
Journées

ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Évian, 8 juin–12 juin 2009

Bernard Helffer
On spectral problems related to a time dependent model in
superconductivity with electric current

J. É. D. P. (2009), Exposé no III, 16 p.
<http://jedp.cedram.org/item?id=JEDP_2009____A3_0>

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

GROUPEMENT DE RECHERCHE 2434 DU CNRS

http://jedp.cedram.org/item?id=JEDP_2009____A3_0
http://www.cedram.org/
http://www.cedram.org/


Journées Équations aux dérivées partielles
Évian, 8 juin–12 juin 2009
GDR 2434 (CNRS)

On spectral problems related to a time dependent
model in superconductivity with electric current

Bernard Helffer
Abstract

This lecture is mainly inspired by a paper of Y. Almog appearing last
year at Siam J. Math. Anal. Our goal here is first to discuss in detail the
simplest models which we think are enlightning for understanding the role of
the pseudospectra in this question and secondly to present proofs which will
have some general character and will for example apply in a more physical
model, for which we have obtained recently results together with Y. Almog
and X. Pan.

1. Introduction

We would like to understand the following problem coming from superconductivity.
We consider a superconductor placed in an applied magnetic field and submitted to
an electric current through the sample. It is usually said that if the applied magnetic
field is sufficiently high, or if the electric current is strong, then the sample is in a
normal state. We are interested in analyzing the joint effect of the applied field and
the current on the stability of the normal state. As described for example in our
recent book with S. Fournais [FoHel], this kind of question, without magnetic fields,
can be treated by using fine results on the spectral theory of Schrödinger operator
with magnetic field starting with the analysis of the case with constant magnetic
field in the whole space and in the half-space. So we would like to start an analogous
analysis when an electric current is considered.

This lecture is mainly inspired by a paper of Y. Almog [Alm2]. Our main goal
here is to discuss in details the simplest models which we think are enlightning
for understanding the role of the pseudospectra in this question. In the second
part, we will present proofs which have some general character and for example
apply in a more physical model, involving for example the non self-adjoint operator
−∂2
x− (∂y− ix

2

2 )2 + i y on R2
x,y, ,for which we have obtained recently results together

with Y. Almog and X. Pan [AHP].
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After a presentation in the next section of the general problems and of our main
results, we will come back to Almog’s analysis and will start from a fine “pseudo-
spectral” analysis for the complex Airy operator on −∂2

x + i x on the line or on R+

and make a survey of what is known.
We hope also that this will illustrate some aspects discussed in the lectures of

J. Sjöstrand at this conference. They are also related to recent results of Gallagher-
Gallay-Nier [GGN] and to results on the Fokker-Planck equation obtained by Helffer,
Hérau, Nier ([HelNi] and references therein) or Villani [Vil].

Acknowledgements.
During the preparation of these notes we have benefitted, in addition to the col-
laboration with Y. Almog and X. Pan, of discussions with many colleagues includ-
ing W. Bordeaux-Montrieux, B. Davies, P. Gérard, C. Han, F. Hérau, J. Martinet,
F. Nier and J. Sjöstrand. In addition, W. Bordeaux-Montrieux and K. Pravda-Starov
provide us also with numerical computations which were sometimes confirming and
sometimes predicting interesting properties.

2. The model in superconductivity

2.1. General context
Coming back to the physical motivation, let us consider a two-dimensional super-
conducting sample capturing the entire xy plane. We can assume also that a mag-
netic field of magnitude He is applied perpendicularly to the sample. Denote the
Ginzburg-Landau parameter of the superconductor by κ (κ > 0) and the normal
conductivity of the sample by σ.

The physical problem is posed in a domain Ω with specific boundary conditions.
We will only analyze here limiting situations where the domain possibly after a
blowing argument becomes the whole space (or the half-space). We will mainly
work in dimension 2 for simplification.

Then the time-dependent Ginzburg-Landau system (also known as the Gorkov-
Eliashberg equations) is in ]0, T [×Ω : ∂tψ + iκΦψ = −∆κAψ + κ2(1− |ψ|2)ψ ,

κ2 curl 2A + σ(∂tA +∇Φ) = κIm (ψ̄∇κAψ) + κ2 curl He ,
(2.1)

where ψ is the order parameter, A the magnetic potential, Φ the electric potential,
∇κA = ∇ + iκA and −∆κA is the magnetic Laplacian associated with magnetic
potential κA.
In addition (ψ,A,Φ) satisfies an initial condition at t = 0.

In order to solve this equation, one should also define a gauge (Coulomb, Lorentz,...).
The orbit of (ψ,A,Φ) by the gauge group is

{(exp iκq ψ,A +∇q,Φ− ∂tq) | q ∈ Q} ,
where Q is a suitable space of regular functions of (x, t). We refer to [BJP] (Para-
graph B in the introduction) for a discussion of this point. We will choose the
Coulomb gauge which reads that we can add the condition div A = 0 for any t.
Another possibility could be to take div A + σΦ = 0. A solution (ψ,A,Φ) is called
a normal state solution if ψ = 0.
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2.2. Stationary normal solutions
From (2.1), we see that if (0,A,Φ) is a time-independent normal state solution,

then (A,Φ) satisfies the equality
κ2 curl 2A + σ∇Φ = κ2 curl He , div A = 0 in Ω . (2.2)

(Note that if one identifies He to a function h, then curl He = (−∂yh , ∂xh).)
Interpreting these equations as the Cauchy-Riemann equations, this can be rewritten
as the property that

κ2( curl A−He) + i σΦ ,

is an holomorphic function in Ω. In particular, if σ 6= 0, Φ and curl A − He are
harmonic.

Special situation: Φ affine. As simplest natural example, we observe that, if
Ω = R2, (2.1) has the following stationary normal state solution

A = 1
2J (Jx+ h)2ı̂y, Φ = κ2J

σ
y . (2.3)

Note that
curl A = (Jx+ h) ı̂z,

that is, the induced magnetic field equals the sum of the applied magnetic field hı̂z
and the magnetic field produced by the electric current Jx ı̂z.

For this normal state solution, the linearization of (2.1) with respect to the order
parameter is

∂tψ + iκ3Jy

σ
ψ = ∆ψ − iκ

J
(Jx+ h)2∂yψ − ( κ2J )2(Jx+ h)4ψ + κ2ψ . (2.4)

Applying the transformation x→ x−J/h, the time-dependent linearized Ginzburg-
Landau equation takes the form

∂ψ

∂t
+ i

J

σ
yψ = ∆ψ − iJx2∂ψ

∂y
−
(1

4J
2x4 − κ2

)
ψ . (2.5)

Rescaling x and t by applying
t→ J2/3t ; (x, y)→ J1/3(x, y) , (2.6)

yields
∂tu = −(A0,c − λ)u , (2.7)

where, with Dx = −i∂x , Dy = −i∂y ,

A0,c := D2
x + (Dy −

1
2x

2)2 + i c y , (2.8)

and
c = 1/σ ; λ = κ2

J2/3 ; u(x, y, t) = ψ(J−1/3x, J−1/3y, J−2/3t) .
Our main problem will be to analyze the long time property of the attached semi-
group.

We now apply the transformation
u→ u eicyt

to obtain
∂tu = −

(
D2
xu+ (Dy −

1
2x

2 − ct)2u− λu
)
. (2.9)
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Note that considering the partial Fourier transform, we obtain

∂tû = −D2
xû−

[(1
2x

2 + (ct− ω)
)2
− λ

]
û . (2.10)

This can be rewritten as the analysis of a family (depending on ω ∈ R) of time-
dependent problems on the line

∂tû = −Lβ(t,ω)û+ λû , (2.11)
with Lβ being the well-known anharmonic oscillator (or Montgomery operator) :

Lβ = D2
x + (1

2x
2 + β)2 , (2.12)

and
β(t, ω) = ct− ω .

Note that in this point of view, we can after a change of time look at the family of
problems

∂τv(x, τ) = −(Lcτv)(x, τ) + λv(x, τ) , (2.13)
the initial condition at t = 0 becoming at τ = −ω

c
.

2.3. Recent results by Almog-Helffer-Pan [AHP]
The main point concerning the previously defined operator is to obtain results which
are quite close to the Airy operator on the line.
Theorem 2.1.
If c 6= 0, A = A0,c has compact resolvent, empty spectrum, and there exists C > 0
such that

‖ exp(−tA)‖ ≤ exp
(
−2
√

2c
3 t3/2 + Ct3/4

)
, (2.14)

for any t ≥ 1 and

‖(A− λ)−1‖ ≤ exp
( 1

6cReλ3 + C Reλ3/2
)
, (2.15)

for all λ such that Reλ ≥ 1.

Here we can no longer use the explicit properties of the Airy function but a semi-
classical analysis of the operator Lβ as |β| → +∞ plays an important role. We refer
to [AHP] for details.

3. A simplified model : no magnetic field
We assume, following Almog, that a current of constant magnitude J is being flown
through the sample in the x axis direction, and h = 0. Then (2.1) has (in some
asymptotic regime) the following stationary normal state solution

A = 0 , Φ = Jx . (3.1)
For this normal state solution, the linearization of (2.1) gives

∂tψ + iJxψ = ∆x,yψ + ψ , (3.2)
whose analysis is (see ahead) strongly related to the Airy equation.
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3.1. The complex Airy operator in R
This operator can be defined as the closed extension A of the differential operator
on C∞0 (R) A+

0 := D2
x + i x . We observe that A = (A−0 )∗ with A−0 := D2

x − i x and
that its domain is

D(A) = {u ∈ H2(R) , x u ∈ L2(R)} .
In particular A has compact resolvent.

It is also easy to see that
Re 〈Au |u〉 ≥ 0 . (3.3)

Hence −A is the generator of a semi-group St of contraction,
St = exp−tA . (3.4)

Hence all the results of this theory can be applied.
In particular, we have, for Reλ < 0

||(A− λ)−1|| ≤ 1
|Reλ| . (3.5)

One can also show that the operator is maximally accretive.
A very special property of this operator is that, for any a ∈ R,

TaA = (A− ia)Ta , (3.6)
where Ta is the translation operator (Tau)(x) = u(x− a) .
As immediate consequence, we obtain that the spectrum is empty and that the
resolvent of A, which is defined for any λ ∈ C satisfies

||(A− λ)−1|| = ||(A− Reλ)−1|| . (3.7)
One can also look at the semi-classical question, i.e. look

Ah = h2D2
x + i x , (3.8)

and observe that it is the toy model for some results of Dencker-Sjöstrand-Zworski
[DSZ]. Of course in such an homogeneous situation one can go from one point of
view to the other but it is sometimes good to look at what each theory gives on this
very particular model. This for example interacts with the first part of the lectures
by J. Sjöstrand [Sjö2].

The most interesting property is the control of the resolvent for Reλ ≥ 0.
Proposition 3.1.
There exist two positive constants C1 and C2, such that

C1 |Reλ|− 1
4 exp 4

3Reλ 3
2 ≤ ||(A− λ)−1|| ≤ C2 |Reλ|− 1

4 exp 4
3Reλ 3

2 , (3.9)

(see Martinet [Mart] for this fine version). Note that W. Bordeaux-Montrieux and
J. Sjöstrand1 have obtained a better result.

The proof of the (rather standard) upper bound is based on the direct analysis of
the semi-group in the Fourier representation. We note indeed that

F(D2
x + i x)F−1 = ξ2 + d

dξ
. (3.10)

1Personnal communication
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Then we have
FStF−1v = exp(−ξ2t+ ξt− t3

3 )v(ξ − t) , (3.11)
and this implies immediately

||St|| = exp max
ξ

(−ξ2t+ ξt− t3

3 ) = exp(− t
3

12) . (3.12)

Then one can get an estimate of the resolvent by using, for λ ∈ C, the formula

(A− λ)−1 =
∫ +∞

0
exp−t(A− λ) dt . (3.13)

For a closed accretive operator, (3.13) is standard when Reλ < 0, but estimate
(3.12) on St gives immediately an holomorphic extension of the right hand side to
the whole space, showing independently that the spectrum is empty (see Davies
[Dav]) and giving for λ > 0 the estimate

||(A− λ)−1|| ≤
∫ +∞

0
exp(λt− t3

12) dt . (3.14)

The asymptotic behavior as λ → +∞ of this integral is immediately obtained by
using the Laplace method and the dilation t = λ

1
2 s in the integral.

The proof (see [Mart]) of the lower bound is obtained by constructing quasimodes
for the operator (A−λ) in its Fourier representation. We observe (assuming λ > 0),
that

ξ 7→ u(ξ;λ) := exp
(
−ξ

3

3 + λξ − 2
3λ

3
2

)
(3.15)

is a solution of
( d
dξ

+ ξ2 − λ)u(ξ;λ) = 0 . (3.16)

Multiplying u(·;λ) by a cut-off function χλ with support in ]−
√
λ,+∞[ and χλ = 1

on ] −
√
λ + 1,+∞[, we obtain a very good quasimode, concentrated as λ → +∞,

around
√
λ, with an error term giving almost2 the announced lower bound for the

resolvent.
Of course this is a very special case of a result on the pseudo-spectra but this leads
to an almost optimal result.

3.2. The complex Airy operator in R+

Here we mainly describe some results presented in [Alm2], who refers to [IvKo]. We
can then associate the Dirichlet realization AD of the complex Airy operator D2

x+ix
on the half-line, whose domain is

D(AD) = {u ∈ H1
0 (R+), x 1

2u ∈ L2(R+) , (D2
x + i x)u ∈ L2(R+)} , (3.17)

and which is defined (in the sense of distributions) by
ADu = (D2

x + i x)u . (3.18)
Moreover, by construction, we have

Re 〈ADu |u〉 ≥ 0 , ∀u ∈ D(AD) . (3.19)

2One should indeed improve the cut-off for getting an optimal result
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Again we have an operator, which is the generator of a semi-group of contraction,
whose adjoint is described by replacing in the previous description (D2

x + i x) by
(D2
x − i x), the operator is injective and as its spectrum contained in Reλ > 0.

Moreover, the operator has compact inverse, hence the spectrum (if any) is discrete.
Using what is known on the usual Airy operator, Sibuya’s theory and a complex

rotation, we obtain ([Alm2]) that the spectrum of AD σ(AD) is given by that
σ(AD) = ∪+∞

j=1{λj} (3.20)
with

λj = exp iπ3 µj , (3.21)
the µj’s being real zeroes of the Airy function satisfying

0 < µ1 < · · · < µj < µj+1 < · · · . (3.22)
It is also shown in [Alm2] that the vector space generated by the corresponding

eigenfunctions is dense in L2(R+).
We arrive now to the analysis of the properties of the semi-group and the estimate

of the resolvent.
As before, we have, for Reλ < 0,

||(AD − λ)−1|| ≤ 1
|Reλ| , (3.23)

If Im λ < 0 one gets also a similar inequality, so the main remaining question is the
analysis of the resolvent in the set Reλ ≥ 0 , Im λ ≥ 0, which corresponds to the
numerical range of the symbol.

We recall that for any ε > 0, we define the ε-pseudospectra by

Σε(AD) = {λ ∈ C | ||(AD − λ)−1|| > 1
ε
} , (3.24)

with the convention that ||(AD − λ)−1|| = +∞ if λ ∈ σ(AD).
We have

∩ε>0 Σε(AD) = σ(AD) . (3.25)
We define, for any accretive closed operator, for ε > 0,

α̂ε(A) = inf
z∈Σε(A)

Re z . (3.26)

We also define
ω̂0(A) = lim

t→+∞

1
t

log || exp−tA|| (3.27)

α̂ε(A) ≤ inf
z∈σ(A)

Re z . (3.28)
Theorem 3.2 (Gearhart-Prüss).
Let A be a densely defined closed operator in an Hilbert space X such that −A gen-
erates a contraction semi-group and let α̂ε(A) and ω̂0(A) denote the ε-pseudospectral
abcissa and the growth bound of A respectively. Then

lim
ε→0

α̂ε(A) = −ω̂0(A) . (3.29)

We refer to [EN] for a proof.
This theorem is interesting because it reduces the question of the decay, which is

basic in the question of the stability to an analysis of the ε-spectra of the operator.
We apply this theorem to our operator AD and our main theorem is
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Theorem 3.3.
ω̂0(AD) = −Reλ1 . (3.30)

This statement was established by Almog [Alm2] in a much weaker form. Using
the first eigenfunction it is easy to see that

|| exp−tAD|| ≥ exp−Reλ1 t . (3.31)

Hence we have immediately

0 ≥ ω̂0(AD) ≥ −Reλ1 . (3.32)

To prove that −Reλ1 ≥ ω̂0(AD), it is enough to show the following lemma.
Lemma 3.4.
For any α < Reλ1 , there exists a constant C such that, for all λ s.t. Reλ ≤ α

||(AD − λ)−1|| ≤ C . (3.33)

Proof : We know that λ is not in the spectrum. Hence the problem is just a
control of the resolvent as |Im λ| → +∞. The case, when Im λ < 0 has already be
considered. Hence it remains to control the norm of the resolvent as Im λ → +∞
and Reλ ∈ [−α,+α].

This is indeed a semi-classical result ! The main idea is that when Im λ → +∞,
we have to inverse the operator

D2
x + i(x− Im λ)− Reλ .

If we consider the Dirichlet realization in the interval ]0, Imλ
2 [ of D2

x + i(x− Im λ)−
Reλ, it is easy to see that the operator is invertible by considering the imaginary
part of this operator and that this inverse R1(λ) satisfies

||R1(λ)|| ≤ 2
Im λ

.

Far from the boundary, we can use the resolvent of the problem on the line for which
we have a unifom control of the norm for Reλ ∈ [−α,+α].
Application.
Coming back to the application in superconductivity, one is looking at the semigroup
associated with AJ := D2

x + iJx − 1 (where J ≥ 0 is a parameter). The stability
analysis leads to a critical value

Jc = (Reλ1)−
3
2 , (3.34)

such that :

• For J ∈ [0, Jc[, || exp−tAJ || → +∞ as t→ +∞.

• For J > Jc, || exp−tAJ || → 0 as t→ +∞.

This improves Lemma 2.4 in Almog [Alm2], who gets only this decay for || exp−tAJψ||,
with ψ in a specific dense space.
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3.3. Numerical computations
Here we reproduce in Figure 3.3 the classical picture due to Trefethen of the pseudo-
spectra of the Davies operator D2

x+ix2 on the line and in Figure 3.3 the correspond-
ing picture realized with numerical computations for us by W. Bordeaux Montrieux
for the case of Airy. W. Bordeaux Montrieux is using eigtool3. These figures give
the level-curves of the norm of the resolvent ||(A − z)−1|| = 1

ε
corresponding to

the boundary of the ε-pseudospectra. The right column gives the correspondence
between the color and log10(ε).

Figure 3.1: Davies operator: pseudospectra
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As usual for this kind of computation for non self adjoint operators, we observe on
both figures, in addition to the (discrete) spectrum lying on the half-line of argument
π
4 (resp. π3 ), an unexpected spectrum starting from the fifteenth eigenvalue. This was
already observed by B. Davies for the complex harmonic oscillator D2

x + i x2. This
is immediately connected with the accuracy of the computations of Maple.

The computation for Figure 3.3 is done on an interval [0, L] with Dirichlet con-
ditions at 0 and L using 400 “grid points”. The figure gives the level-curves of the
norm of the resolvent ||(A − z)−1|| = 1

ε
corresponding for each ε to the boundary

of the ε-pseudospectrum. The right column gives the correspondence between the
color and log10(ε).
In the upper part of the Airy-picture in Figure 3.3, these level-curves become asymp-
totically vertical lines corresponding to the fact that each ε-pseudospectrum of the
Airy operator is a left-bounded half-plane.

The first zoom in Figure 3.3 below shows that for ε = 10−1, the ε-pseudo-spectrum
has two components, the bounded one containing the first eigenvalue. For ε = 10−2,
the ε-pseudo-spectrum has three components, each bounded one containing one

3see http://www-pnp.physics.ox.ac.uk/~stokes/courses/scicomp/eigtool/html/
eigtool/documentation/menus/airy-demo.html and http://www.comlab.ox.ac.uk/
pseudospectra/eigtool/.
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Figure 3.2: Airy with Dirichlet condition : pseudospectra

Figure 3.3: Zooms
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eigenvalue. The second and third zoom illustrate the property that, for a given k,
as ε → 0, the component of the ε-pseudospectrum containing one eigenvalue µk
becomes asymptotically a disk centered at µk.

3.4. Higher dimension problems relative to Airy
Here we follow (and extend) [Alm2] Almog.

3.4.1. The model in R2

We consider the operator
A2 := −∆x,y + i x . (3.35)

Proposition 3.5.
σ(A2) = ∅ . (3.36)

Proof : After a Fourier transform in the y variable, it is enough to show that
(Â2 − λ)

is invertible with
Â2 = D2

x + i x+ η2 . (3.37)
We have just to control for a given λ ∈ C, (D2

x + i x+ η2− λ)−1 (whose existence is
given by the 1D result) uniformly in L(L2(R)) uniformly with respect to η.

3.4.2. The model in R2
+ : perpendicular current.

Here it is useful to reintroduce the parameter J , which is assumed to be positive.
Hence we consider the Dirichlet realization

AD,⊥2 := −∆x,y + i Jx , (3.38)
in R2

+ = {x > 0} .

Proposition 3.6.
σ(AD,⊥2 ) = ∪r≥0,j∈N∗(λj + r) . (3.39)

Proof : For the inclusion
∪r≥0,j∈N∗(λj + r) ⊂ σ(AD,⊥2 ) ,

we can use L∞ eigenfunctions in the form
(x, y, z) 7→ exp i(yη + zζ)uj(x)

where uj is the eigenfunction associated to λj. We have then to use the fact that
L∞-eigenvalues belong to the spectrum. This can be formulated in the following
proposition.

Proposition 3.7.
Let Ψ ∈ L∞(R2

+) ∩H1
loc(R2

+) satisfying, for some λ ∈ C,
−∆x,yΨ + iJxΨ = λΨ (3.40)

in R2
+ and

Ψx=0 = 0 . (3.41)
Then either Ψ = 0 or λ ∈ σ(AD,⊥3 ).
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For the opposite inclusion, we observe that we have to control uniformly
(AD − λ+ η2)−1

with respect to η under the condition that
λ 6∈ ∪r≥0,j∈N∗(λj + r) .

It is enough to observe the uniform control as η2 → +∞ which results of (3.23).

3.4.3. The model in R+
2 : parallel current

Here the models are the Dirichlet realization in R2
+ :

AD,‖2 = −∆x,y + i J y , (3.42)
or the Neumann realization

AN,‖2 = −∆x,y + i J y . (3.43)
Using the reflexion (or antireflexion) trick we can see the problem as a problem on
R2 restricted to odd (resp. even) functions with respect to (x, y) 7→ (−x, y). It is
clear from Proposition 3.5 that in this case the spectrum is empty.

4. A few theorems for more general situations

4.1. Other models
The goal is to treat more general situations were we no more know explicitely the
spectrum like for complex Airy or complex harmonic oscillator. At least for the case
without boundary this is close to the problematic of the lectures of J. Sjöstrand.
The operators we have in mind are (see [AHP])

D2
x + (Dy −

1
2x

2)2 + i c y , (4.1)

and the next one could be

(Dx + x3

3 )2 + (Dy − x2y)2 + i c(x2 − y2) . (4.2)

More generally :
B(x, y) = Reψ(z) , Φ(x, y) = cImψ(z) , (4.3)

with ψ holomorphic will work.
If ψ is a non constant polynomial and c 6= 0, then one can prove that the operator
will have compact resolvent (see Theorem 4.1 below).

4.2. Maximal accretivity
All the operators considered before can be placed in the following more general
context. We consider in Rn (or in an open set Ω ⊂ Rn)

PA,V := −∆A + V , (4.4)
with

ReV ≥ 0 and V ∈ C∞(Ω),A ∈ C∞(Ω,Rn) .
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Then it is interesting to observe that when Ω = Rn, then the operator is maximally
accretive (see [HelNi] for the definition). The proof which is given in [AHP] is close to
the proof (see for example [FoHel]) of the fact that if V is in addition real −∆A+V
is essentially self-adjoint.

4.3. A criterion for compactness of the resolvent
All the results of compact resolvent stated in this paper can be proved in an unified
way. Here we follow the proof of Helffer-Mohamed [HelMo], actually inspired by
Kohn’s proof in subellipticity (see [HelNi] for a presentation). We will analyze the
problem for the family of operators PA,V , where the electric potential has in addition
the form :

V (x) =
(∑
j

Vj(x)2
)

+ iQ(x) ,

with Vj and Q in C∞.
We note also that it has the form :

PA,V =
n+p∑
j=1

X2
j =

n∑
j=1

X2
j +

p∑
`=1

Y 2
` + iX0 ,

with

Xj = (Dxj − Aj(x)) , j = 1, . . . , n , Y` = V` , ` = 1, . . . , p , X0 = Q.

In particular, the magnetic field is recovered by observing that

Bjk = 1
i
[Xj, Xk] = ∂jAk − ∂kAj , for j, k = 1, . . . , n .

We now introduce the quantities :

mq(x) =
∑
`

∑
|α|=q
|∂αxV`|+

∑
j<k

∑
|α|=q−1

|∂αxBjk(x)|+
∑
|α|=q−1

|∂αxQ| . (4.5)

It is easy to reinterpret this quantity in terms of commutators of the Xj’s.
When q = 0, the convention is that

m0(x) =
∑
`

|V`(x)| . (4.6)

Let us also introduce

mr(x) = 1 +
r∑
q=0

mq(x) . (4.7)

Then the criterion is

Theorem 4.1.
Let us assume that there exists r and a constant C such that

mr+1(x) ≤ C mr(x) , ∀x ∈ Rn , (4.8)

and
mr(x)→ +∞ , as |x| → +∞ . (4.9)

Then PA,V (h) has a compact resolvent.
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4.4. About the L∞-spectrum
We already met this question in Proposition 3.7. This proposition is actually a
particular case of the more general statement [AHP], which can be seen as giving a
comparison between the L∞-spectrum and the L2-spectrum.
Proposition 4.2.
We assume that V ∈ C0 and ReV ≥ 0 If (ψ, λ) satisfies

(PA,V − λ)ψ = 0 in D′(Rn) ,

with ψ ∈ L∞ (or L2), then either ψ = 0 or λ is in the spectrum of P = PA,V .

The proof is reminiscent of the so-called Schnol’s theorem.

5. Conclusion

What we plan to continue in collaboration with Y. Almog and X. Pan is to analyze
1
t

ln || exp−tPA,V || ,

as t→ +∞ for our specific examples

1. in the case of the whole space,

2. in the case of the half space

3. and apply these results to the stability question of problem with boundary in
various asymptotic limits.

This should lead to the introduction of critical fields like in the standard supercon-
ductivity theory (see [FoHel]). One of the difficulties for these generalizations is that
we have no longer the explicit knowledge of the spectrum like for the complex Airy
operator. We do not know for example if the spectrum of the Dirichlet realization
in the half-space asssociated with PA,V is non empty.
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