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A minimization problem arising in nonlinear thin
shell theory

Philippe G. CIARLET Daniel COUTAND
Resume

Les equations bidimensionnelles (Tune coque non lineairement elastique
"en flexion" ont ete recemment justifiees par V. Lods et B. Miara par la
methode des developpements asymptotiques formels appliquee aux equations
de Pelasticite non lineaire tridimensionnelle. Ces equations se mettent sous la
forme d'un probleme de point critique d'une fonctionnelle dont Pintegrande
est une expression quadratique en termes de la difference exacte entre les
tenseurs de courbure des surfaces deformee et non deformee, sur un ensemble
de deformations admissibles qui preservent Ie tenseur metrique de la surface
moyenne et satisfont des conditions aux limites ad hoc.

Nous montrons ici comment Pexistence d'un minimiseur peut etre etablie

1. The two-dimensional equations of a nonlinearly elastic
^flexurar shell.

Greek indices and exponents take their values in the set {1,2}, Latin indices
and exponents in the set {1,2,3}, and the summation convention with respect to
repeated indices and exponents is used. The scalar product, the exterior product,
and the Euclidean norm of a, b € R3 are denoted a " b, a A b, and | a |.

Let (jj be a bounded open connected subset of R2, with a Lipschitz-continuous
boundary 7, the set uj being locally on one side of 7. We denote by y = {y^) a generic
point of uj and we let 9a == 9/Qya and 9a^ = (f'lQyoQy^-

Let 6 6 C^cc^R3) be an injective mapping such that the two vectors a^ == 9^6
are linearly independent at each point ofuJ. We define a normal vector at each point
of the surface 5=0(cD) by

ai A as :
as = i——-——, .| ai A a2 |

The vectors a^ and the vectors a1 defined by a^ • a1 = ^ respectively constitute the
covariant and the contravariant basis at each point of the surface S=0{Cj).

We denote by a^ = a^ • QLQ and a^ = a° • a^ rhe covariant and contravariant
components of the metric tensor of 5, and we let a = det(a^). The covariant
components of the curvature tensor of S are defined by ba6 = a3 • c^a^.
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Using a formal asymptotic analysis of the three-dimensional equations of nonli-
near elasticity with the thickness as the "small" parameter, Lods & Miara [4] have
identified the two-dimensional equations of a nonlinearly elastic ^flexural" shell with
•middle surface S and thickness 2e. constituted by a Saint Venant- Kirchhoff mate-
rial with Lame constants A > 0 and IJL > 0, and clamped over a portion of its lateral
surface.

These two-dimensional equations take the form of variational equations, whose
solutions are the critical points of a functional, the two-dimensional energy of the
shell, over a manifold of admissible displacements, defined in the next theorem.

The unknown is the deformation (p : uj —> R3 of the middle surface of the shell:
This means that, for each y € uj, (p{y) is the position taken by the point 0(y) of the
undeformed middle surface under the action of the applied forces.

2. The existence theorem.
We show here how the existence of at least one minimizer of the energy of the

shell can be established; for a detailed proof, see Ciarlet & Coutand [3]. Given
any field ^ G H^ci^R3), the vector fields a^(^) == Qa^ and the functions a^z^) =
8iaW ' ^W are defined almost everywhere in u}. If the two vectors a^(^) are linearly
independent almost everywhere in GJ, the vector field

ai(i/QAa2(^)
^W = i „ /,^ . „ /.^ i^/ [a i^Aa^WI

the vector fields a^ (^?) defined by the relations a^ (^?) • a1 (^?) = 51 and the functions
baoW = ^zW ' 9/3^-aW ^re also defined almost everywhere in uj.

Theorem 1 Let 0 € 1^(0;; R3) (p > 2) be such that the two vectors a^e) == 9a0
are linearly independent at each point of uj. Let there also be given a portion 70
of 7 with length 70 > 0 and a mapping ^o '' 7o ~^ R3 such that the manifold of
inextensional admissible deformations^ defined by :

$p(^) = {^ € H2^; R3); OaftW = CLa0 in UJ\ ^ = ̂ o OH 7o}

is not empty.
Then, if ̂  G $^0^)? the vectors a^(^) = Qa^ are linearly independent almost

everywhere in uj and the functions ba/?(^) belong to L2^).
Let there be given a continuous linear form L on ^(o^R3) and let the energy

IF '' ^p{^) —> R &e defined by

IFW =- [ a^^W - b^){b^W - b^^aduj - L^)o Juj
for all ̂  € 4>^(o;)^ where

^ar ^ ^__^^r ^ ̂ aa^r ^ ^ar ̂

denote the contravariant components of the two-dimensional elasticity tensor of the
shell.
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Then there exists at least one (p (E ^p^) such that

IF(^) = mf (^)/F(t/Q.
t/?e^F

3. Sketch of the proof of the existence theorem.

The proof is "naturally55 broken into several steps, of which only the statements
are given (we refer to Ciarlet &: Coutand [3] for complete proofs) . The first four
steps deal with properties of isometric surfaces, while the remaining two deal with
properties of the functional I p over the manifold ^p(uj}.

In the following, the usual norm ofL2^) is denoted |[ . ||o,^ and the usual norm
of the Sobolev space W^o^R3) (m > 0, p > 0) is denoted || . \\m^ '
Step 1. For each ^ € ^p^), the vectors (^(i/O are linearly independent a.e. in uj.
Consequently, the functions b^^) are well defined and belong to the space L2^)
and thus, the functional I p is well defined over the manifold ^ p ^ ) '
Step 2. There exists a constant C\ > 0 such that:

I I ^ lkoo^< C^ for all ^ € $p(a;) .

In other words, the manifold ^p((jj) is included in a bounded subset of W^^; R3).
Step 3. There exists a constant 62 such that:

EllM^llo2 . ^ I I ̂ \&. + C^ foralliAe^o;).
Q,/?

This means that over ^p(u}) the L^o^-norm of the curvature tensor (which is
well defined by step 1) "uniformly controls" the H^c^R^-norms of the fields in
the manifold $^(0;).

The next step can be easily derived from the compactness of the Sobolev imbed-
ding of H^c^R3) into H^o^R3) and the compactness of the trace operator:
Step 4. The manifold ^p(u) is sequentially weakly closed in H^o^R3) (we let —"
denote weak convergence):

^ G ^F(^), I > 1, and ^ -^ -0 in H2^; R3) =^ ^ € $^(0;).

The next steps establish that, while the functional I p is not defined in general
"outside57 the manifold ^p(^}^ it nevertheless possesses the usual properties required
to apply the fundamental theorem of the calculus of variations.
Step 5. The functional I p is sequentially weakly lower semi-continuous over the
manifold ^p^):

^ € ^pM^ ^ 1, and ^ -^ -0 in H^R3) => IpW < liminfJp^).
I—>00

Step 6. There exists constants €3 > 0 and €4 such that:

IFW > €3 || zp ||j^ +^4, tor all ^ € ^p(^).

The proof is then concluded by combining steps 4, 5 and 6.
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4. Commentary.
(1) While Lods & Miara [4] assumed 6 e C^c^R3) in order to carry out the

asymptotic analysis that leads to the two-dimensional equations of a "flexuraF shell,
the assumption 0 6 W2^^; R3) for some p > 2 is enough to ensure the existence of
a minimizer of the energy over the manifold of admissible deformations.

(2) The existence result immediately extends to the case of a flexural shell sub-
mitted to the boundary conditions "of clamping" tp = <&o and 9^(p = 9y^o along
7o-

(3) The '"interesting" cases covered by this existence theorem are those where
^p(^} does not reduce to a discrete set, i.e. ^p(uj} is a "genuine" manifold. This
is for instance the case if the middle surface of the shell is a portion of a cone
(excluding its vertex), or a portion of a cylinder clamped along a portion of one of
its generatrices (if S is a non-flat cylinder, it may be clamped along portions of two
generatrices).

(4) A comprehensive presentation and analysis of the different plate and shell
problems is given in Ciarlet [1, 2].
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