5 (2.1)

for all (i,7) € Z% x Z¢, where A;; is as defined in (1.2). We have from (1.2) that
P(i,j) = P(0,i—j), P(0.i)>0, > P(0,i)=1, (2.2)
i€Zd

i.e., P(i,j) defines the transition probability of a (simple) random walk (see e.g.,

[Spi)).
Using this point of view, the Green’s function for A (i.e., the free Green’s func-
tion) has the following path representation (see e.g., p. 169 of [Lal):

Go(E,p,v)=(E-A)(mv)= Y E™  E>2d (2.3)

w: p—v

where the sum is over all walks w from p to v and |w| is the length (i.e., total
number of steps) of the walk w. Similarly the Green’s function for H defined earlier
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in (1.4) has the representation (see e.g., (1) of [Z]):
G(E,p,v) = (E-H) " (uv)

= fj v f‘[(E‘— YWw;)™l,  E>2d, (24)

n=0 w: p—v; |w|=n j=0

where w; is the position of the walk w after j steps. Note that due to the discrete
time formulation, (2.3) and (2.4) are slightly different from the usual Feynmann-Kac
formula. Clearly (2.4) reduces to (2.3) when V' = 0, and can be seen as defining
a weighted (by V') path measure. (In fact, (2.3), (2.4) are, in analytical language,
the resolvent (or Neumann) series about £ or E — vV written in a slightly different
way.) We say that H defines a random walk in the random potential vV

Remark. The book Brownian Motion, Obstacles and Random Media by A. S. Sznit-
man [Sz1] provides an excellent in-depth reference on the subject. There is also a
Bourbaki seminar [Kom| by Komorowski centered on the work of Sznitman, which
can serve as a short introduction to the subject. The method that we use to prove
the Theorem is substantially different—it is purely analytical. However much of our
understanding of the subject comes from reading the book, which we frequently refer
to in this section. Also when we make references to works of Sznitman covered in
the book [Sz1], we do not in general trace back to the original reference.

For a given realization of the potential V', G(E, u,v) is the probability of finding
the random walk at site v conditioned that it starts at site u. (Recall that the
Green’s function is the integral over all time ¢ of the heat kernel.) For more details,
see e.g.,[La, MS, Spi]. It follows then (G(E, u,v)), is the ezpected (with respect to
the random potential V') probability of finding the random walk at site v conditioned
that it starts at site p. In the limit |u — v| = oo, (G(E, p,v)), is also essentially
the normalization constant for the measure defined as the tensor product of the
probability measure P = []. 54 dg(v;) with the path measure for H in (2.4) (see (7),
p. XI and (2.7), p. 323 of[Sz1]).

Comments on the Theorem.

We believe quantitative results like (1.12, 1.13) were not know before for random
walks in (time-independent) random potentials in d > 1. If one considers random
walks in time-dependent random potentials (cf. [?, IS]) , which is a type of the so
called directed random walks, then Sinai in [Sin] obtained a result which is similar
to the above Theorem. (See also (2.22) on p. 327 of [Sz1].) The term directed refers
to the fact that the walk is parametrized by time and that the graph of the walk in
Z x Z%! moves at a constant rate in the time direction.

The main and also the crucial difference between the directed case and our (non-
directed) case is that in the directed case, one can always, in some sense, reduce
to a transfer matrix type of situation, as there is a prefered direction; while in our
case, the non-directed case, one cannot avoid treating walks that return (loops or
self-intersections), even though they are unlikely due to the condition E ¢ o(H).
(See (2.4).) ,

In spite of the difference stressed above, for high dimensions and potentials which
have small variations (y << 1), the result for the correlation function in the non-
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directed case (1.12) is similar to that obtained in the directed case in [Sin]. This
partially proves a commonly held belief (see e.g., p.327-328 of [Sz1]).

In the mathematical physics literature, there are results which are similar to
‘ours, e.g., [CC, P-L, Sch]. We mention in particular the result obtained by Chaves
and Chayes in [CC] for self-avoiding walks (walks with no self-intersections), as the
setting is sufficiently close to ours. (For a precise definition and general references,
see [La, MS].) In [CC], the correlation function is defined to be:

GBumv)= Y e, Bels, ), (2:5)

w: u—v

where the sum is over all self-avoiding walks w from p to v, |w]| is the length (i.e., total
steps) of w, (. is the critical parameter beyond which the sum in (2.5) converges.

Clearly G defined in (2.5) is translationally invariant. So we may take v = 0.
In [CC], for ¥ — oo in a conic neighborhood of a given direction, which apparently
without loss of generality may be chosen to be one of the axis in Z¢, it is shown that
for all 8 < (3., the correlation function for walks that are conditioned so that their
projections onto the axis of the cone contains only points of self-intersections (for
more precise definition, see [CC]) decays strictly faster than the correlation function
for the unconditioned walk. (Questions of uniformity with respect to different direc-
tions do not seem to be addressed explicitly in the paper.) From this they deduce
the equality of the upper and lower bound of the rate of decay for the correlation
function, although no explicit expression is given for this rate.

The decay rate of the walk is customarily called the gap; the decay rate of the
conditioned walk is called the upper gap. The key result of [CC] can therefore be
rephrased as stating that the upper gap is strictly greater than the gap “in a cone”.

We will come back to this question of gap and upper gap later in subsect. 3, when
we describe our method, which reduces the problem to the study of the spectral
theory of a self-adjoint operator, the so called Witten Laplacian. As we will see, our
construction is uniform in all directions. Gap and upper gap appear naturally in
this canstruction. We only preview now that the fact that we have an asymptotics
for log(G(E, u,v)), uniformly in |4 — v| as in (1.12), and not just an estimate is a
direct consequence of our precise control not only over the gap, but also over the
upper gap, or more precisely the spectrum beyond the gap.

Comments on the Corollary.

As mentioned earlier, the results in the Corollary are not known before for d > 1.
For d = 1, in the continuum, there are some results due to Friedlin, Povel and
Sznitman [Fr, Po, Sz2], which are summarized on p. 233,325 of [Sz1]. The case
d = 1 is special as the Brownian motion or the random walk process is additive.
The above Theorem and its Corollary confirm a few conjectures raised in the past
in the annealed (averaged) case. For a sample of such conjectures in the quenched
(almost sure) case, see p. 219, 233 of [Szl].

In [Sz2], Sznitman proved that in d = 1 and for Brownian motions in Poissonian
potentials, i.e., for

HZ—EE-{'",
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where V' > 0 is a random potential with Poisson distributions, the quenched Lya-
punov exponent ag(1) is analytic in E for E such that RE > 0. He used an explicit
formula obtained in [Fr] to derive the result. The analvticity of 3g(j) proved in the
above Corollary extends analyticity results to the annealed case in Z¢ for all d > 1,
when v << 1 and for E such that RE € I;.

However, the analyticity of 3g(7) for E such that RE € Iy, as it stands (contrary
to the almost sure case) does not yet contain much information. This is because
for E complex, G(E,0,7) is in general complex. A priori, the signs of its real and
imaginary part depend on V. However, since there is good reason [Spe] and also p.
326 of [Sz1] to believe that agp = fg almost surely for d > 2, the Corollary would
then imply that aE(j') is analytic for d > 2, almost surely, which certainly carries
interesting informations.

In the case of Brownian motions in Poissonian potentials, Sznitman [Sz1] derived
upper and lower bounds for ag and Bg. In the case of random walks in random
potentials (same setting as in this paper), Zerner [Z] derived upper and lower bounds
for ag. Our aim is actually to compute the asymptotics of Bg as v \, 0. Our method
is constructive.

Due to the lack of rotational symmetry in Z¢, the directional dependence of the
Lyapunov exponents are more complicated than in R?. (In RY, it is known to be
proportional to the Euclidean norm, although the constant of proportionality is not
known, see p. 219 of [Sz1].) In particular, the Corollary shows that the unit ball in
the norm defined by (g is not rotationally invariant. In [Z], when V" is a constant,
i.e., H is a convolution matrix, Zerner obtained a closed expression for the Lyapunov
exponents. Moreover for d = 2, using this expression, Zerner numerically computed
the Lyapunov exponents in the case where the potential V' is a constant. Combining
the Corollary with this numerical result, we see explicitly that for d = 2, the unit
ball in the norm given by g approaches instead the shape of a diamond.

We mention another application of the Corollary to random walks in random
potentials with a constant drift ~ € R? More precisely, we define the first order
difference operator V componentwise as

(Veou)(n) = u(n + ea) — u(n),

where e, € Z¢, eq(8) = dus, @, 8 =1,---,d, and we replace the generator A by
A+ haV.,. We define the dual norm 3} as

(- x
2(f) =sup{ ——=1, teRY E¢o(H).
530 = sup {77} ¢ o(H)
The unit ball in the norm 3}, is the critical unit ball [Sz1]: if h is such that 85 (h) > 1,
then the motion is ballistic; if h is such that 5*(h) < 1, then the motion is sub-

ballistic. The Corollary then allows us to compute the critical drifts h., which are
directional dependent, for E' € I;.
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3. The constructions toward the proof of the Theorem.

We now describe briefly the construction of the proof of the Theorem. As usual
we use finite dimensional approximations and take A to be a finite set in Z¢ and
define Hy to be the restricted operator with appropriate boundary conditions. For
concreteness, assume suppdg C (—00,0] and E > 2d. (The other case works in
exactly the same way.) Our starting point as in [SW1] is the following Gaussian
integral representation of G (E, u,v):

dQ.I'i

GA(E, p,v) = / 2 ay[det(E — Hy)] e T Eivmn [T —— - (3.1)

teA

where z; € R? and - is the usual scalar product in R?. Using Grassmann variables
(see sect. II), the determinant can be further expressed as a Gaussian integral (of
Grassmann variables). (This is first used in this context in [BCKP, KS].) This is
the so called supersymmetry. Using this representation, we can explicitly take the
expectation value of GA(E, u,v) with respect to dg. Let

att) = [ evdg(v (32)
be the Laplace transform of dg. Since g(t) > 0, we define

k(t) = logg(t).

We obtain (For more details, see [Wa].)

—26(z d2$i
A | = (33)
€A
where
o(x) = [ ,(E = An)iyzi - x5 — 3 00 k(yz; - ;) (3.4)

—logdet(E — Ay — ydiagk'(yz; - z;))).

We see that the above supersymmetric-Gaussian transform has mapped the averaged
correlation function of a random walk in random potentials to a correlation function
of statistical mechanics. The measure [],., dg(v;) on R* has been transformed

to =2 on (R?)* & R2M. From now on we denote by () without subscript, the
expectation with respect to the measure e=2%.

Remark. In the physics literature (see e.g., [Ef]), supersymmetry has always played
an important role in the study of disordered systems. In [BCKP, KS], supersymme-
tryv was incorporated in a mathematically rigorous manner for the first time. One of
the main differences between the present paper (also the earlier paper [SW1]) with
[BCKP, KSJ, is that the Grassmann variables are further integrated over (see (3.3),
(3.4)), so that “conventional” analysis becomes feasible.
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By a now well known integration by parts initiated in [HS1, HS2, Sj1], which for
completeness we rederive in sect. II, we have further (formally)

(Ga(Bupv Z [z (a0 emeashy), (35)
where
AY = AP @I+20" on CP(R*;AR?)
©) (3.6)
D on C¥(R),
where z; = 3—;‘:—]7 + a%%’ zj = _a_zj + 81‘ , z; 1s the formal adjoint of z;, we have

identified 1-forms with functions with values in R?" and (, ) denotes the inner
product on L?(R?*; AR?"). (For conditions on ¢, domaines of Afbo), Af;) etc., see

[Wa)]. It suffices to mention here that under conditions (H1-3) on g, A(O), A(l) have
self-adjoint extensions.) A(O) Al ¢ are respectively the Witten Laplacians on 0, 1-

forms. Note that when ¢ is quadratic, Afbo) is just the usual harmonic oscillator on
L%(R?"). More generally

Ay = didy + dyds,

dy = e ?de?® = Z zidx?},
- (3.7)

dy = e?de™? = Zz;da:][-,

where d is the usual exterior differential, d* its formal adjoint (and consequently d,
is the formal adjoint of d,).

The spectra of A(O), Af;) play a crucial role in our construction. For now it

suffices to mention that Ag)) > 0 and that Ag)) has 0 as an eigenvalue of multiplicity
1 with e™® the unique eigenfunction. If ¢ is strictly convex, i.e., ¢" > ¢ > 0
uniformly in A as an operator, which is the case for F € I, (6 > 0), we obtain that
_\(1) > ¢ > 0 uniformly in A. This is the so called spectral gap, which is responsable
for the exponential decay in the Theorem. Hence to obtain asymptotics for (G,),
we need to compute this spectral gap as an asymptotic series in . This requires
precise control over the spectrum beyond the gap. The main difficulty here is that
we need estimates which are uniform in A, so that we can pass to the limit A * Z¢.

This is achieved in sects. IV, V by using appropriate weighted spaces. We also note
that for F ¢ o(H),

Al;‘nzld(GA(E7 K, V))g = <G(E7 K, V)>9
exists a priori by resolvent series and spectral theory, so we only need to ensure that
we have uniform estimates in this paper. -
We use a Grushin problem to reduce the study of A(d,l) near the lower part of its
spectrum to that of an effective operator. From the representation in (3.5), we are
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only interested in (Af;) —z)7! for 2 = 0. We show that to order O(*) in appropriate
weighted spaces, this effective operator is just (2¢") = [ e=2°2¢".

Sketchily, this is accomplished as follows. Let A = A x {1, 2} which we identifv
with {1,2,--- [ |A|,---,2|A|}. We first use the set of orthonormal 1-forms 4, =
{e~%dz;,j € A} to pose the first Grushin problem for A‘(;). (Recall that e~° is the

unique eigenfunction of Afbo) with eigenvalue 0.) Consequently, we obtain that the
effective operator is (2¢") modulo O(v?), valid for a certain spectral interval I, at
0. (See [Wa].) This step is similar to that of [Sj1] (see also [BJS]) in the statistical
mechanics context, where the effective operator is constructed to order O(h%?),
“where h is the semi-classical parameter. The order O(h%/2) there approximately
corresponds to the order O(y?) here.

However as it is clear from (1.12,1.13) and as we explained earlier, the terms
which reveal the structure of the problem start at O(7?). So we need to carry the
Grushin constructions a bit further. To O(v*), this is accomplished by enlarging
the set of orthonormal forms to

Az = {e %dz;,j € A} U{zte %dz;, z}zje %dx;, 5.k, L € A, k < £},

where { }! denotes the set of orthonormal 1-forms obtained from { } by orthonor-
malization. These two sets are of the same dimension here. (The restriction k£ < ¢
is due to the commutativity of the 2} (j € A), defined in (3.6).)

More precisely we show that the well-posedness of the first Grushin problem for
Af;) using {e~%dz;,j € A}, implies the well-posedness of a Grushin problem for Afbo)
using

{e7®} U {zte™®, k € A}

So we obtain an effective operator for Ag}o) valid in the same interval I;. (See [Wa)
.) Here we used in a crucial way that d, is a complex and therefore the spectrum of
Af;) and Afpo) are related.

Using the first equation of (3.6) and ¢” > ¢ > 0, we obtain an effective operator
for Af;) valid in a larger spectral interval I, D I; by using

Ay = {e %dz;,j € A} U {zte?dx;, j, k € A},
(See Proposition 4.7.)

[terating this once more (See [Wal.), we obtain an effective operator for A((;)
modulo O(v*) when restricted to the subspace spanned by A;, in an even larger
interval Is D I, D I; by using A3. (Although we do not pursue it in this paper, it is
clear to us that this procedure can in fact be iterated to all orders.)

We stress that since we are interested in the asymptotics as |u — v| — oo,
it is crucial that I3 is large enough, as this translates into estimates which are in
appropriate weighted spaces. The Theorem is then obtained by computing explicitly
(2¢")~!. The Corollary follows by using the Theorem and standard results on the
inverse of convolution matrices.

We note also that for v small, ¢ is close to a quadratic form, and e=2? is close
to a Gaussian. So it should not be surprising that the set of functions

{e_d), z;e_¢, Z;Z;€_¢a ot kag € 1—\7 k -<— é? v }
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play a special role here. This is because when v = 0, this set of functions after proper
orthonormalization is just a set of Hermite functions. What we did can therefore be
seen as a perturbation theory around an “infinite” dimensional Gaussian or harmonic
oscillator. In other words, what we are using is a Witten complex formulation of
Euclidean lattice field theory, whose foundation was laid down by Sjostrand in his
seminal paper [Sj1].

After we finished the paper, we realized that the connections between random
walks and lattice field theory are in fact well known, see e.g., [FFS], in particular
[BF1, BF2], where they use the term oscillation modes, which roughly corresponds
to the eigenfunctions of Af;) in our vocabulary. The novelty here is that we have an
ea:(vlz'cz't transformation of random walks in random potentials to a specific operator:
A ¢1), where ¢ is determined by the random walk and the random potential as in

(3.4). Af;) can in turn be interpreted as giving rise to a field theory. It is due to
this equality in (3.5) that we are able to compute various quantities. ‘

Finally, we like to add that we also hope to address the almost sure (quenched)
behaviour of G by similar constructions in the future. As mentioned earlier, it is
conjectured that ag = Bg a.s., for d > 2. If it is true, then the Lyapunov exponents
obtained here are also the Lyapunov exponents in the quenched case for d > 2.
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