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Hyperbolicity of two by two systems
with two independent variables

T. Nishitani

Abstract

We study the simplest system of partial differential equations: that is,
two equations of first order partial differential equation with two independent
variables with real analytic coefficients. We describe a necessary and sufficient
condition for the Cauchy problem to the system to be C infinity well posed.
The condition will be expressed by inclusion relations of the Newton polygons
of some scalar functions attached to the system. In particular, we can give a
characterization of the strongly hyperbolic systems which includes a fortiori
symmetrizable systems.

1. Results.

Let us consider
Lu = 0yu — A(t,z)0u + B(t, z)u

where ¢,z € R and A(Z,z) is a 2 X 2 matrix valued real analytic real valued function
defined near the origin. We are concerned with the following Cauchy problem

Lu=f
(C.P.) { u(f, ) = uo(z).

We say that the Cauchy problem (C.P.) is C* well posed in a neighborhood of the
origin if there is a neighborhood W of the origin such that for any (£,%) € W and
any given ug(z) € C®(W N {t = {}) and f € C®(W) the problem (C.P.) has a C*®
solution in a neighborhood of (i, #).

After a change of local coordinates around the origin leaving the lines ¢t =const.
invariant, we may assume that

Alt,z) = (all(t’””) axa(t, z) )

an(t,z) —an(t,z)

Let us denote h(t,z) — detA(t,z). It is well known that h(t,z) > 0 is necessary
for the Cauchy problem (C.P.) to be well posed in a neighborhood of the origin
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(Lax-Mizohata Theorem [3], [6]). Thus we assume h(¢,z) > 0 in a neighborhood of
the origin throughout the paper.
Let us set

CrI = i(a12 - (121)/2, au(alz + a21)/2 + iau, l)ﬂ = cﬁatan - auatcﬂ.

Suppose that h(t,z) does not vanish identically. Then |a'| does not vanish identi-
cally because h = |a!|> — |c!|? and A(t,z) > 0 ( see Lemma 3.1 below). From the
Weierstrass preparation theorem h(t,z)|a(t,z)|? is written as

(L) 2)la (o) = 2 + (@) + o+ bar(2)) Bl 2)
where ¢;(0) =0, £(0,0) # 0 and hence factorized as

h(t,z)|at(t, z)|* = 2> | | (¢ — t;(z))E(t, z)

j=1
where t;(z) has a Puiseux expansion
tie) =Y Ch(xa)m, 0<tz<s,
k>0
with some p; € N. We set
Fi(A) = {Rety(z),..., Rety (z), £z > 0}.

If r = 0 we put F4(A) = {0}.

Let f(t,z) be real analytic near the origin and ¢4 € Fi(A). We set

fd’:{;(t,x) = f(t + ¢:i:(x)’ .’12)

and define the Newton polygon I'(fs,) of fs, at (0,2£0) as follows. For sufficiently
small |z|, £z > 0 we have

foe(t ) = Z a?;ti(j:m)j/l’:l:

1,20

with some p; € N then set

I'(fs5) = convex hull of { | J (4,7/ps) + R3}.

a.?;;éo
We define I'(f;,) = 0 if and only if f vanishes identically.

Theorem 1.1 In order that the Cauchy problem (C.P.) is C* well posed in a neigh-
borhood of the origin, it is necessary and sufficient that

1
P(t[D* + a*tr(AB))s) C §F([hla”|2]¢), Vo € F1(A),
_ 1
(D" +d'tr(AB)]y) < ZT([hle'[]y), V¢ € Fi(A)
where B denotes the complex conjugate of B and trA denotes the trace of A.
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From Theorem 1.1 and [8, Theorem 1.1] it follows that the well posedness of the
Cauchy problem (C.P.) is equivalent to the well posedness of the Cauchy problems
for the following second order scalar operators:

02 — h|a"*8? + (D' + d*tr(AB))0,,
0% — h|d"|?0? + (D" + a*tr(AB))0,.

Corollary 1.2 Assume that D' = 0 or |c!|? < Ch with some C > 0 near the origin.
Then for the Cauchy problem (C.P.) to be C* well posed in a neighborhood of the
origin, it is necessary and sufficient that

1
(1.2) D(ttr(AB))s) C 5T(hy), V6 € Fi(A).
In particular, the Cauchy problem (C.P.) is C* well posed if B = O.

If D¥ = 0 then both the conditions in Theorem 1.1 are reduced to
1
(1.3) I(t[a"tr(AB)]s) C §F([h|a”|2]¢), Vo € Fi(A).

By the definition, it is easy to check that the condition (1.2) is equivalent to (1.3).
We now suppose that |c!|> < Ch with some C > 0 and D" does not vanish identically.
Then it is clear that

(1.4) I(c) %F(hqb), $ € Fu(A).
Since I'(¢[0kc!]4) = I'(td,cl) C T's(ch) we have
[(t[a"0,c"]y) = T(ak)+ D (t[0:c]y) C T(ak) + (k)
C STUaPle) + 5T(he) = ST([AIa"IL0)
A similar argument shows that ['(¢[c*d,a%]4) C T'([h|a*|?]4)/2 and hence

(15) D(DY) C ST([klatfle), V6 € Fa(A).

Thus both the conditions in Theorem 1.1 are reduced to (1.3) and the rest of the
proof is clear. O

REMARK 1.1: Let us consider a second order scalar equation with two independent
variables:

Pv = 8%v — a(t,z)0%v + b(t,z)0v = f.

With u! = 8,v, u!f = §,v and u = *(uf, u?) the equation is reduced to the following

2 X 2 system:
0 1 0 0 0
Luzatu—(a 0>0xu+<b 0)u—<f>
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It is clear that a* = (1 + a)/2, D' = i0,a/2 and h = a. Since a*(0,0) # 0, the set
F+(A) coincides with that defined in [8] for the scalar operator P. On the other
hand from

['(t[0:a]g) = ['(t0iay) C I'(ay) C %F(a‘b)

the condition (1.4) is verified. Thus the conditions in Theorem 1.1 are reduced to
1
L(t[tr(AB)]s) = I(thy) C 5T(as), Vo € Fi(A).
This is exactly the same condition obtained in [8, Theorem 1.1].

Corollary 1.3 Assume that h(t,z) vanishes identically. Then in order that the
Cauchy problem (C.P.) is C*® well posed in a neighborhood of the origin, it is nec-
essary and sufficient that

D'+ d'tr(AB) =0, D'+ d'tr(AB)=0.

In the case h vanishes identically, a necessary and sufficient condition for the
well posedness of (C.P.) was obtained in [4], [5] and in [10]. See also [2] and the
references given there. We examine that the conditions given in Corollary 1.3 are
equivalent to that obtained in [10]. Since A2 = O one can write

A= Kop Ko?
" \-Kp? —Kop

where o and p are relatively prime. It is clear that ¢! = iK(0? + p?)/2 and o' =
K(o% — p*)/2 +iKap. It is not difficult to check that D* = K(pd;o — dd;p)a. Let

1 gl
o= (i ).
Since tr(AB) = K[bio? — bjp? + (b} — b3)op] it follows that
D" + a"tr(AB) = a"K[p0;0 — 00;p + bia? — byp® + (b] — b3)op).
Thus the conditions given in Corollary 1.3 are equivalent to
pdio — cdyp + b2a? — blp® + (b — b2)op =0

which is exactly the Levi condition obtained in [10].
We turn to strong hyperbolicity. We say that L is strongly hyperbolic near

the origin if the Cauchy problem (C.P.) is C*® well posed near the origin for all
B(t,z) € C*.

Theorem 1.4 For L to be strongly hyperbolic near the origin it is necessary and
sufficient that

P(tDE) € ST(Ala'le),  Tltlaile) C 50(hs), V6 € Fal(A).
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REMARK 1.2: Let
A= tz 12 — g2
T\t2—-2t —tz

Then the second condition of Theorem 1.4 is verified while the first condition is
not. This example shows that in order that L is strongly hyperbolic the strong
hyperbolicity of the second order scalar operators

02 — h(t, )02 + ai;(t, )0,

is necessary but not sufficient.

2. Examples.

In this section we give several examples to explain Theorem 1.1.

EXAMPLE 1: We give an example of A with A(¢,z) > 0 outside ¢t = 0 for which no
B(t,z) could be taken so that (C.P.) is well posed (such an example was given in
[4, Example 5] for the first time when h vanishes identically and was called ”stably
non hyperbolic” operator there). Let

A z? — /2 z? + zt?
T\ -2+ at? —(22-t2) )

It is easy to see that
h=1t8/4, & = iz?, @' = xt® +i(2? — t*/2), D* = 2iz3t + 22243,

Suppose that B(t,z) = (b;;(t,z)) is given. It is easy to check that a'tr(AB) has the
form
Cyoz* + C312°t% + Cogz®t* + Cyext® + Cost®

where C;;(t, ) is a linear combination of b;;(t,z). On the other hand we have
hla")? = t¥(z* + t3/4) /4 = 2*t8/4 + t'®/16.
Taking ¢ = 0 we easily see that
LD + a'e(AB)) ¢ ST(hletP)
for any B because D' + a'tr(AB) has the form
22’ + 22°t° + Caoz® + C312°t" + Craz®t* + Crewt® + Cost®

and no B cancels 2:2°%t.

EXAMPLE 2: Symmetric systems

a a2
A= y @12 = A21.
a1 —an
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In this case we have
d=0, D'=0, lan|<|d], |aw| =lan| <df], k=[]
and hence |tr(AB)|? < Ch for every smooth B. In particular, this shows that (1.2) is

verified for every B and hence Corollary 1.2 is available.

EXAMPLE 3: We give two examples for which (1.2) is a necessary and sufficient
condition for the C* well posedness of (C.P.) while the assumption in Corollary
1.2 is not necessarily verified. Let

. f(t,l‘) f(t,:c)—g(t,:c)
A= ("f(tvx)_g(tax) —f(ta'r) )
then it is clear that

h=g? d=if, a"=—g+if, D' =1i(g8,f — fO.g).

We take f, g so that C|f| > |g| and I'(gg) # I'(fs) for some ¢. Since

%p(m) = I'(gy) C I(fs)lx(c})

the assumption in Corollary 1.2 does not hold. On the other hand the same argu-
ment employed in the proof of Corollary 1.2 shows that (1.5) is verified. Then the
condition (1.2) is necessary and sufficient for C* well posedness of (C.P.).

Let
_(d(t,x) a(t,z
1= (5en “He)

and assume that A = d®> + ab > dd® in a neighborhood of the origin with some
positive constant § > 0. Note that a*(a + b)/2 + id and

3 1
Dt = %(aatb — bd.a) — 5(aBid — dBia — bdyd + dO,b).
It is easy to see that
a®b?, a*d®, b*d® < Chld"|?
in a neighborhood of the origin with some C' > 0 because
a® + b+ |ab| + &* < Cla*?, d* + |ab| < Ch

with some C' > 0 by the assumption. Then repeating the same argument as in
Corollary 1.2 we conclude that (1.5) holds and hence (1.2) is again necessary and
sufficient for C*° well posedness (a related result can be found in [9]).

EXAMPLE 4: Uniformly diagonalizable 2 x 2 hyperbolic systems with two indepen-

dent variables. Assume that for every (¢,z) near the origin there is a U(t, z) such
that

U(t,z) ' A(t,2)U(t, )
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becomes diagonal matrix and ||U(t, z)||, ||U(¢,z)7!|| < C with some C > 0 which is
independent of (¢,z) where ||U||> = tr(U'U). Let us denote AV = U™*AU = (af}).
Note that (see (3.1) below)

h 1 h 1 __ -
(@) = 5+ 214V 2 5 4+ ZC Al > Ot

On the other hand since AV is diagonal and tr(AY) = 0 we have |(aV)!|? = h. This
shows that
|a*|? < C*h.

Thus we have |c!|? < 2|a*|> < C’h and hence (1.5) holds as we have seen in the proof
of Corollary 1.2. On the other hand |a;;|* < 4|a*|? < C"h proves

[(tlaile) C Taile) C 5T(he), V6 € Fa(4).

Thus the conditions in Theorem 1.1 are satisfied.

EXAMPLE 5: A non symmetrizable strongly hyperbolic system. Let

A=¢m@(gé>.

In this case we have
a'" = (1 +1%)/2, & = ih(1 —1%)/2, D' = ip*t, h =t*p%
We note that
P(tfs) =T(t) + Lx(fe) C T([tf]o)
because ['(t) C ['(t4). Then remarking |ta;;|> < Ch, |tD*|> < Chla*|*> we see that
1 1
[(t[aijly) € T([tasls) C 5T(hy), T(tD§) € T([tD*y) C 5T((hla'[]y)

and hence the conditions in Theorem 1.4 are verified.

EXAMPLE 6: Some not strongly hyperbolic systems. Let

A=¢@@(gé).

For this A we have
a' = (1 +14)/2, ¢ = ip(1 —t*)/2, D' = 2it3y?, h = tiy?.

Since I‘(th,) C T([k|a%?]4)/2 is clear the condition (1.2) is necessary and sufficient
for the C*° well posedness of (C.P.). Denoting

bir  bio
B =
(b21 b22)
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the condition (1.2) is reduced to I'(¢[¥ba1]s) C T['(hy)/2. This is equivalent to
b21(0, IE) =0.

We now let

B a(z) a(z) + b(x)
A =(t,z) (_a(x) +b(z)  —a(x) ) '

It is clear that A = ?b(z)?, D' = 0 and hence (1.2) is necessary and sufficient for
the C* well posedness by Corollary 1.2. Since

tr(AB) = a(byy + bz — b1z — baa)th + b(bgy + bra)
the condition (1.2) is reduced to
P(tla(bir + b21 — biz — ba2)]s) C T'(bg), Vo € Fi(A).
Since b is independent of ¢ this is further reduced to

F(a(bll + b21 - b12 - b22)) C F(b)

3. Sketch of the proof of Theorem 1.1.

We now sketch our strategy to prove Theorem 1.1. Let

and study T~'LT which turns out to be 9, — A'9, + B! where

b(s. 2 i(a12 — a2)/2 (a12 + @21)/2 + tan
A (t’ ) ((012 + 6121)/2 —1an -i(al2 - (121)/2 )

_ <a§l(t,x) agﬁ(t,x) )

ay(t,z) —ay,(t, )
Note that a! = a!,, af = d},, ¢! = @}, and
(3.1) alpanh/2 +t1(A'A)/4, = (a},)’ + alpal, — lahy | + la, .
In particular, the first identity shows that, with AT = T-'A(z)T = (af(z))

|(a1)!| = lai,|

for every orthogonal matrix 7'. Moreover since h > 0, for any non singular S, there
is C = C(S) > 0 such that

(3-2) CMalal < 1(a3)] < Claj,.

It is clear from h(t,z) > 0 that



Lemma 3.1 We have

a%(z), laj,l 2 h.

IMN

I
A

|at{2| = lagl| 2 |at{1|, 4|a§2|2 > tr(A'A) =
tJ
In particular, aly(t,x) = 0 is equivalent to A(t,z) = O.

Let us set
M=0,+A"9, +C+~B'— A"

and study L!M where ©B" denotes the cofactor matrix of B! and A! = 9, A*. This
turns out

L'M = 9% —hd* + (A — A'C + tr(AB)I)d,
+(B'+ B+ C — AY)8, + L}(C + <B" — A!).
In fact taking B*A*— A BY = B A%< B¥A%) = tr(A*B*)I = tr(AB)I into account
the identity is easily seen. With C' = (¢;;) the coefficient A! — A'C +tr(AB) becomes

(3.3) atagl_atilcll —agzcm +tr(AB) 8ta§2—a§1c12—a'i2c22
Oraly +al e —dbyen —0,ak +at co— dbicra+tr(AB)

We determine c;; by
(3.4) Bty —alicro—alye =0, Bial 4+l co —alie =0
so that (3.3) will be diagonal. Then (3.3) becomes

Y(tax)/agl - c21h(t7x)/au21 0
( 0 Z(t,:zc)/ali2 - clzh(t,w)/a§2)

where
Y(t,z) = aum@,agl - aglataun + aumtr(AB),
Z(t,z) = —a§28ta§1 + a'ilatati2 + a22tr(AB).
We take ¢12 = 0 and ¢z; = 0 so that (3.4) implies
i = 8tau21/aﬂ21, C2 = atagz/agz-
We summarize:

Lemma 3.2 Let
M =0, + A%, — AL + °B' 4+ C

i #
C = diag (at?m, atfﬂlm) _

Ay Gy

with

Then one can write
L'M = 0? — hd? + Q0, + RO, + S

where

Q = diag ( );(t’”’”) : f(t’x) ) ,R=C—A' + B! + B!
ay(t,z) ajy(t,z)

and § = L¥(C) + L¥(*B" — AL).
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Here we remark that from a!, = @}, and a!, — @', it follows that

(3.5) Y = D' + d"tr(AB), Z = D'+ d*tr(AB)

(511 0 ) 0= (pu + attr(AB) 0 )
0 d B 0 D'+ a*r(AB) ) -

We also note that L#(C) has the form

LHC) = diag (3 (hahi/a ), 0 (Baly/aly))

. (a‘ilax (Baha/ahy)  alad. (Buala/aly) ) .\ pic

aglal‘ (atagl/agl) _aglafv (atatiz/agz)

and hence

We next get

Lemma 3.3 Let 3
M =0, + A%, + AL +°B' + C

C~' = —dlag <8ta§2, atagl) .

with

i #
aj; Ay

Then we have 3 ) 5
ML = 82 — hO — hy0; + QO: + RO, + S

where 7y
Q = diag (T’T)’ R=C+ AL+ B'+B, §=M(B).
a2 Qg

Note that h, = A% A" + A*A! and A*BY — B A" = tr(A*B")I = tr(AB)I. Then
to prove the assertion it is enough to repeat similar computations as in the proof of
Lemma 3.2. O

Here we note that

ad 0 5 D! + a*tr(AB) 0
(0 a“)Q—( 0 D”-}—aﬁtr(AB))'

To prove the necessity of the condition we construct an asymptotic solution Uy,
depending on a large parameter A, to the Cauchy problem for Lu,\, which results from
L* by a dilation of local coordinates such as (t,z) — (A7P¢, A7) with p, ¢ € Q.
We look for U, in the form Uy = M)V, where M is given in Lemma 3.2. That is,
we construct an asymptotic solution V) to Ltj\M AV ~ 0 which violates an a priori
estimate derived from well posed assumption of the Cauchy problem (C.P.) for L.
Here with L*M = 0? — hd? + Q0 + RO; + S we have

L My = X2 — X\¥hy\0% + NQ)8, + N’ Ryd; + Sh.

-~
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We must be careful when we treat the lower order terms because ), R and S are,
in general, no more smooth at the origin because of our choice of C' (see the form
L¥C) in (3.6) for example). Then singularities of @, R, S at the origin contribute
as a positive power of A, in the resulting functions @), Ry and S). A main point in
the proof of the necessity is that, with this choice of C, the existence of a desired
asymptotic solution depends upon the positive power of A in @), that is whether
diag(at, a")Q verifies the condition in Theorem 1.1 or not and independent of the
yielded positive powers of A in Ry and S).

Since the existence of analytic solutions with analytic data is assured by the
Cauchy -Kowalewski theorem, applying the usual limiting arguments, to prove the
sufficiency of the condition, it is enough to derive an a priori estimate of analytic
solution to L'u = f. Since u verifies

MLy = (82— hd 4+ (Q — hy)0y + RO, + S)u= Mf

we use this equation to get an a priori estimate, where M is given in Lemma re-
foneseven. One of main ideas is that we regard the zeros of h|a!|? as characteristics.
That is, we study not only the zeros of h but also those of a! which tells us precise
behaviors of v/h|a!| near the origin. According to the behavior of v/h|a!| we divide
a neighborhood of the origin into several subregions and we derive a weighted a
priori estimate in each subregion, where the weight is chosen taking the behavior
of vh|a!'| into account. A key observation to get a weighted a priori estimate is
that we can obtain a weighted estimate even when R and 5: are not smooth. More
precisely if t(z) is a zero of v/h|af| with respect to t and R = O((t — Ret(z))™?),
S = O((t — Ret(z))™?) as t — Ret(z) — 0, then we can obtain a weighted a pri-
ori estimate with weights (¢t — Ret(z))¥, N € Z in a subregion mentioned above if
diag(a", a!)Q verifies the condition in Theorem 1.1.

Combining a priori estimate in each subregion thus obtained, we get a priori
estimate in a full neighborhood of the origin.
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