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Journees Equations aux derivees partielles
Saint-Jean-de-Monts, 2-5 juin 1998
GDR 1151 (CNRS)

Hyperbolicity of two by two systems
with two independent variables

T. Nishitani

Abstract

We study the simplest system of partial differential equations: that is,
two equations of first order partial differential equation with two independent
variables with real analytic coefficients. We describe a necessary and sufficient
condition for the Cauchy problem to the system to be C infinity well posed.
The condition will be expressed by inclusion relations of the Newton polygons
of some scalar functions attached to the system. In particular, we can give a
characterization of the strongly hyperbolic systems which includes a fortiori
symmetrizable systems.

1. Results.

Let us consider
Lu = QfU — A(t^ x)9j;u + B(t^ x)u

where f, x 6 R and A(t^ x) is a 2 x 2 matrix valued real analytic real valued function
defined near the origin. We are concerned with the following Cauchy problem

(C.P.) Lu= f
u(t,x) = uo(x).

We say that the Cauchy problem (C.P.) is C°° well posed in a neighborhood of the
origin if there is a neighborhood W of the origin such that for any (£, x) G W and
any given uo(x) € C°°(W n {t = t}) and / € C°°(W) the problem (C.P.) has a C°°
solution in a neighborhood of (t^x\

After a change of local coordinates around the origin leaving the lines t =const.
invariant, we may assume that

A ( f ^- ̂ ll^) ^{t,x} \/U^ x ) — \ /.t \ /. \ j •\a^(t,x) -an(t,x)j

Let us denote h(t^x) — detA(t^x). It is well known that h(t^x) > 0 is necessary
for the Cauchy problem (C.P.) to be well posed in a neighborhood of the origin
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(Lax-Mizohata Theorem [3], [6]). Thus we assume h(t,x) ^ 0 in a neighborhood of
the origin throughout the paper.

Let us set

c" = i(ai2 - a2i)/2, a\a^ + a^)/2 + ia,^ D^ = c^a" - ̂ 9^.

Suppose that h(t^x) does not vanish identically. Then \a^\ does not vanish identi-
cally because h = j a ^ j 2 - \c^\2 and h(t, x) ^ 0 ( see Lemma 3.1 below). From the
Weierstrass preparation theorem h(t^x)\a^(t^x)\2 is written as

(1.1) h(t, x}\a\t, x)\2 = x2^ + ̂ (x)t2-1 + ... + <M^)W. ̂

where <^(0) = 0, £'(0,0) 7^ 0 and hence factorized as

2r

^^)|a«(f^)|2 = ̂ n^ -t^W^x)
j=i

where fj(.z:) has a Puiseux expansion

tA^=^C^±x)k^, 0<±x<8,
k>0

with some p j G N. We set

.F±(A) = {Refi(^),...,Re<2r(^), ±.z- > 0}.

I f r = O w e p u t . T ± ( A ) = { 0 } .
Let f ( t ^ x ) be real analytic near the origin and <^>± G ^(A). We set

/^(<^)=A<+^(^)^)
and define the Newton polygon F ( f ^ ) of f ^ at (0,±0) as follows. For sufficiently
small |*r|, ±a* > 0 we have

U^)=Y,^t\±xyi^
i,j>0

with some p± € N then set

r(/^) = convex hull of { J (zj/p±) + R^.}.
a^O

We define F ( f ^ ) = 0 if and only if / vanishes identically.

Theorem 1.1 In order that the Cauchy problem (C.P.) is C00 well posed in a neigh-
borhood of the origin, it is necessary and sufficient that

IW + ahr(AB)}^ C Jr([/^|2]^), V^€^±(A),

r(<[Z)« + a«tr(AB)V C |T(Ha»|̂ ), V<^e^±(A)

wAere B denotes the complex conjugate of B and trA denotes the trace of A.
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From Theorem 1.1 and [8, Theorem 1.1] it follows that the well posedness of the
Cauchy problem (C.P.) is equivalent to the well posedness of the Cauchy problems
for the following second order scalar operators:

^2 - h\a^Q^ + (^ + ahr{AB))9^

9^-h\a^+(D^+ahv(AB))9^

Corollary 1.2 Assume that D^ = 0 or \c^\2 < Ch with some C > 0 near the origin.
Then for the Cauchy problem (C.P.) to be C°° well posed in a neighborhood of the
origin, it is necessary and sufficient that

(1.2) r(t[tr(AB)}^ C Jr(/4), V<^> € ^(A).

In particular, the Cauchy problem (C.P.) is C°° well posed if B = 0.

If D^ = 0 then both the conditions in Theorem 1.1 are reduced to

(1.3) r{t[ahv{AB)]^ c Jr([/^|2]^ v<^> e ̂ (A).

By the definition, it is easy to check that the condition (1.2) is equivalent to (1.3).
We now suppose that \c^\2 < Ch with some C > 0 and D^ does not vanish identically.
Then it is clear that
(i-4) r(4)cjr(/4), <^e^(A).
Since r(<[^c^) = r(^c^) C r±(<^) we have

r(t[aW}^ = r(a^ + rwA) c r(^) + r(c;)
cjn^pv+jr^) = |r([/̂ |2],).

A similar argument shows that F^c^a^) C r^la^2]^)^ and hence

(i-5) r(^) c ̂ r([h\a^ v^ e ̂ (A).

Thus both the conditions in Theorem 1.1 are reduced to (1.3) and the rest of the
proof is clear. Q

REMARK 1.1: Let us consider a second order scalar equation with two independent
variables:

Pv = 9^v - a(t, x)9^v + b(t, x)9^v = /.

With u1 = 9xV^ u11 = 9tV and u = t(uI^ u11) the equation is reduced to the following
2 x 2 system:

T ^ f° ^ , f° °\ f°\
^=^-^ oj^^^ oJ^^J-
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It is clear that a^ = (1 + a)/2, Z^ == i^a/2 and A = a. Since ^(0,0) 7^ O, the set
y±(A) coincides with that defined in [8] for the scalar operator P. On the other
hand from

r(t[W = r(t9^ c r(^) c ji^)
the condition (1.4) is verified. Thus the conditions in Theorem 1.1 are reduced to

r(^[tr(AB)V = r(^) c |r(a^), v<^> e ̂ ±(A).
This is exactly the same condition obtained in [8, Theorem 1.1].

Corollary 1.3 Assume that h(t^x) vanishes identically. Then in order that the
Cauchy problem (C.P.) is C°° well posed in a neighborhood of the origin^ it is nec-
essary and sufficient that

D^ + ahv(AB) =E 0, D^ + ahr(AB) = 0.

In the case h vanishes identically, a necessary and sufficient condition for the
well posedness of (C.P.) was obtained in [4] 5 [5] and in [10]. See also [2] and the
references given there. We examine that the conditions given in Corollary 1.3 are
equivalent to that obtained in [10]. Since A2 = 0 one can write

^ _ ( K a p Ka2 \
A-{-Kp2 - K a p )

where (T and p are relatively prime. It is clear that c11 = iK(a2 + p2)^ and a^ =
K(a2 - p2)/^ + iKap. It is not difficult to check that D" = K(p9tcr - aQtp}a^. Let

B - ( ^ ^B-^ b l ) -

Since tr(AB) = K^a2 - b\p2 + {b[ - b^ap] it follows that

Z?" + ahv{AB) = a^K[p9ta - a9tp + b^a2 - b\p1 + (b\ - b^ap}.

Thus the conditions given in Corollary 1.3 are equivalent to

p9t<r - a^P + b\a1 - h\p2 + {b[ - b^ap = 0

which is exactly the Levi condition obtained in [10].
We turn to strong hyperbolicity. We say that L is strongly hyperbolic near

the origin if the Cauchy problem (C.P.) is C°° well posed near the origin for all
B(t,x)GC°°.

Theorem 1.4 For L to be strongly hyperbolic near the origin it is necessary and
sufficient that

^D\} C ̂ ([h\a^ r(<[a,^) C ^F(^), V<^> € ^±(A).

«•<»

X-4



REMARK 1.2: Let
A - ( tx ^-x2
A- [t^x4 ^tx

Then the second condition of Theorem 1.4 is verified while the first condition is
not. This example shows that in order that L is strongly hyperbolic the strong
hyperbolicity of the second order scalar operators

9^-h(t,x)9^+aij{t,x)9^

is necessary but not sufficient.

2. Examples.

In this section we give several examples to explain Theorem 1.1.

EXAMPLE 1: We give an example of A with h(t^x) > 0 outside t = 0 for which no
B(t^x) could be taken so that (C.P.) is well posed (such an example was given in
[4, Example 5] for the first time when h vanishes identically and was called "stably
non hyperbolic" operator there). Let

/ x2 - ̂ /2 x2 + xt2 \
A^ ^_^^2 _^_^^y

It is easy to see that

h = t8/^ c« = ix\ a« = xt2 + i(x2 - ̂ /2), ^ = 2^ + 2x2t3.

Suppose that B(t^x) = (bij(t^x)) is given. It is easy to check that ahr(AB) has the
form

C40X4 + C^t2 + C24X2t4 + CiQXt6 + Cost8

where d j ( t ^ x ) is a linear combination of bij(t^x). On the other hand we have

h\a^\2 = t\x4 + ̂ /4)/4 = x ^ / A + ̂ /IG.

Taking (j> = 0 we easily see that

r(f[Z}"+Ar(AB)])^jr([^|a«|2])

for any B because D^ + ahr(AB) has the form

2^at3f + 2^3 + C4ox4 + C^xh2 + C^t4 + C^xt6 + Cost8

and no B cancels 2ix3t.

EXAMPLE 2: Symmetric systems

A ( a\\ ^12 ^
A = { j , ^12 = ^21-

\^21 -^11 /
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In this case we have

c « = 0 , 7^==0 , |an| < |a"|, \a^\ = |a2i| < |a^ h = \a^\2

and hence |tr(A£?)|2 < Ch for every smooth B. In particular, this shows that (1.2) is
verified for every B and hence Corollary 1.2 is available.

EXAMPLE 3: We give two examples for which (1.2) is a necessary and sufficient
condition for the C°° well posedness of (C.P.) while the assumption in Corollary
1.2 is not necessarily verified. Let

A==
f(t,x) f(t,x)-g(t,x)\

^f(t,x)-g(t,x) -f(t,x) )

then it is clear that

h = g\ c» = i f , a» = -(7 + i f , D^ = i(g9if - /^).

We take /, g so that C\f\ > \g\ and F(^) ^ r(/^) for some (/>. Since

jr(^) = r(^) c r(^)r±(4)
the assumption in Corollary 1.2 does not hold. On the other hand the same argu-
ment employed in the proof of Corollary 1.2 shows that (1.5) is verified. Then the
condition (1.2) is necessary and sufficient for C°° well posedness of (C.P.).

Let
_ ( d(t,x) a(t,x) \

^-^{b^x) -d(t,x)}

and assume that h = d2 + ab >, 8d2 in a neighborhood of the origin with some
positive constant S > 0. Note that a^(a + 6)/2 + id and

D" == ^(aQtb - b9ta) - \a9td - d^a - W + W).
Li Lt

It is easy to see that
a^2, aY, 62^ ^ ChW

in a neighborhood of the origin with some C > 0 because

^ + b2 + \ah\ + d2 < C\a^\\ d2 + \ab\ < Ch

with some C > 0 by the assumption. Then repeating the same argument as in
Corollary 1.2 we conclude that (1.5) holds and hence (1.2) is again necessary and
sufficient for C°° well posedness (a related result can be found in [9]).

EXAMPLE 4: Uniformly diagonalizable 2 x 2 hyperbolic systems with two indepen-
dent variables. Assume that for every (t,x) near the origin there is a U(t,x) such
that

£/(^)-1A(^)[/(^)
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becomes diagonal matrix and ||(7(^;r)||, \\U(t^x) 1^ < C with some C > 0 which is
independent of (t,x) where ||(7||2 = tr(TO). Let us denote Au = U-^AU = (ag).
Note that (see (3.1) below)

iwr = \ +}\\AU\\2 > 1 + ̂ c-w ^ c-w.
On the other hand since A° is diagonal and t^A^) = 0 we have K^^)^2 = h. This
shows that

l^l2 ^ G4/^.

Thus we have \c^\2 < 2\a^\2 <, C'h and hence (1.5) holds as we have seen in the proof
of Corollary 1.2. On the other hand |%-|2 < 4\a^\2 < C^h proves

im-]^) c r([a^) c |r(^), v^> e ^±(A).
Thus the conditions in Theorem 1.1 are satisfied.

EXAMPLE 5: A non symmetrizable strongly hyperbolic system. Let

A=^x)(° 1).
V u/

In this case we have

a» = ^(1 + ^)/2, c" = ^(1 - ̂ )/2, D» = i^t, h = <2^2.

We note that
r(^) = r(f) + r±(^) c r([y]^)

because T(t) C r(4). Then remarking |<G,j|2 ^ G/i, IfZ)11!2 ^ Ch\a^\2 we see that

r(<[a^]^) c r([^) c jr(^), r(<^) c r([^^) c |r(^|a«|2]^)
and hence the conditions in Theorem 1.4 are verified.

EXAMPLE 6: Some not strongly hyperbolic systems. Let

A=^x)(° 1).
V u/

For this A we have

a« = ^(1 + f4)/2, c» = i^(l - ̂ )/2, D^ = 2^2, /^ = <V.

Since r(<£)^) C ^([^|aa|2]^)/2 is clear the condition (1.2) is necessary and sufficient
for the C°° well posedness of (C.P.). Denoting

g ^ /&n b^2\
\ &21 &22 /
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the condition (1.2) is reduced to Y{t[^b^) C F(/^)/2. This is equivalent to
621 (0, x) =0.

We now let
A - z h ( t x } ( a(x) a(x)+b(x)\A-^x)^_^^_^ _^ y

It is clear that h == ^(a-)2, D* = 0 and hence (1.2) is necessary and sufficient for
the C°° well posedness by Corollary 1.2. Since

tr(Afi) = a(6n + 621 - 6i2 - ̂ 22)^ + b(b^i + 612)^

the condition (1.2) is reduced to

r(<[a(&n + 621 - &i2 - 622)]^) c r(^), v<^ e ^±{A).
Since 6 is independent of t this is further reduced to

r(a(&n + 621 - &i2 - 622)) c r(&).

3. Sketch of the proof of Theorem 1.1.

We now sketch our strategy to prove Theorem 1.1. Let

T = ( 1 ^{i l )

and study T^LT which turns out to be <9< - A^a. + B^ where

AHt x} ( ^("iz-^i)^ (ai2+a2i)/2+zan\
' ' / V(Gl2+G2l)/2-mn -?'(ai2 - G2l)/2 )

^ (Al^^} ^12(^a•) ^
\a^x) -a^x)j-

Note that a11 = a^, a" = a^, c11 = a^i and

(3.1) a^h/2 + t^A^A)/^ ^ = (ai02 + a} ,̂ - \a\,\2 + \a\^.

In particular, the first identity shows that, with A7' = T^A^T = {aj'-^x))

W\ = |a;,|

for every orthogonal matrix T. Moreover since h >_ 0, for any non singular 5', there
is C = C(S) > 0 such that

(s-2) ^-Ul ̂  l(«i2)"l 5; q<4l.
It is clear from h(t, x) ;> 0 that
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Lemma 3.1 We have
2

\^\ =l4il^U 4|a^^>tr(A<A)=^a^), |a^|2 > h.
i'J=i

7n particular, a\^(t^x) = 0 z'5 equivalent to A(t^x) = 0.

Let us set
M = 9t + A"<9, + C + ̂  - Al

and study Z^M where ^B^ denotes the cofactor matrix of B^ and A| = 9^A^ This
turns out

I}M = 9^ - h9^ + {A\ - A^C + tr(AB)/)<^
+(^ + ̂ ^ + C - A^)9t + L\C + ̂  - A^).

In fact taking B^A^-A^°B^ = B^A^+'^^A") = t^A^B^J = tr(AB)J into account
the identity is easily seen. With C = (c^-) the coefficient A^—A^C'+ti^AB) becomes

(33} (^ta^~a^cll -^L^i+t^AB) 9ta^- a\^ -a\^ \
\ 9t^+a^C2i-a^c^ -Qta\^a\^~ a^c^+t^AB)}'

We determine Cij by

(3.4) 9ta\^ - a^ci2 - a\^2 = 0, ^4i + a\^ - a^Cn == 0

so that (3.3) will be diagonal. Then (3.3) becomes

/ Y(t, x)/a^ - C2ih{t, x)/a^ 0 \
\ 0 Z{t, x)/a^ - c^h{t, x)/a{^ )

where

Y(t, x) = 4i^a^ - <4i<9<4i + 4itr(AB),
Z{t, x) = -a\^Qta\^ + a^^a^ + a^tr(AB).

We take €12 = 0 and €21 = 0 so that (3.4) implies

di = OfO^/a^^ C22 = 9 f a ^ / a ^ .

We summarize:

Lemma 3.2 Let
M == 9t + A^ - A" + ̂  + C

with
n A- /^4i Qt^}C=^g[——————].

021 0^2

Tfeen one can wnfe
I}M = ^2 - /^^ + QQx +R9t+S

where

<?=d,ag(^,, 4^), K=C-4+B«+~B«
\a2i(<,a;) "12^1a')/

a^5=£«(C)+£«(COB ) )-Al).
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Here we remark that from a\^ = c^ and a\^ — a\^ it follows that

(3.5) Y = Z?" + ahr(AB), Z = £>» + a»tr(AB)

and hence _ _________
(^ 0 \ /£>»+G«tr(AB) 0 ^
\0 ""V Y 0 Z)»+G«tr(AB)^-

We also note that •Z^(C') has the form

L\C} = diag (9t (c^/G;,) , 5, (c^/c^))

/G;^(^4A4) a^(^4/G^) \ ^
+ \a\^ (<9,G^A4) -a^^ (^G^/cL) + B c'

We next get

Lemma 3.3 Let

with

Then we have

where

M = 9t + A^ + A^ + c0^ + C

G=-diagf^,^»
\ n" n"012 a^

ML^ = <9,2 - /^^ - /̂ <9, + Q9. + ̂  + S

f Z Y \
Q = diag l————\R=c+A^+B^+ ̂ B^ S = M(^).

\^12 ^21 /

Note that ̂  = A^A" + A^l and A^B^ - ̂ B^A^ = tr(AW)/ = tr(AB)/. Then
to prove the assertion it is enough to repeat similar computations as in the proof of
Lemma 3.2. Q

Here we note that

(a^ 0 \^^ /D»+a«tr (AB) 0 \
\0 a^)^ \ 0 D^+ah^AB))9

To prove the necessity of the condition we construct an asymptotic solution U\,
depending on a large parameter A, to the Cauchy problem for L\, which results from
L^ by a dilation of local coordinates such as (t,x) ̂  (A'^A"^) with p, q G Q+.
We look for U\ in the form U\ = M\V\ where M is given in Lemma 3.2. That is,
we construct an asymptotic solution V\ to L\M\V\ ^ 0 which violates an a priori
estimate derived from well posed assumption of the Cauchy problem (C.R) for L.
Here with L^M = Q2, - h92^ + Q9^ + R9, + S we have

L[M, = \2^ ̂  X^h^l + ̂ Q^ + ̂ R^Qi + S^
•\
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We must be careful when we treat the lower order terms because Q, R and S are,
in general, no more smooth at the origin because of our choice of C (see the form
L^(C} in (3.6) for example). Then singularities of Q, R, S at the origin contribute
as a positive power of A, in the resulting functions Q\, R\ and S\. A main point in
the proof of the necessity is that, with this choice of (7, the existence of a desired
asymptotic solution depends upon the positive power of A in Q\, that is whether
diag(aa,ay)(5 verifies the condition in Theorem 1.1 or not and independent of the
yielded positive powers of X in R\ and S\.

Since the existence of analytic solutions with analytic data is assured by the
Cauchy -Kowalewski theorem, applying the usual limiting arguments, to prove the
sufficiency of the condition, it is enough to derive an a priori estimate of analytic
solution to L^u = /. Since u verifies

Ml}u = (9^ - h92, +(Q- h^ + R9t + S)u = Mf

we use this equation to get an a priori estimate, where M is given in Lemma re-
foneseven. One of main ideas is that we regard the zeros of h\a^\2 as characteristics.
That is, we study not only the zeros of h but also those of a^ which tells us precise
behaviors of v^a^l near the origin. According to the behavior of V^l^l we divide
a neighborhood of the origin into several subregions and we derive a weighted a
priori estimate in each subregion, where the weight is chosen taking the behavior
of v^|^| into account. A key observation to get a weighted a priori estimate is
that we can obtain a weighted estimate even when R and S are not smooth. More
precisely if t(x) is a zero of V^a^l with respect to t and R = 0((t — Ret(x))~1),
S = 0((t — Ret(x))^2) as t — Ret(x) -> 0, then we can obtain a weighted a pri-
ori estimate with weights (t — Re^.r))^, N G Z in a subregion mentioned above if
diag(at},ay)Q verifies the condition in Theorem 1.1.

Combining a priori estimate in each subregion thus obtained, we get a priori
estimate in a full neighborhood of the origin.
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