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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 31 mai-4 juin 1999
GDR 1151 (CNRS)

Domain perturbations, capacity
and shift of eigenvalues

Andre Noll
Abstract

After introducing the notion of capacity in a general Hilbert space setting
we look at the spectral bound of an arbitrary self-adjoint and semi-bounded
operator H. If H is subjected to a domain perturbation the spectrum is shifted
to the right. We show that the magnitude of this shift can be estimated in
terms of the capacity. We improve the upper bound on the shift which was
given in Capacity in abstract Hilbert spaces and applications to higher order
differential operators (Comm. P. D. E.^ 24:759-775, 1999) and obtain a lower
bound which leads to a generalization ofThirring's inequality if the underlying
Hilbert space is an Z^-space. Moreover, a similar capacitary upper bound for
the second eigenvalue is established. The results are finally applied to higher-
order partial differential operators.

1. Introduction.
During the last decades many mathematicians studied the problem of analyzing
the connection between domain perturbations of a given self-adjoint operator and
changes of its spectrum. Among others Rauch and Taylor [Rau75], [Tay76], [Tay79],
[RT75a], [RT75b] worked on that subject and pointed out the relevance of this kind
of problem for various areas of Mathematical Physics.

In particular, the bottom eigenvalue of the Laplacian is an important quantity since
the Laplacian plays a fundamental role in Quantum mechanics, theory of heat,
theory of vibrations and other areas.

The following result due to Taylor [Tay76] shows that the capacity can be used to
give quantitative upper and lower bounds for the bottom eigenvalue of the Laplacian.

Theorem 1.1 Iffl C R^ is a bounded domain, X is the lowest eigenvalue for —A
on Q \ K with Dirichlet boundary conditions on 9K. Neumann boundary conditions
on <9^ K C ^l compact, then there are constants Ci,C2 > 0 such that for small
Capo(^)

CiCapo(^) < A < C2Capo(^).
I would like to thank Sven Eder and Walter Renger for fruitful discussions and Michael Demuth, Guy Metivier and
Didier Robert for giving me the chance to take part in the conference.
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where Capo(') is the classical zero-order capacity in R^ which is defined by

r. (i^\ ' ^ f \(^ v M 2 r u € COO{Rd).u> 1 a.e. 1Capo(^) ==inf^ / (V^)(.r)rd.r : c v /. , ~ , , . _ } .\J^d on some neighborhood of K J

Taylor^ result has been generalized in many directions. For example Gesztesy and
Zhao proved in [GZ94] that the bottom eigenvalue of certain Schrodinger operators
remains unaffected by domain perturbations if and only if the perturbed domain
differs from the unperturbed one only by a set of zero capacity. The proof is based
on Brownian motion and on the Feynman Kac formula. One year later Arendt and
Monniaux gave an analytical proof of this result which uses a domination argument
for semigroups as its main ingredient [AM95]. Their result allowed the potential to
vary as well. We refer to the survey article [DMN97] for precise statements and the
proofs as well as for further literature on this subject. Let us also remark that similar
estimates for the bottom eigenvalue also hold for the Laplace-Beltrami operator on
a Riemannian manifold, see [CF78], [CF88], [Cou95], [Oza82], [Oza83]. Another
generalization of Taylor's Theorem was given by McGillivray [McG96] who proved
the same estimate in the context of regular Dirichlet forms.

Most of the known estimates for the bottom eigenvalue only apply to second order
differential operators and some of them [Szn98], [Tay79], [Oza81], [MR84], can only
handle the Laplacian. This is due to the fact that in the case of second order
differential operators there is an interplay between analysis and stochastics via the
theory of Dirichlet forms, but there is no such interplay for higher order differential
operators. On the other hand higher order differential operators are important as
well. For instance the dynamics of the clamped plate is described by the bi-potential
equation

^u=0,
where A2 is the biharmonic operator, subject to Dirichlet boundary conditions.

In order to include these operators one needs a more general method. The results
for self-adjoint operators in general Hilbert spaces (i.e. not necessarily l^-spaces)
which are described in Section 4 turn out to be an appropriate tool in estimating
eigenvalues for a wide class of self-adjoint operators.

2. Domain perturbations in general Hilbert spaces.
Let (H, (•, •)) be an arbitrary real or complex Hilbert space and let H be a self-adjoint
operator in "H which is semi-bounded from below with spectral bound A := mfa{H).
Let (<?,^~) be the non-negative closed quadratic form which corresponds to H — \
in the usual sense. We then have T = dom{(H — A)1/2) and

£{u, v) •= {{H - A)1/2^, (H - X^v) u, v e T.

In what follows we will use the abbreviations

£i{u,v) := £(u,v) + {u,v), £[u] :== £{u,u), £i[u] := S^[u,u).

Since {£,^F} is closed, the space (^^i(-, •)) is a Hilbert space.
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Suppose that Q is a closed subspace of the Hilbert space (^<fi(-, •)) . Then the form
(<? + A, G) is semi-bounded from below and closed. Moreover it is densely defined in
'H0 := Gj the closure being taken with respect to the topology of K. Hence there is
a unique self-adjoint operator HQ in 7^ that corresponds to (<f -+- A, Q}.

Definition 2.1 We call the operator H0 the domain perturbation of H with respect
to the subspace Q.

Let us illustrate this construction in the case of the Dirichlet Laplacian.

Example 2.2 Let f2 and A be open subsets of Rd with A C Q and let H == -An
be the Dirichlet Laplacian in 7i = L2^). The form (£,^) which corresponds to H
is given by

T = H^(Q), £[u} = t IVnpdrr for u € F.
Jfl

Clearly the Sobolev space Q := ^(A) may be viewed as a closed subspace of T\
Hence we can apply the above construction. By definition the Hilbert space T-i0

equals the Z^-closure of Q^ i.e. we have 7^ = ^(A). Moreover the restriction of
(^.F) to Q is obviously just the form which is associated to the Dirichlet Laplacian
in L2(A). Hence HQ = -AA.

3. The capacity of a subspace.

We now want to introduce a notion of capacity in a general Hilbert space setting.
With the notation of the previous section the definition of the abstract capacity
reads as follows.

Definition 3.1 Let Q be a closed subspace of (^^(^ •)) and let u 6 T. The
u-capacity of Q is defined by

Cap,(0):=<fi[P^

where PQ is the orthogonal projection onto Q in (^^i(-, •)) .

Let us examine what Cap^(^) looks like if "H is an .Z^-space and Q consists of
functions that vanish on a prescribed set. As we shall see in Proposition 3.2 (a)
below, the capacity of Definition 3.1 admits a description similar to the classical
zero-order capacity in R^.

Let X be a Hausdorff space which is equipped with a strictly positive Borel measure
m (i.e. each open set has positive measure) and let A be an arbitrary subset of X.
Define ^4 as the closure of the space

^ :== {^ e T : v = 0 m-a.e. on some neighborhood of A}, (1)

where the closure is taken with respect to the topology induced by the scalar product
^(•J.

Proposition 3.2 For any u € T the following equations hold.
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(a) Cap .̂?^) = inf{^i[z;] : v E ^^v = u m-a.e. on some nhd. of A},

(b) Capj^) = inf{Cap,(^) : U D A, £7 open}.

For a proof see [Nol97]. From this proposition it is easy to obtain the following
result:

Proposition 3.3 If H is such that {£.^) is a regular Dirichlet form in Z/^Y^m),
B C X is any Borel set and u 6 T is such that u = 1 in some neighborhood of B,
then

Cap(B) = CapJJ^),

where Cap(B) is the capacity of the regular Dirichlet form {£..T\ see [FOT94J-

4. Capacitary estimates for domain perturbations.
This section contains the main results of the article. We shall overcome the restric-
tions mentioned in the motivation by proving abstract eigenvalue estimates which
use the capacity of Definition 3.1. To this aim we assume from now that H° is
the domain perturbation of some self-adjoint and semi-bounded operator H with
respect to the subspace G. Our first result gives an upper bound for the spectral
bound \° = infa(7^) of HQ in terms of the ^-capacities of Q^ where the ^n's are
normalized eigenfunctions of H . The proof can be found in [Nol98].

Theorem 4.1 Let {\n} be the (finite or infinite) set of eigenvalues for H with
corresponding normalized eigenfunctions (f>n' Then

A^infL^0^^
n I _ Cap^(g^)

\ 1 1+An-A

As an immediate consequence we note the following corollary.

Corollary 4.2 (a) Suppose that \ is an eigenvalue of H with normalized eigen-
function (j> ^ Q1'. Then

^ ^ C^P^) ^
x -^1-Cap^)- (2)

(b) Fix 6 € [0,1). For each closed subspace Q of (^<fi(-, •)) with Cap^^-1) ^ 6
we have

^-A^^Cap^-).

Corollary 4.2 (a) can be used to prove a capacitary criterion for the perturbed
operator to have a bottom eigenvalue.

Corollary 4.3 If the spectral bound X is an isolated eigenvalue of H of finite mul-
tiplicity and some normalized (f) in the eigenspace ker {H — A) satisfies

^r^S)^™^'
then Xs is an isolated eigenvalue of H° of finite multiplicity.
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Proof. Just use Corollary 4.2 (a) and the minimax principle. D
It is possible to obtain capacitary lower bounds for the shift Xs — A similar to those
of Corollary 4.2 if A is a simple and isolated eigenvalue of H.

Theorem 4.4 Suppose that A is a simple eigenvalue of H with normalized eigen'
function (f). Let fi € [0, oo) be the spectral gap, i.e.

^ := mf{a(H) \ {A}} - A. (3)

^Cap^g1) ^
Then

A -^i+^i-cap^^^.m^^ )-
The proof is carried out in [Nol99]. ^From Corollary 4.2 (a) and Theorem 4.4 we
immediately obtain the following characterization for the shift Xs — A to be positive.

Corollary 4.5 Suppose that A is a simple and isolated eigenvalue of H with eigen-
function (/). Then X0 > A if and only ^/Cap^(g-1) > 0.

In practice it seems to be difficult to compute the capacities involved in Theorems 4.1
and 4.4 since both Q and Q1 are typically infinite dimensional, e.g. if H is an operator
in L^R^) and H° arises from H by imposing boundary conditions on a set with non-
empty interior. It is possible, however, to prove another lower bound for the shift of
the spectral bound which involves the ^-capacity of the eigenspace /C := ker (H — A)
for u € Q rather than the (^-capacity of Q for (f) G /C as in Theorems 4.1 and 4.4.
Since /C happens to be one-dimensional in many interesting cases, e.g. if H is the
Dirichlet Laplacian on some bounded domain in R^, it is possible to compute the
^-capacity of /C explicitly in these cases. The proofs of the remaining results in this
section can be found in [Nol98].

Theorem 4.6 Suppose that A is an eigenvalue of H. Denote the corresponding
eigenspace by fC and let

6 := sup{CapJ^C) : u e Q, \\u\\ = 1}.

Then \0 — A > ^(1 — 6), where IJL is as in (3) the spectral gap.

As an application of Theorem 4.6 let us state a generalization ofThirring's inequality
which reads as follows: Let Q, A C R^ be bounded domains with A C f^. Denote by
(A^(^))j>i and (A^(A))^>i the eigenvalues of the Dirichlet Laplacian in Z/^Q) and
in L2(A.) respectively. Then

Ai(A) > Ai(Q) t \^dx + W) I H2^.
JA Jn\A

A proof of this result can be found in [Szn98]. For the generalization of Thirring's
inequality we use the previous notation and assume additionally that {X. m) is a
measure space, T-L == L2(X^m) and Q is a subspace of T such that 'H0 = L^y.m)
with some measurable set Y C X.

VIII-5



Corollary 4.7 Suppose that \ is a simple eigenvalue of H with normalized eigen-
function (/). Then

>° ̂  A ! l̂ dm + (A + /2) t I^Fdm,
JY JX\Y

where p, is as in (3) the spectral gap.

There are only few results which allow the treatment of higher eigenvalues for general
classes of operators. One of those is the previously mentioned work of McGillivray
[McG96] who proved in the context of regular Dirichlet forms that under an ultra-
contractivity condition the shift of the higher eigenvalues may be estimated from
above by some constant times the capacity of the set on which the domain pertur-
bation takes place. Next we state a similar estimate for the second eigenvalue in our
general Hilbert space setting.

To keep things simple we assume from now on that H has purely discrete spectrum,
i.e. there is an orthonormal basis (<^)j'€N of% and a non-decreasing sequence (Aj)jeN
of real numbers such that \n ̂  oo,

dom(H) = [u € U: (\j{(t>j,u))j^ € i2}

and
Hu=^\j{(f>j,u}(f)j

jeR

for all u € dom(H).

Since we are interested in the shift of the eigenvalues we may assume without loss
of generality that the bottom eigenvalue Ai is equal to zero. It is a consequence
of the minimax principle that the spectrum of HQ is again discrete and that each
eigenvalue, not only the lowest, gets shifted to the right. The following result gives
an upper bound for the shift of the second eigenvalue.

Theorem 4.8 Let \\ be a simple eigenvalue of H. Then, for each c > 0 there are
constants c\^e > 0 such that for all closed subspaces Q oj T with Cap^(^1) < e
and satisfying

Cap^) ^ cCap^)

we have
A^-A^eiCap^).

The constant c\ can be given explicitly:

C l = = 2 ( l + A 2 ) 2 ( l + 2 c ( l + A 2 ) 2 ) .

5. Applications to differential operators of arbitrary order.

In this section the general results of Section 4 are applied to the special case of
differential operators on open subsets of R^. We shall treat operators of arbitrary ,
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even order 2m. Let Q C R^ be an open set. The operators we are interested in are
formally given by

(Hu)(x)= ^ {-irD^a^D^x)) (4)
|Q|,|/3|<m

with coefficient functions a^ = aja € HocW- To S^ a rigorous definition of H
we consider the quadratic form

a(u,v) := ^ aa^D'^uD^vdx, (5)
iQM/^m7"

initially defined on C^{fl), the space of smooth functions with compact support.
In order to obtain a self-adjoint operator we need to know that a is closable. The
requirement of closability is an implicit assumption on the coefficients a<^ and there
are many criteria known on the coefficients a^g implying closability of a, see e.g.
Davies [Davb], [Dava] or Agmon [Agm65], Section 7. We will always assume that
for some constants b € R, c > 0, and all u € C^Q) the following inequality holds.

c-'M^^a^^+b^^cM^ (6)

where || • \\m is the Sobolev norm

1/2
/ r

u^ '= [ Y. \ ^u^dx
\ 1 . 1 ^ Jfl|Q |<m" /

Observe that a quadratic form satisfying inequality (6) is always closable and that
(6) is still valid for u 6 ̂ (^ the Sobolev space of order m, because H^(^l) is

by definition the completion of C^°(Q) with respect to the norm || • [|^. This also
makes clear that the closure a of a has domain T = H^(fl). Let H be the self-
adjoint operator corresponding to (a,^), put A = mfa{H) and let £ '.= a - X be
the non-negative form associated to H — A.

We now7 want to look at domain perturbations arising from subspaces of T which
consist of functions that vanish on some set A C ^. Therefore we define FA as in
(1). If A = Br(xo) := {x € Q : \x - XQ\ < r} we write Tr^ for_short. In the
following theorems Hr^ denotes the self-adjoint operator in L2^ \ lBr{xo)) which
is associated to (a.^xo) and \r^ := mfa(Hr^o) its spectral bound.

Theorem 5.1 Let d > 2m and let a^ = aj^ e ^L(^) such that inequality (6)
holds. Moreover suppose that X = mfa{H) is a simple and isolated eigenvalue with
eigenfunction ^ ̂  T^. If XQ € Q is such that (j) is continuous in XQ with (/)(XQ) / 0,
then there are constants Ci, 02 > 0 such that for small r > 0

Ci^-^A^-A^^-2771. (7)

The proof can be found in [Nol99].
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Remark 5.2 This result is already contained in [Maz85], Chapter 10 in the case of
operators being defined on the unit cube in R< Due to the ignorance of the speaker
this fact was not mentioned during the talk.

Next we treat the second eigenvalue. For simplicity we restrict ourselves to constant
coefficient operators. Let f2 be an open and bounded subset of R^ and let

H= ^ (-irD^a^u), a^=a^-eC
Q|,|/3|<m

be an elliptic constant coefficient operator of order 2m, defined as the closure of the
form

(u, v) ̂  ^ f a^D^D^Udx,
|Q|,|/?|<m7"

initially defined on C^Q). Then the spectrum of H is discrete by Theorem 14.6
of [Agm65] and all eigenfunctions are analytic (see e.g. [Joh49], [Hor83a], Section 8
and [Hor83b], Section 11). Assume that the bottom eigenvalue A is simple which
happens to be true e.g. in the case of second order differential operators on a bounded
domain.

Theorem 5.3 In the situation just described suppose that d > 2m and that the
second eigenfunction ̂  of H does not vanish in XQ. Then there is a constant c > 0
such that for small enough r

A2,r^o - >2 ̂  cr^-2771,

where \^ and \2,r,xo are ^e second eigenvalues of H and Hr^o respectively.

The proof is contained in [Nol98].

References
[Agm65] S. Agmon. Elliptic Boundary Value Problems. Van Nostrand Mathemat-

ical Studies, 1965.

[AM95] W. Arendt and S. Monniaux. Domain perturbation for the first eigenvalue
of the Dirichlet Schrodinger operator. Oper. Theory Adv. Appl., 78:9-19.
1995.

[CF78] I. Chavel and E.A. Feldman. Spectra of domains in compact manifolds.
J. Funct. Anal., 30:198-222, 1978.

[CF88] I. Chavel and E.A. Feldman. Spectra of manifolds less a small domain.
Duke Math. J . , 56:399-414, 1988.

[Cou95] G. Courtois. Spectrum of manifolds with holes. J . Funct. Anal., 134:194-
221, 1995.

VIII-8



[Dava] E.B. Davies. U spectral theory of higher order elliptic differential opera-
tors. preprint 1996.

[Davb] E.B. Davies. Uniformly elliptic operators with measurable coefficients.
preprint 1997.

[DMN97] M. Demuth, I. McGillivray, and A. Noll. Capacity and spectral theory. In
M. Demuth, E. Schrohe, B.-W. Schuize, and J. Sjostrand, editors, Spectral
Theory, Microlocal Analysis, Singular Manifolds, volume 14 of Advances
in Partial Differential Equations, pages 12-77. Akademie Verlag, Berlin,
1997.

[FOT94] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet Forms and Sym-
metric Markov Processes, volume 19 of Studies in Mathematics. Walter
de Gruyter Co, Berlin, 1994.

[GZ94] F. Gesztesy and Z. Zhao. Domain perturbations, Brownian motion and
ground states of Dirichlet Schrodinger operators. Math. Z., 215:143-150,
1994.

[H6r83a] L. Hormander. The Analysis of Linear Partial Differential Operators
I. Grundlehren der mathematischen Wissenschaften. Springer Verlag,
Berlin-New York, 1983.

[Hor83b] L. Hormander. The Analysis of Linear Partial Differential Operators
II . Grundlehren der mathematischen Wissenschaften. Springer Verlag,
Berlin-New York, 1983.

[Joh49] F. John. On linear partial differential equations with analytic coefficients.
Commun. Pure Appl. Math., 2:209-253, 1949.

[Maz85] V.G. Maz'ja. Sobolev Spaces. Springer Series in Soviet Mathematics.
Springer Verlag Berlin, New York, 1985.

[McG96] I. McGillivray. Capacitary estimates for Dirichlet eigenvalues. J. Fund.
Anal., 139:244-259, 1996.

[MR84] P.J. McKenna and M. Rao. Lower bounds for the first eigenvalue of the
Laplacian with Dirichlet boundary conditions and a theorem of Hayman.
Appl. Anal., 18:55-66, 1984.

[Nol97] A. Noll. A generalization of Dynkin's formula and capacitary estimates
for semibounded operators. In M. Demurh and B.-W. Schuize, editors,
Differential Equations, Asymptotic Analysis and Mathematical Physics,
volume 100 of Mathematical Research, pages 252-259. Akademie Verlag,
Berlin, 1997.

[Nol98] A. Noll. Domain perturbations, shift of eigenvalues and capacity. Tech-
nical report, TU Clausthal, 1998. Submitted to Comm. P. D. E.

VIII-9



[Nol99] A. Noll. Capacity in abstract Hilbert spaces and applications to higher
order differential operators. Comm. P. D. E., 24:759-775, 1999.

[Oza81] S. Ozawa. Singular variation of domains and eigenvalues of the Laplacian.
Duke Math. J . , 48(4):767-778, 1981.

[Oza82] S. Ozawa. The first eigenvalue of the Laplacian on two-dimensional man-
ifolds. Tohoku Math. J., 34:7-14, 1982.

[Oza83] S. Ozawa. Electrostatic capacity and eigenvalues of the Laplacian. J . Fac.
Sci. Univ. Tokyo, 30:53-62, 1983.

[Rau75] J. Rauch. The mathematical theory of crushed ice. In Partial Differential
Equations and Related Topics, volume 446 of Lect. Notes in Math., pages
370-379. Springer, Berlin, 1975.

[RT75a] J. Rauch and M. Taylor. Electrostatic screening. J . Math. Phys., 16:284-
288, 1975.

[RT75b] J. Rauch and M. Taylor. Potential and scattering theory on wildly per-
turbed domains. J. Fund. Anal., 18:27-59, 1975.

[Szn98] A.-S. Sznitman. Brownian motion, obstacles and random media. Springer
Monographs in Mathematics. Berlin. Springer-Verlag, 1998.

[Tay76] M. Taylor. Scattering length and perturbations of -A by positive poten-
tials. J. Math. Anal. Appl., 53:291-312, 1976.

[Tay79] M. Taylor. Estimate on the fundamental frequency of a drum. Duke Math.
J., 46:447-453, 1979.

INSTITUT FUR MATHEMATIK, TU CLAUSTHAL, ERZSTRASSE 1, 38678 CLAUSTHAL-
ZELLERFELD, GERMANY
maan@math.tu-clausthal.de

VIII-10


