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Self-similar solutions and Besov spaces for
semi-linear Schrodinger and wave equations

Fabrice Planchon

Abstract
We prove that the initial value problem for the semi-linear Schrodinger

. n-^^
and wave equations is well-posed in the Besov space B^ p (R^), when the
nonlinearity is of type if, for p G N. This allows us to obtain self-similar
solutions, as well as to recover previously known results for the solutions
under weaker smallness assumptions on the data.

1. Introduction.

In this introduction we focus on the Schrodinger equation; remarks relevant to
the wave equation will be made in the last section. We are interested in the Cauchy
problem

( Qu
(1) ^+A' = ±up-

u{x,Q) = uo(x),x € R71, t^ 0,

where n >_ 2. The exact form of the non-linearity is relevant only with respect to
the methods which will be used. One can deal with more general non-linearities,
but this requires a lot more technicalities which are irrelevant to the equation itself
and have to do with the composition of Besov spaces. By restricting ourselves to
non-linearities of type vP^vP2 where pi and p2 are integers, we don't have to worry
about further regularity assumptions on the non-linearity, and having an estimate
on the non-linearity vP gives immediatly an estimate on u13 — v13.
The following invariance by scaling of (1) will play an important role

( 2

. uo{x) —> uo^(x) = Xp-luo{Xx)
u{x, t) —> u\(x, t) = XP^U^X, A2^).

Let Sp be such that Sp— ̂  = —-^. The homogeneous Sobolev space H813 is expected
to be the "critical" space for well-posedness as its norm is invariant by scaling (2).
The author wishes to thank L. Popovic and S. Tahvildar-Zadeh for useful discussions.
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This result is already known, see ([5]), there exists a (weak) solution of (1) which is
G([0,r],JPP), unique under an additional assumption. Such a solution is global in
time, if the H^ norm of the initial data is small. There are of course other results
on global well-posedness for appropriate non-linearities, and we refer the reader
(without any claim to be exhaustive) to ([8]) or to ([3]) for recent developments.
Our present motivations are of a different nature. They came out of understanding
some recent work on self-similar solutions for (1) in ([6, 7, 20, 12]). A self-similar
solution is by definition a solution which is invariant by scaling (2). Since this forces
the initial data to be homogeneous, such solutions cannot be obtained by the well-
posedness results in Sobolev spaces. In [6], under some restrictions on p, the authors
introduce a functional space, namely the space of functions u such that

(3) sup^||'u(:r,*)||p4-i < oo
<

in which /3 is to be chosen to preserve the scaling invariance. The authors construct
solutions by a fixed point argument in such a space, provided

(4) sup^||e^o0r)||^i<^o.
<

By direct computations, one can prove that Uo(x) == g^ satisfies (4), thus giving
\X \P-1

a self-similar solution u(x,t) = —^--r-U^—}. More generally, CQ could be replaced
^/tp=~[ vt

by a small G7^71) function ([20]).
Our goal will be to draw a connection between such a construction and the usual
one in Sobolev spaces. Having this in mind, a natural extension to H^ is the
homogeneous Besov space B^500, and unlike its Sobolev counterpart, it contains
homogeneous functions. Let us recall

f(x} eH8- ̂  /I^IAOI^^E2250 / lAOI^+oo.
-' ^ J23<\^<23+1

and one can weaken this requirement to

(5) f{x) € B^00 ̂  sup2250 t |/(0|2^ < +00.
3 ^2J<|^|<2J+1

From this definition, we obtain immediately that -1^ e B^'00. Thus solving the
|.r|Q

Cauchy problem (1) in such a space will, among other things, give self-similar solu-
tions.
In the next section, we will treat the Schrodinger equation, and in the last one, the
wave equation for which an equivalent analysis can be carried. To end this section
let us recall the definition of Besov spaces, their characterizations via frequency
localization, and some useful results on Besov spaces.

DEFINITION 1
Let 6 G S{Rn) such that } = 1 in B(0,1) and 0 == 0 in 5(0,2)° ,
^(x) = T^{Vx\ Sj = (f)j * •, A^- = S^-i - S ^ . Let f be in ^(BT).
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• I f s < ^ o r i f s = j a n d q = l , f belongs to fy if and only if the following
two conditions are satisfied

- The partial sum Y^m ̂ j(f) converge to f as a tempered distribution.
- The sequence Cj = 2J5||A^(/)||^ belongs to ̂ .

• I t s > j, or s == j and q = 1, let us denote m = E(s - y. Then B8/ is the
space of distributions f, modulo polynomials of degree less than m + 1, such
that

- We have f = °̂°̂  A^(/) for the quotient topology.
- The sequence Cj = 2^||A^(/)||^ belongs to ^.

Note that the choice of If as the "base" space is in no way an obligation. We will
later use more general Besov spaces, with If replaced by the Lorentz space L^.
We will denote such a modified space as B 8 ^ . We refer the reader to [1, 14] for the
definition and detailed properties of Lorentz spaces.
Another type of space will also be of help

DEFINITION 2
Let u{x, t) € S. We will say that u 6 ̂ (B^) iff

(6) 2^||A^||^^)=^.6^.

Lastly, we recall two lemmas, which allow for an easy characterization of Besov
spaces, depending on the sign of s.

LEMMA 1
Let s > 0, E a Banach functional space, q 6 [0, +oo], and define

/cB^=2^||A,/||E=^e^

Then, iff = ̂ . /„ where supp/, 6 B(0, V) and (2 |̂|/,||̂  e ̂  we have f € B^.

Its counterpart for s < 0 reads

LEMMA 2
Let s < 0, B8/ defined as in lemma 1. Then, an equivalent characterization of
f e B^ is

(7) 2^||5^||^ =^-e^.

We omit both proofs, which involve summation over large or small frequencies along
with Young inequality for discrete sequences.

2. The semi-linear Schrodinger equation.
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In the introduction we did not set any restriction (other than being an integer) on
the value of p. However, well-posedness in H^ holds only ifp >_ p* = 1 +4/n, which
amounts to dealing with a situation where Sp > 0. For the critical value p^, the
equation (1) is invariant by the pseudo-conformal transformation, and well-posed in
L2. We will have to restrict ourselves to strictly positive regularity, namely Sp > 0,
and thus p > p*^ for technical reasons which will be clear from the proof. Such a
restriction doesn^t appear in [20], where one can go up to p > 1 + 2/n. However the
corresponding Cauchy problem in the appropriate Sobolev space H811 is not known
to be well-posed, as Sp < 0, and our approach fails for such cases. Let us state our
main result

THEOREM 1
Let n > 2, p € N, p > p*, UQ € B^500, such that \\uo\\^p^ < eo(p,n). Then there
exists a global solution of ( 1 ) such that

(8) n(^) € Lr(B^°°),

(9) u(x,t)—> uo(x) weakly.
t—>0

Moreover, this solution is unique under the condition

(10) IK^II^B5^ )< 6 ! .
(n~=~?'2^

for n > 3 and

(11) \\u{x, t)\\^^^^<e,,

for n = 2.

The uniqueness conditions (10) and (11), as customary in problems for which so-
lutions are obtained by a fixed-point argument, are related to the auxiliary spaces
needed for such an argument. We refer to [15] for a more detailed discussion on this
issue, as there are several ways to chose such an auxiliary space. The condition (9)
relates to the Besov spaces we consider (see [4, 17] for discussions on such problems).
Indeed strong continuity at t = 0 is forbidden, and therefore we obtain a somewhat
weaker result than what is usually meant for "well-posedness". However, if one has
some additional regularity on the initial data, then this regularity is preserved for
the solution, namely we obtain

THEOREM 2
Let UQ e H^ verify the hypothesis of Theorem 1. Then the global solution obtained
by Theorem 1 is such that

(12) u(x.t)eCt(H^).
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This result can be viewed as an extension of global well-posedness in Sobolev spaces
for small data, for one can construct initial data with an arbitrary norm in the
Sobolev space, but a small one in the Besov space. We could as well construct a
local in time theory for B^'\ where q < oo. In the following, we only sketch the
proof and refer to [15] for details. In particular, we will only deal with n > 3, which
allows for a very simple argument, since we have the so-called "endpoint" Strichartz
estimate ([9]). We simply recall the estimates we need

THEOREM 3
LetS{t)=e1^. Then

(13) \\S(t)u,(x)\\ ^ ^ ||uo||2,
•"((•^x )

(14) \\j'^S(t-,)f(x,s)d,\\^^ ^ \\f(x,t)\\^^

(15) || /^S(t -,)/(,, ̂ 11 ,̂., S IIA.,011^*.,,

where ̂  denotes the presence of a constant.

From these estimates (and their generalization to Sobolev spaces, by adding frac-
tional derivatives, which commute with the Schrodinger group), one can prove well-
posedness in H^ for (1). Essentially, ifu € C^^nZ^fJ, then ̂ -1 e L^(L^)
by Sobolev embedding and using the Leibnitz rule for fractional derivative together
with Kato-Ponce type estimates one gets vp € L]{H8^} and the result follows from
the Strichartz estimates. Now, one would like to extend this scheme to the Besov
spaces. For this purpose, the extra bit of information provided by the presence
of a Lorentz space in the Strichartz estimate will be of importance, as by Sobolev
embedding we only get u^ e L?°(Lt500), and the Lorentz space will compensate for
this loss of integrability when dealing with the non-linearity. We will set up a fixed
point argument in the intersection of two spaces,

E=L^{BS^OO),

and
F = A2^5^)) = {u^^ I ^2^11^11^ ̂  < +00}.

Then, the uniqueness condition we left aside will be IHI^nF < ^i. Note that F
appears naturally if one consider the linear part S(t)uQ, which belongs to F thanks
to the Strichartz estimate (15), localized in frequency. We aim at proving the
following

PROPOSITION 1
Let u 6 E n F. Then

^eF'=^(B5^0 )={v(x^\snpys^v\\ ^ <+oc}.
n-^2 ' j L^(Lx )
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and

(i6) Kllr' ̂  IK-'IHIF.

In order to prove the proposition, we will make use of lemma 1. Namely, writing u
as a telescopic sum,

(17) u? = ̂ {S^uy - (S,uY = ̂  A^((5^r1 + ... + (5^r1)
3 3

we are left to consider p pieces, each being an infinite sum of functions localized in
frequencies |^| ^ V. All terms are essentially the same up to shifts in indices, and
we will only deal with the last one,

v=^^u{s,uy-^^v,.
3 3

Note that such a decomposition is a paraproduct type formula, see ([2]), in its most
simple version. Now, it suffices to prove v G F", knowing u 6 E n F. From the
Sobolev type embedding , see ([!]),

B^ ̂  L71^00,

we have
U€L~(L^'°°)

and since the operators 5', are continuous on Lorentz spaces, we get

Sju 6 L^L;^100)

uniformly in j. On the other end, u E F reads

V^^u 6 L^L^2)

and by the generalized Holder inequality ([11]), since 2^- = 7^2 + (p — 1), _ 2 ^ , we
get

iî -iL^ ^ 11^11^ - îî r1 ̂
^t^ ^ ^tA^x ) ^ ^ ( L x 2 )

MF' ^ MF\W.

Applying lemma 1 we get v 6 F ' and the appropriate norm control. This concludes
the proof of proposition 1. The same argument can be used for a product of p
functions, leading to the estimate

\mh\\F'^W\E-\\fk\\F---W\E. .
1
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^From such an estimate, one can easily estimate up — v13 = (u— v){uP~1 + ' + z^"1),
and setting up the fixed point argument for the integral equation

(18) u(x, t) = S(t)uo{x) + ± f S(t - s)uP(x, s)ds = S(t)uo + F(u)
J o

is essentially straightforward and will be omitted. Uniqueness in a ball of E n F
follows from the fixed-point. Lastly, we refer to [15] for the weak continuity in zero.
This will finish the proof of theorem 1.
Let us now briefly indicate the proof of theorem 2. By theorem 1 we have a solution
which is Lf(B^00). However, since UQ € H8?, from (13) we get

2^||A,5(^o|| , ̂  = % 6 ^ 2

L^(Lx )

and from the argument of proposition 1,

2^11^11 .2, 2 ^ iHir17^1 1 J j 2 ( r n+22 ̂ \ ~ " "^ ' 3 ^

which in turn implies by (15)

||2^A,r(^)|| ^_, e^2 .
3 L^L^ )

Since all constants are the same as in the proof of theorem 1, in fact all iterates Un
from the fixed-point verify this last estimate, uniformly in n. Therefore the solu-
tion itself verifies the estimate, and from (14) we get 2jsp^\jU € L^(L^), which is
equivalent to u € L^^H^). Strong continuity can be carried along the iterates in
the same manner. In the context of self-similar solutions, many interesting addi-
tional properties on the profile of such solutions can be derived from the existence
construction, by getting rid of the time variable and interpolating between E and
F. We refer to [15] and [18] for details and possible applications of such estimates.

3. The semi-linear wave equation.

In this section we deal with the same equation as in the previous sections, where
the Schrodinger operator has been replaced by the D'Alembertian operator. Hence,
the numerology associated with the equation is changed, where essentially every
occurrence of n is replaced with n — 1. Then, well-posedness in H873 holds only if
P ^ P* = ^±^ or 5p > j. Again, the conformal exponent p* for which the equation
is be well-posed in H^ x H~^ will be excluded in our analysis. Therefore, we are
interested in

{ Hu = ±up,
(19) ^,0) = zzoGr),

9tu(x,0) = ui(x),

for n > 2. Such an equation is well-posed for initial data (z^o^i) € H^ x H8^
([10]), for p ^ p*. Below p*, concentration effects take over scaling, and (19) is ill-
posed below some critical value above Sp (see [10] or [23] for recent results). It should
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be noted that for radially symmetric data well-posedness holds up to the scaling,
but we won't try to generalize such results here. The natural scaling associated to
the equation is

(20)

••)
Uo(x) ——> UQ^(x) = Xr^Uo(Xx)

u^(x) —> u^x(x) = XP^^U^XX)
u(x, t) —> u\{x, f} == XP^U{XX, Xt)

In the same spirit as for the Schodinger equation, self-similar solutions for (19) were
constructed in [21, 19, 13]. We will recover, and extend such results in the range
p > p*, while these authors allow for smaller value ofp for which our analysis fails
exactly as noted for the Schrodinger equation. We intend to prove the following
theorem

THEOREM 4
Letp e N, p > p\ (no^i) € (B^,^-1500), such that ho||̂ - + |k||^p-i,oo <
€o(p,n). Then there exists a global solution of ( 1 9 ) such that

(21) u(x^t) € Lr(B^00) and 9tu(x^t) e L,00^-1'00)

(22) u{x,t)—> uo{x) weakly.

Moreover^ this solution is unique under an additional assumption

(23) l r : z ; l l^ll2^.^-„oo=sup2^| |A^| | ̂  <5i.
^ ( 2^4 ) 3 L^n— 1

Essentially the same remarks apply to this result as in the previous section. We
obtain the same kind or regularity preserving results, as well as local in time results
for data which would be in a Besov space with a third index q < oo (see [16]). Let
us introduce a few notations a = 2^, (3 = 2^, 74- = 7 + c for some e and
7~ = 7 - ̂  Recall the fundamental solution, which gives the solution to the linear
equation

(24) v(t) = W(t)uo + W(t)u,

where W(t) is a Fourier multiplier with symbol smm) and W(t} with symbol
cos(^[). We intend to solve by fixed point the integral equation

(25) u(x, t) = v(t) + { W(t - s^u^x, s)ds.
Jo

The strategy is the same as for the Schrodinger equation, we set up a fixed point in
the appropriate spaces, derived from the ones used for solving the initial problem in
Sobolev spaces. Namely, we recall
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THEOREM 5
We have the following Strichartz estimate (which is the original estimate from [22])

(26) Mc^) + INk?.. ̂  IMÎ  + IMÎ  + IM .̂

One can prove well-posedness in H^ for (19), letting u € C^fl51") D L?(^), then
n-t-1

z^-1 € Z^ by interpolation, this leads to u^ e L^{H^\ and then the result follows
from the Strichartz estimates. We now only give a sketch of the proof of theorem 4.
and refer to [16] for a full detailed proof as well as additional results. If we localize
in frequency, it seems obvious to require

(27) 2^A,n e Lf(L2,)
(28) 2^-^^u e L^(L^),

as the linear part v verifies these estimates for initial data in the appropriate Besov
spaces. We aim to prove

(29) 2^-^A,(^) e Lf^

when u verifies (27) and (28). This will be the equivalent of proposition 1 in the
previous section,

PROPOSITION 2
Let u e Z^(B^°°) n r^"1'00). Then u? e ̂ (B^4500), and

(30) sup2^-i)||A,(^)||^ ^ (sup(2^||A^|^) + 2^-^|]A,u||^J)^

Exactly as before, since Sp - j > 0, we are left by paraproduct considerations to
deal with w = ^ . Wj, where

Wj = (S^u)^^.

The difficulty here arises from getting an estimate on Sju. Unlike for the Schrodinger
equation, one cannot get useful uniform estimates with respect to j, but on the other
hand since we know that A^ has regularity Sp rather than just Sp - ̂  we will be
allowed to lose some e of regularity in estimating the Sju piece, namely getting an
estimate in a Besov space or regularity -e and using lemma 2. We first interpolate
(27) and (28), to get

(31) 2^-^A^eL^(Lf),

and to be able to recover (29) we would like to get (recall that - = ^ + (p - 1)^-)

(n+l)(p-l)- (n-H)(p-l)4-

(32) y°~S,u(=L~2——(L~2——).
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In order to get such an estimate, interpolate again between (27) and (28), to get
(n-H)(p-l)-

Lf 2 as the time space, which is always possible as ^^^"^ > a

(n->-l)(p-l)~

Vs ̂ u 6 L, 2 (1^

where
(n+l)(p- 1)" _ a ,_ _ ^ y 1 _ 7 1 7

2 ~ 7 "^"2 ^a^^'
Then, using Bernstein inequality

l|A^||L^2^t-^||A^||^

with s - j = 0~ - ̂ . Computing r gives (rl4-1)^-1)^ as expected by scaling consid-
erations. Thus

I I ^11 (n4-l)(p-l)- (n+l)(p-l)-^ Ŝ 2-7 ,
L i 2 ( ^ 2 )

(n+l)(p-l)-

or equivalently ^ e ̂  2 (B^^_,^)and using lemma 2 we obtain the desired

estimate (32), ending the proof of proposition 2.
Setting the fixed point is then straightforward as in the previous section and will be
omitted. Once again, we stress that the index juggling with + and ~ is nothing but
a convenient notation to avoid carrying along various e parameters, which are all
tied by the scaling. In other word the first epsilon (in (31)) has to be set sufficiently
small so that subsequent interpolations can be carried out, and all other e parameters
which appear later are chosen in a unique way dictated by scaling.
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