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Normal forms and inverse spectral theory

Steve Zelditch

Abstract

This talk will describe some results on the inverse spectral problem on
a compact Riemannian manifold (possibly with boundary) which are based
on V.Guillemin’s strategy of normal forms. It consists of three steps: First,
put the wave group into a normal form around each closed geodesic. Second,
determine the normal form from the spectrum of the Laplacian. Third, deter-
mine the metric from the normal form. We will try to explain all three steps
and to illustrate with simple examples such as surfaces of revolution.

1. Introduction.

Our purpose in this report is to survey some relatively new results on the classical
inverse spectral problem: can one determine a compact Riemannian manifold (M, g)
(with or without boundary) from the spectrum Sp(A,) of its Laplacian A,? More
precisely, is the correspondence (M,g) — Sp(A,) injective as (M, g) ranges over
a class M of compact Riemannian manifolds? It is well-known that the answer is
‘no’ if M is the entire class of (M, g) (see [Go]), and there are few positive inverse
results for any reasonably broad class M. Recently, however, a new approach to
the inverse spectral problem has developed which offers hope of obtaining positive
results for at least some special classes of metrics or domains. To give it a name
for this article, we will call it the ‘strategy of normal forms’. The basic idea (due
essentially to V. Guillemin, but with antecedents in the work of Colin de Verdiére
[CV.1], Melrose [M][M.M] and others) is that for generic (M,g), Sp(A,) should
determine the (quantum) Birkhoff normal form of A, around each closed geodesic
v. The inverse spectral problem then reduces to the problem of determining the
metric from the normal forms. This is still a difficult problem but for certain classes
M one expects that it can be solved. In particular, we will describe a special class
M of metrics, namely the analytic simple surfaces of revolution, where the strategy
has succeeded to a reasonable degree [Z.3]. This class of surfaces is in some ways
analogous to (but much simpler than) the class of real analytic plane domains, where
the connection between Laplace spectrum and Birkhoff normal forms was first made
in [CV.1][M.M]. We will not discuss domains here but it is hoped that the strategy
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of normal forms extends to them and we sometimes include them in our general
remarks.

In view of the considerable number of counterexamples to the inverse spectral
problem, and of the wide gap between the many negative and the few positive
results, it may help orient the reader if we begin by discussing the restrictions we
will place on the metrics (or domains). First, we will always assume that the length
spectrum Lsp(M, g) is simple in the sense that the length functional on the loop
space takes on distinct values on distinct components of its critical point set. E.g.,
in the typical case where all geodesics are non-degenerate, simplicity means that (up
to time reversal) there is just one closed geodesic of each given length in Lsp(M, g).
This is a generic condition which is necessary to separate out terms in the trace
formula ( §1). As far as the author knows, all known examples of non-isometric
isospectral pairs have multiple length spectra, so this condition appears to eliminate
the known obstacles to inverse spectral results. Secondly, we will often assume that
the metrics (or domains) are real analytic. This is because we do not know how to
combine information from distinct closed geodesics, so we must determine the metric
from information on its germ at just one closed geodesic. Third, it is natural at this
stage to restrict to classes M of metrics (or domains) where the unknown has just
one functional degree of freedom (i.e. is a function of one variable). Our experience
with surfaces of revolution (and symmetric plane domains) seems to indicate that
the spectral invariants coming from just one closed geodesic just suffices to determine
this amount of the unknown object.

We now divide up our discussion of results according to the relevant class of
metrics.

1.1 Compact Riemannian manifolds with non-degenerate
closed geodesics

A closed geodesic v will be called ‘non-degenerate’ if 1 is not an eigenvalue of its
linear Poincaré map P,, and ‘strongly non-degenerate’ if the eigenvalues of P, are
independent (with 7) over the rational numbers (§1). The main result for this class
of Riemannian manifolds is the following:

Theorem 1 (/G.1-2]; see also [Z.1-2]) Suppose that (M,g) is a compact Rieman-
nian manifold without boundary, and suppose that v is a non-degenerate closed
geodesic whose length L., is of multiplicity one in Lsp(M,g). Then the quantum
Birkhoff normal form of \/Aat v is a spectral invariant.

The definition of ‘quantum Birkhoff normal form’ will be given in §2. Roughly
speaking, it is the expression of v/A as a function F(D, Ii,..., 1) of (mlcro—)locally
defined transversal ‘action operators I; and of the tangentlal derivative D, = 12

along 7. In the elliptic case, IJ = 2(DZJ. + yj). Since the classical Birkhoff normal

form of the symbol H(z,£) = /¥;; g% (x)&:&; is the principal symbol of the quantum
normal form, it follows that the classical BNF of the metric Hamiltonian H at v is
also a spectral invariant.
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The question then arises to what degree a metric (or domain) is determined
by the normal form of v/Aat one (or all) closed geodesic(s)? In particular, to
what degree does the classical Birkhoff normal form of the geodesic flow near v
determine the metric? The normal form coefficients were determined in [Z.1,2] and
are very messy metric invariants even in dimension two (§2). Hence one looks for
simple model examples where the normal forms have simple geometric or ‘quantum’
interpretations.

1.2 Simple analytic surfaces of revolution

The simplest situation is that of real analytic surfaces of revolution of ‘simple type’.
Roughly, ‘simple type’ means that there is just one circle (geodesic) of points of
critical distance to the axis of rotation, which we will call the equator, and that
its associated Poincaré map is of twist type (§3). Such surfaces were studied in
[CV.2] where it was shown that there exist global action operators I, [, and a
(polyhomogeneous) function F' such that VA= F (fl, jg)

The inverse result above applies to the normal form of v/A at the equator, but it
is simpler to take advantage of the complete integrability of the geodesic flow (and
wave group) and prove an inverse normal form result in the integrable setting:

Theorem 2 ([Z.3]) Let (S%, g) be an analytic simple surface of revolution with sim-
ple length spectrum. Then the normal form F(I4, I3) is a spectral invariant.

In this example, both the classical and quantum Birkhoff normal forms have
simple expressions in terms of the metric. We have:

Theorem 3 ([Z.3]) Suppose that g, g2 are two real analytic metrics on S? such that
(S2,9;) are simple surfaces of revolution with simple length spectra. Then Sp(A,,)
= Sp(Ay;) implies g1 = ga.

Here, equality means isometry of metrics. An obvious shortcoming of this result
is that both metrics were assumed to belong to R. One would like to know if it
suffices to assume just that g; € R. In other words, is a metric ¢ € R spectrally
determined? At the present time, the only metric on S$? which is known to be
spectrally determined is the round metric geqn, so we do not expect to fully answer
the question for general g € R. However, in a work in progress with G.Forni, we
prove some partial results in the direction that g, has completely integrable geodesic
flow. At the present time, our result is:

Theorem 4 Let g; € R* and suppose that g, is a real analytic metric on S? with
Sp(Ag,) = Sp(Ay,). Then:

(a) Up to time reversal, g, has precisely one elliptic non-degenerate closed geodesic;
(b) The Poincaré map for this orbit is completely integrable in the C° sense.

In other words, the Poincaré map (and geodesic flow near the orbit) preserve a
continuous foliation by tori, at least near the ‘equator’. Even if one could improve
this result to show that the geodesic flow of g, was completely integrable, it would
still not be enough to show that g, € R*; indeed, at this time, the completely
integrable metrics on S? have not been classified.
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2. Preliminaries.

We begin with some definitions.

2.1 Jacobi fields and Poincaré map for non-degenerate closed
geodesics

The Jacobi equation along a closed geodesic v(t) is the equation

D2

— T,))T =

e J+ R(T,J) 0
where 2 denotes covariant differentiation, ' = 4/(t) and R(,-) is the curvature
tensor. A solution is called a Jacobi field, and a solution J LT is called an orthogonal
Jacobi field. We let J.} ® € denote the space of complex normal Jacobi fields along
7. It is a symplectic vector space of (complex) dimension 2n (n = dim M — 1) with
respect to the Wronskian

D D

w(X’ Y) = g(X7 d_SY) - g(ZEX’ Y)

The linear Poincaré map P, is then the linear symplectic map on J;* ® C defined
by P,Y(t)=Y (¢t + L,).

A closed geodesic is called non-degenerate if det(I — P,) # 0. Since P, is sym-
plectic, its eigenvalues come in 4-tuples (inverses and complex conjugates, which
may coincide), i.e. the spectrum of P,) has the form: Sp(P,) = {efw*io j =
1,...,n}. P, is called elliptic if all of its eigenvalues have modulus one, in which case
Sp(P,) = {e***i,5 =1,...,n}. It is (real) hyperbolic if the eigenvalues come in pairs
Sp(P,) = {e*#,5 = 1,...,n}. For the sake of simplicity we will generally assume
that P, is elliptic.

The Jacobi eigenvectors of P, will be denoted {Y;,Y;, j = 1,...,n}. In the elliptic
case they may be normalized to satisfy:

PY;=€Y; PRY;=e""Y; w(Y;,Yi)= .

We introduce a fixed parallel normal frame e(s) := (ei(s), ..., €n(s)) along v and
write the eigenvectors in the form Y;(s) = Y r_; yjk(s)ex(s).

2.2 Wave trace invariants in the non-degenerate case on a
manifold without boundary

The wave group of a compact Riemannian manifold is the unitary group U(t) =
VB, As is well-known, it has a distribution trace TrlU (t) which is a Lagrangean
distribution on IR with singularities at lengths of closed geodesics [D.G]. In the case
of a ‘bumpy’ riemannian manifold (M, g), i.e. one for which all closed geodesics are
non-degenerate, the wave trace has the singularity expansion

TrU(®) =eo(t)+ Y. erlt) (1)

LELSP(Mvg)
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with

eo(t) = ao,—n(t +10)™" + ao_n41(t +i0)™"H - )
er(t) = ap—1(t — L+i0)™ +applog(t — (L +1:0))
+ api(t —L+i0)log(t — (L +10)) +--- (3)
aLv_k = Z‘Y:L7=L a’}’,—ka

where - - - refers to homogeneous terms of ever higher integral degrees ([DG]). The
coefficients ay, _ and a,,_; are known as wave invariants. The coefficients agx at
t = 0 are essentially the same as the heat coefficients, i.e. the coefficients of the
small ¢ expansion of Tre™** and are well-known to be given by integrals over M
of curvature polynomials. The question arises of similarly characterizing the wave
trace invariants associated to closed geodesics.

The principal wave invariant at ¢ = L., was determined in [D.G]. It is given by

Ay _1 = expL;ni Lf[det([ - P’Y)I_Iﬁ,

where L¥ is the primitive period (once around), where m., is the Maslov (= Morse)
index, and (as above) where P, is the linear Poincaré map.

The following describes the wave trace invariants associated to a non-degenerate
closed geodesic. Undefined terminology is reviewed below.

Theorem 5 Let vy be a strongly non-degenerate closed geodesic. Then a = [ L,x(s; g)ds
where:

(1) L,.x(s;9) is a homogeneous Fermi-Jacobi-Floguet polynomial of weight —k — 1

in the data {yij,¥i;, D7, 9} with m = (my, ..., mn41) satisfying |m| < 2k + 4 ;

(i) The degree of L, in the Jacobi field components is at most 6k + 6;

(i1i) At most 2k + 1 indefinite integrations over v occur in L,x;

(iv) The degree of L,y in the Floguet invariants [3; is at most k + 2.

Let us define the term ‘Fermi-Floquet-Jacobi polynomial’. First, we write the
metric coeflicients g;; relative to Fermi normal coordinates (s,y) along 7. The vector
fields %, aiyj and their real linear combinations will be referred to as Fermi normal
vector fields along v and contractions of tensor products of the V™ R’s with these
vector fields will be referred to as Fermi curvature polynomials. The m-th jet of g
along v is denoted by jT'g, the curvature tensor by R and its covariant derivatives
by V™R. Such polynomials will be called invariant if they are invariant under the
action of O(n) in the normal spaces. Invariant contractions against % and against
the Jacobi eigenfields Y}, Y ;, with coefficients given by invariant polynomials in the
components y;x, are called Fermi-Jacobi polynomials. We will also use this term for
functions on 7 given by repeated indefinite integrals over v of such FJ polynomials.
Finally, FJ polynomials whose coefficients are given by polynomials in the Floquet
invariants 3; = (1 — €'%/)~! are Fermi-Jacobi-Floquet polynomials.

The role of the Floquet invariants should be particularly emphasized. The
fact that the wave invariants are polynomials in the ;s is a crucial ingredient
in Guillemin’s (and subsequent) proof(s) of the inverse result.
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The ‘weights’ referred to above describe how the various objects scale under g —
e’g. Thus, the variables g;;, D7, gij (With m := (my,...,mny1)), L := Ly, 0}, yij, ¥ij
have the following weights: wgt(D7',g:;) = —|m|, wgt(L) = 1, wgt(a;) = 0, wgt(y;;) =
1, wgt(yi;) = —%. A polynomial in this data is homogeneous of weight s if all its
monomials have weight s under this scaling. Finally, 7 denotes the scalar curvature,
7, its unit normal derivative, 7,, the Hessian Hess(7)(v,v); Y denotes the unique
normalized Jacobi eigenfield, Y its time-derivative and J;o the Kronecker symbol (1
if 7 = 0 and otherwise 0).

For instance, in dimension 2 (where there is only one Floquet invariant §) the
residual wave invariant a. is given by:

a'Yv_l

0= T2 Broa(26° ~ f— )+ Broo )

where:

(a) a,—1 is the principal wave invariant;

(b) L# is the primitive length of v; o is its Morse index; P, is its Poincaré map;
(c) Bso;; has the form:

L# . . _ .
Byoj = Z%./ [a|Y[*+b, 7Y - Y[*+b, TRe (YY) +c Y |*+d 7, |V |* +e 8;07)ds
bl Y G MmO ynga
- i : T,(s . s)ds
L# 0<m,n<3;m+n=3 g '(1 - ez(m—n)a)|2 o

1 L#

+ﬁ- > Camn Im {/o

0<m,n<3;m+n=3

(YY) | [ (7" Yty ds}

for various universal (computable) coefficients.

The wave invariants (and normal form coefficients) are obviously very messy.
The beauty of the normal forms strategy is that it organizes these coefficients into
a potentially meaningful invariant, namely the classical (and quantum) Birkhoff
normal form.

2.3 Wave trace expansion on a simple surface of revolution

The wave trace expansion on a simple surface of revolution is quite different since the
geodesic flow is completely integrable and closed geodesics (other than the equator)
fill out tori in the cosphere bundle.

To explain this, let us be more precise about the definition of ‘simple surface of
revolution.” First, we will assume that there is an effective action of S? by isometries
of (52, 9g). The two fixed points will be denoted N, S and (r,8) will denote geodesic
polar coordinates centered at N, with § = 0 some fixed meridian vps from N to S.
The metric may then be written in the form g = dr?+a(r)?d6* where a : [0, L] -+ R"
is defined by a(r) = 5=|S,(N)|, with |S,(N)| the length of the distance circle of radius
r centered at N. We define the class R of simple analytic surfaces of revolution as
follows:
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Definition 6 R is the moduli space of metrics of revolution (S2,g) with the prop-
erties:

(i) g (equivalently a) is real analytic;

(ii) a has precisely one non-degenerate critical point r, € (0, L), with a"(r,) < 0
corresponding to an ‘equatorial geodesic’ yg;

(iii) the (non-linear) Poincaré map P, for vg is of twist type.

We denote by R* C R the subset of metrics with ‘simple length spectra’ in the sense
above.

)

From a geometric (or dynamical) point of view, the principal virtue of metrics
in R is described by the following:

Proposition 7 Suppose that g € R. Then the Hamiltonian |€|, := (/3 g &:&; on

T*S? is completely integrable and possesses global real analytic action-angle vari-
ables.

By an action variable we mean a homogeneous function on 7*S — 0 whose Hamil-
tonian flow is 27-periodic. There is an obvious action variable given by the Clairaut
integral py(v) := (v, %). Since the Poisson bracket {ps,|¢|,} = 0, the geodesics are
constrained to lie on the level sets of pg. With the assumption on a, the level sets
are compact and the only critical level is that of the equatorial geodesics v C S»S?
(traversed with either orientation). The other level sets consist of two-dimensional
tori.

The second action variable is less familiar but is obtained in a standard way by
integrating the action form over a homology basis of the invariant tori. The formula

for it is given by (cf. [CV.2, §6])

1 fr+ I?
. 4|E2— g
L(L, E) w/,_ o Il

where r3 are the extremal values of r on the annulus 7(Fy, g) (with = : $352 — §?
the standard projection and Fp, g the torus given by [£| = E,ps = ).

The pair T := (I, ];) generate a global Hamiltonian torus (S! x S*)-action
commuting with the geodesic flow. The singular set of Z equals Z := {I = £py},
corresponding to the equatorial geodesics. The map

I:T*S*—Z =T :={(z,y) e RxR*":|z| <y}

is a trivial torus fibration. Henceforth we write T for the torus Z=!(I) with I € T.
Using the product structure we may equip each 77 with angle variables ¢; which are
symplectically dual to the action variables.

The metric Hamiltonian may be written in the form H(/[y, ;). The vector wr =
VH is called the frequency vector. The equations of motion for a geodesic on T}
are given by I; = 0,¢; = w;([).

We now come to the definition of length spectrum and simple length spectrum
for a completely integrable geodesic flow.

-

XV-7



Definition 8 (a) A torus Ty is a periodic torus if all the geodesics on it are closed.
(b) The period L of the periodic torus is then the common period of its closed
geodesics.

(¢) The length spectrum L of the completely integrable system is the set of these
lengths.

(d) The completely integrable system has a simple length spectrum if there ezist a
unique periodic torus (up to time reversal) of each length L € L.

Consider now the wave trace formula for a metric on a general Riemannian
manifold of dimension n with completely integrable geodesic flow. The dimension
of each periodic torus 7 of period L equals dim7 = n and the wave trace has the
form:

TrU(t) = eo(t) + > er(t)
T
where the sum runs over the periodic tori in $*M and where
er(t) = ar_npr (t = L+i0)"F +ap_npy (t— L+0)7 5+ 4

More precisely, it takes this form if n is even; if n is odd, the positive powers of
(t — L + ¢0) should be multiplied by log(¢ — L + 0). Thus, if dimM = 2, the wave
trace expansion at a torus 7 has the form

er(t) = ar_s(t— L+i0)% +az_1(t— L+i0)77 +...
while if dimM = 3, the wave trace expansion at 7 has the form
er(t) = ar—2(t — L +10)"2 +ar_1(t — L +i0)™" + arolog(t — L +40) +....
3. Wave invariants as non-commutative residues.

In connecting the wave invariants to the normal form, it will prove useful to
interpret the wave invariants as non-commutative residues of the wave group and
its time derivatives. We digress to recall the definitions and basic results.

The non-commutative residue of a Fourier Integral operator is an extension of
the well-known non-commutative residue of a pseudodifferential operator A on a
compact manifold M, defined by

res(A) = 2 Res,=o ((s, A)

where

((s,A) = Tr AA™*/? (Re s >>0).

Let A be a Fourier Integral operator in I™(M x M,A) for some homogeneous
canonical relation A C T*(M x M)\0 and m € Z and let diag(X x X) denote the
diagonal in X x X. We have:
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Theorem 9 Let A € I™(M x M,A), where A is a homogeneous canonical relation
intersecting diag(T*M x T*M) cleanly. Then ((s, A, P) := Tr AP~ is analytic for
Res large for any P € W' positive elliptic. It admits a meromorphic extension
to C with simple poles only among the points s = m + 1 + ‘3’;—1 — 3, with e, =
dimA N diag(S*M x S*M), and with j = 0,1,2,... The residues are given by local
invariants of the germ of the complete symbol of a and A near the intersection with
the diagonal. ‘

In the case of the wave group we then have:

Theorem 10 Let A be the Laplacian for a metric g on M, and let U, = exp itv/A
be the wave group. Let the eigenvalues of /A be denoted 0 = A\, < Ay < .... Then
the zeta function

((s,t) =) eit’\j/\;-'s
7=0

has a meromorphic continuation to C with poles only among s = 14+1/2(dim SFix(G*)—
1) —j.

The non-commutative residue of the Fourier integral operator A is then defined
by:

Definition 11
res(A) := Ress=o ((s, A)

The residue res(A) has the properties:
- it is independent of the choice of A;
- if either A or B is associated to a local canonical graph, then res(AB) =

res(BA)
- there is a local formula for res(A).

Corollary 12 In the case of a non-degenerate closed geodesic we have:
arp k = T‘eS(DfU(t)th)

In the case of a completely integrable system, we recall, the dimension of each
periodic torus 7T of period L equals e, = dim7T = n. Hence we have:

Corollary 13

ntl

- k
Y aur _(mrye = res(VA * T U(t)|=r)
+

XV-9



Thus, in the case of simple surface of revolution the first wave trace invariants
at a periodic torus 7 have the form:

-3 -1
Za:t’r,—g =resVA *e'lVA, Z%:T,—% =resvVA ZelVA
t T

The wave invariants for a closed geodesic  (or periodic torus T7,) are exactly the
same as for its time reversal, hence the same residue formulae also give the individual
wave invariants.

4. Normal forms.

In this section we review the normal forms of v/A around closed geodesics in the
three rather different cases. For detailed discussions see [G.1-2], [Z.1-4].

4.1 Quantum Birkhoff normal forms: non-degnerate case

Roughly speaking, to put v/A into microlocal normal form around 7 is to conjugate
it into a maximal abelian subalgebra A of pseudodifferential operators on the normal
bundle N, ~ S*xIR" of 7. The appropriate algebra A is determined by the spectrum
of P,. In the tangential direction, one takes D; where D, = %8/ Oz. In the transverse
directions IR™ to v, one chooses a generating set of action operators fj, that is,
quadratic Hamiltonians in the transverse variables y;, D,,. Here, n = dimM —1,
and the coordinates (s,y;) are the Fermi normal coordinates around -.

In the elliptic directions, I; will be a Harmonic oscillator a;(D; +y?). In the
real hyperbolic directions, I; = 1 (y; Dy; + Dy,;y;). In the complex hyperbolic direc-
tions, I; involves two y-variables y;, y;j31 and has the form 15 (Y; Dy, + yix1 Dy, ) +

aj(yj+1Dyj - ijyj+1)'
The normal form theorem in the non-degenerate case is the following:

Theorem 14 Assume that v is a non-degenerate closed geodesic and that its Floquet
exponents {a;j,p;}, together with m are independent over Q. Then there exists a
microlocally elliptic Fourier Integral operator W from a conic neighborhood V of
IR*y in T*N, — 0 to a conic neighborhood of T;S* in T*(S* x R") such that:

— 1. p(lyy... dn L) polly,..., In, L) Perr(fy, ... In, L)
W Aq{;W 1 ::D: Ds+zHa+ Ds + D2 +...+ D.]:'{'l

s

+..

where the numerators ﬁj(fl, - I, L) are polynomials of degree j+ 1 in the variables
I,...,I,, where W~ denotes a microlocal inverse to W in V. The k-th remainder
term lies in the space @f:g 02(k+2_j)\111‘3.

Here, O,, ¥* is the space of transverse pseudodifferential operators of order & (in
the y-variables) which vanish to order m at y = 0. Thus the error term is bigraded
by pseudodifferential order and by order of vanishing. The remainder is small if in
some combination it has a low pseudodifferential order or a high vanishing order at
«v. This is a useful remainder estimate since a given wave invariant a., only involves
a finite part of the jet of the metric and only a finite part of the complete symbol

of VA.
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4.2 Normal form for v/A on a simple surface of revolution

As mentioned in the introduction, v/Aon a simple surface of revolution has a global
Birhoff normal form. The reason for this is that the wave group is integrable on the
quantum level and in fact commutes with a Fourier integral torus action. Let us
first define this notion:

Definition 15 The wave group €'V of a compact, Riemannian n-manifold (M, g)
is quantum torus integrable if there exists a unitary Fourier-Integral representation

F:T" =5 U(LAH(M)), Tyt = gitih+tnl)

of the n-torus and a symbol H € S*(IR" — 0) such that VA = H(I4,..., L,).

The generators | ; are first order commuting elliptic action operators with the

property that e?™i = (C;Id for some constant C; of modulus one. Hence their
joint spectrum consists of lattice points in the image of the classical moment map
(Liy...,I,) : T*M — 0 — IR" — 0. More correctly, the lattice can be shifted by a
Maslov index.

Since H is a first order elliptic symbol on IR™ — 0 it has an asymptotic expansion
in homogeneous functions of the form:

H~H +H,+H_y+..., Hrl)=rH;(I).
Thus we have:

Proposition 16 ([CV.2]) Suppose g € R. Then /A, is quantum torus integrable

and hence there ezists a polyhomogeneous function H such that VA = fl(fl,fz).
Moreover, H, = 0.

The spectrum of /A is therefore given as the values { H(m, €+3): |m| < £, > 0}
of H at lattice points in the convex polyhedral cone I (shifted by (0, 3).
To break the homogeneity of the normal form coefficients, we fix a point I° €

{H =1}, let w° denote the common frequency vector of the ray of torii R* 7. and
put

2
I-w:=> wily.
k=1

The equation of the tangent line to {H = 1} at I° in the action cone I, is then
given by w®- I = 1. The conic neighborhood will be parametrized in the following
way: we fix a basis (i.e. a non-zero vector) v of the line I - w® = 0, and define the
map

(P, 6) - p(Io + ‘50)’ € € (_67 C)'

For sufficiently small €, this map sweeps out a conic neighborhood W, of I° with
inverse given by

o I (]
p=w’-1, {vjzzﬁu—;—lj.)
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Since H(I1,I3) = (w°- 1) H(Z;,-%2;) and since (25, £7) € {w° - I = 1} we may
write

H(Iy, I) = pho(§)
where hpo is the function on W, N {w® - I = 1} defined by

hre(§) :== H(I° + ).

The C* Taylor expansion of h.(£) around ¢ = 0 is then a symplectic invariant of
H.

Similary, we write the higher homogeneous terms as

L L

Hj(L, Ip) = (w° - 1)’ Hi(——5 =7

=@ 1Y hy(0).
The Taylor expansion of h;(§) around £ =0
hi(§) = D_ k3 (0)¢

a>0

then defines the quantum Birkhoff normal form coefficients.

5. Normal form from spectrum.

5.1 Inverse results for non-degenerate manifolds

Let us now sketch the proof of Theorem 1. The following is somewhat schematic;
we refer to [Z.1,2] for the detailed proof.
Using the residue description, we have

ax = res DF eV .= Res,_oTr Df eVAV/ATE, (1)

Since res is invariant under conjugation by (microlocal) unitary operators, and de-
pends on only a finite jet of the Laplacian near +, it may be calculated by conjugating
to the normal form, and only depends on a finite part of the normal form. Applying
D¥ and formally exponentiating the terms of order < —1 in D, we get

| o 51 (I, I L
res D¥e''P|,_p = res e'z"LD“e’H"Dk(I + z'Lpl( I’D’ ) +..). (2)

Since €2"P+ = [ on IR/2rLZ the Fourier Integral factor in (2) is just e, This
is an operator in the metapletic representation and its trace is the character of this
representation. Recall that for elements of the metaplectic group Mp(n,IR) not
having 1 as an eigenvalue, the character is given by

Z'(T

Ch(z) = ———
(=) |det(I — z)|
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where o is a certain Maslov index. For non-degenerate x with p pairs of eigenvalues
e*i® of modulus one, q pairs of positive real eigenvalues e and ¢ quadruplets of
eigenvalues e*(#i*%;) Ch(z) is therefore given (up to a Maslov factor) by

7% , e o esluitiv)  oilui-ivy)
1 — eiaj ’ j=11 _ 6’\1 ) j=11 _ eu]'+iu,' 1 — eu,—iuj )

(56) T(av )‘3 (,Lt, V)) = H_Z;:l

Here we have selected one eigenvalue p from each symplectic pair p,p~!. The am-
biguity is fixed by the Maslov factor %, which can (and will) be ignored below for
the sake of brevity. For simplicity let us assume that v is elliptic.

The next observation is that the residue is the trace of the term of order D;!.
This is formally obvious and the detailed justification is given in [Z.1, 2]. Therefore
the wave invariant has the form

Ay = TrFpr—1 (f)ei“i

for a certain polynomial Fj _; which can easily be determined from the pj(f )’s. We
then observe that

TrFi-1(1)e! = Fy_1(Day, -y Do) Trel.
Hence we get the result:
yk = Fi,-1(D) - Ch(z)|z=p,-

The coefficients of the polynomials Fj,_; are evidently polynomials in the quan-
tum Birkhoff normal form invariants. For the inverse result, one observes (with
Guillemin) that the differentiation process produces polynomials in the §;’s. More-
over, it is important to observe that the expressions for the wave invariants at iterates
~¥ of 4 involve the same operator Fy _; applied to Ch(ka). Determining the Birkhoff
normal form coefficients from the wave invariants is then equivalent to determining
the coefficients of these polynomials from their special values at 3; = (1 — e**)~!
corresponding to 7 and its iterates. Under the irrationality condition, the points
(e1,...,e" ") are dense on the torus and hence the special values determine the
polynomial.

5.2 Inverse results for simple surfaces of revolution

We now prove that the wave trace invariants of a metric ¢ € R* determine its
quantum normal form H. Below Y is a smooth cutoff to a neighborhood of the
periodic torus 7z, of period L in the ‘action space’. Also, by the vector of winding
numbers one means the homology class of a closed geodesic on T, relative to a fixed
basis (it may be fixed independently of the torus here).

Proposition 17 Let g € R* and let L € L. Then we have:
S aur, g = Resomo [ u(I+m)e e HAUD f(L4p)) - (I+))"d]
+

where as above My, is the vector of winding numbers of T, and wy, is the frequency
vector of Tf.

-
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Proof: Since VA = H(I},I;) and since i1, is a function of the action operators, we
have that

S ar, pan = Ressmo 30 Ga(N + e O +0)H e - (V -+ )™
NeZ

We then apply the Poisson summation formula for Re s >> 0 to replace the sum
over N € Z* by

Res,—o Y Jrmi(s)
Mez?

where
Tmp(s) i= /Fz/m(l + p)e MDD GLAT R (T 4 1))~ 5+ (wr, - (I + p))~*dl.

By simplicity of the length spectrum, only the term with M = My has a pole at
s = 0. Indeed, only in this term does the phase —(M,I) + LH(I) have a critical
point, since M = LV H(Ip) implies that the torus with actions Iy is periodic of
period L. O

Now let use calculate the residue using the Taylor coefficients of the normal form
at the point I° = (0,1), corresponding to the torus of meridians between the poles.
Some computation based on the residue formula above shows that

1
Qr _31=C = ——
T3 L V2miaL

and that the higher wave invariants a, _ 1y are given by ¢, times polynomials in

L and in the derivatives of h,h™!,h_;,... at £ = 0. For instance, the subprincipal
wave invariant in dimension 2 is given given in terms of universal coefficients C;;y

by:

e‘(ML 7”’)

ar,,-1 = CL[Cooﬁgh(f)lg:o + Co10L?h—1(0) + Cooza?h(f)_%léﬂ]-

The key observation now is that the different terms decouple under iteration of
the closed geodesics. That is:

Proposition 18 We have

ag, sk = WP(LA(0), ..., RC*D(0), hoy(0), ..., RE(0),. .., hok(0), h24(0), hog-1(0))

where Py is a polynomial with the following properties:
(i) It involves only the first 2k +4 Taylor coefficients of h at 0, the first 2k of h_,,...,
the first 2k +2 — 2n of h_,, ..., the first 2 of h_i and the 0th of h_j_;.

(i) It is of degree 1 in the variables h_i_(0), h(_z,Z(O), ..., h®**9(0), and each occurs
in precisely one term.

(i1i) The L-order of the monomials containing these terms is respectively L¥+2 L¥+1 L0,
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By using the joint p, L — oo asymptotics one can recover the complete Taylor
expansions of all the h;’s jfrom the wave invariants of the meridian torus and its
iterates. A key role is played by the fact that each &; is even under reflection thru
the I;-axis, stemming from the fact that the Laplacian is invariant under complex
conjugation. Hence all of the odd Taylor coefficients of k; vanish and the even ones
are separated by different powers of L.

6. Metric from normal form.

The final step is to try to determine the metric from the normal form. At this
time the only results pertain to the cases of surfaces of revolution and axisymmetric
plane domains [CV.1]. We restrict our discussion to surfaces of revolution.

6.1 Simple surfaces of revolution

To complete the proof of the Theorem 3, we need to show that H determines a
metric in R. The proof is basically to write down explicit expressions for H and
H_, in terms of the metric (i.e. in terms of a(r)) and then to invert the expressions
to determine a(r). The first step is therefore to construct an initial part of the
quantum normal form explicitly from the metric.

We begin from the fact that H(I;, I3) is a known function. Set H = E and solve
for I,. We know that I, = ||+ [(E — a—(lr’)—z)dr and hence the function [(E — a—{,f)—z)dr
is a spectral invariant. We may write the integral in the form

[ (B - 2)idu(a)

where p is the distribution function of a%, ie.

1
H@) = I oo < <)
with | - | the Lebesgue measure. The above integral is an Abel transform and as is
well known it is invertible. Hence
d 1
d = — -1
p(z) IZ e a(r)2| dz

T:W=.’B

is a spectral invariant. It follows that the function

1
J(z) = -
X T

is known from the spectrum. By the simplicity assumption on a, there are just two
solutions of a(r) = «; the smaller will be written r_(z) and the larger, r,(z). Thus,
the function




is a spectral invariant.
Clearly, J(z) does not determine a(r). Hence we must go into the H_; expression.
For various universal constants C;, Cy, C3 it takes the form

n2 1 1 N2 1 1
[Cl@é/(a) (E—§)+2dT+C2aE/((Z4) (E__2)+2d7°

ab a

+Cs [ (‘;,32(E E %)I%dr]

|E= H(I]ll,Iz) .
By a change of variables, we may rewrite this in the form
(C.0% / K(2)23(E - ¢)17dz + C205 / K(e)e} (E — 2);7dz
+Cs / K(e)z 5(E — 2);2da]|,_ s
where
K(z) = |d'(r-(z))| + |d'(r+(2))].

All values of E which occur as ratios & ?’12 give spectral invariants.
1

We now claim that K is a spectral invariant. To determine it we rewrite the
above in terms of the fractional integral operators

a-1

LJ(B) = £+ 5s(B) = 75 || F)(B =0 dy

on the half-line IR*. These operators satisfy

d
Iyolg=1Ig I=(—).
olp=latp k= (50)
Thus the above equals £(K) where L is the fractional integral operator
L:= 011_3/213% + C2I_%z% + 031%:1:‘;'.
To solve for K we apply 1_ 1 to LK to get

2

d 1 1
Ol (23K (@) + Cha (24 K) + O3 K = Iy LK.

This equation determines K up to a solution f of the associated homogeneous equa-
tion, essentially an Euler equation. But also K = 0 on [0, a(r,)~?] Since no homoge-
neous solution can have this property, K is uniquely determined by this boundary
condition.

Given two real numbers a, b one knows that from a+b and ;‘1;+% one can determine
the pair (a,b). Hence a/(r) is determined from the spectrum. Since a(0) = 0 this
determines a and hence the surface. O
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