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Abstract

I shall discuss joint work with John L. Lewis on the solvability of bound-
ary value problems for the heat equation in non-cylindrical (i.e., time-varying)
domains, whose boundaries are in some sense minimally smooth in both space
and time. The emphasis will be on the Neumann problem with data in L?.
A somewhat surprising feature of our results is that, in contrast to the cylin-
drical case, the optimal results hold when p = 2, with the situation getting
progressively worse as p approaches 1. In particular, in our setting, the Neu-
mann problem fails to be solvable when the data is taken to belong to the
Hardy space H!.

1. Introduction.

In this note, we briefly discuss recent work on the Neumann and regularity problems
for the heat equation in certain non-smooth, time-varying domains. We shall only
state our results, and describe some related history. Details of the proofs will appear
elsewhere. The class of domains which we consider are those given by the region
above a time-varying graph:

(1.1) Q= {(zo,z,t) E Rx R xR : 9> A(z,t)}.
Here, A is Lipschitz in z, uniformly in time, i.e.,

(1.2) sup |A(z,1) — A(z + h, t)| < Bolh],

z,l

for some By < oo; furthermore, A satisfies a certain half-order smoothness condition
in t, which we shall now describe. Following Fabes and Riviere [FR], we define the
half-order time derivative

(13) D=7 (5 —A>—%;
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that is, on the Fourier transform side,

DaA)(¢7) =c A(g,T),

-
VIEPR —ar

where, obviously, £ and 7 denote the Fourier transform variables in space and time,
respectively. We shall assume that

where the parabolic BMO norm is, as usual, defined by

1
b *:sup——/ b(z) — bp|d-=.
1o} = su Bl /. |b(z) — bs|
Here B denotes an arbitrary parabolic ball
B={zeR": |z -zl <r},

and, for non-zero z = (z,t) € R", the parabolic norm ||z|| = ||(z, )| is defined to
be the unique positive solution p of the equation

— 4+ =1

P pt
It is well known, and easy to verify, that
(=, )l = [=] + [¢]2,
and that
I(rz, r?2)|| = rll(=, ¢)lI.

We remark that by an argument of Strichartz [Stz], the conditions (1.2) and (1.4)
imply, and are slightly stronger than, the following Lip, ;/, condition in (z,t) :

(1.5) sup |A(z,t) — A(z + h,t)| + sup |A(z,t) — A(z,t + R*)| < C(Bo + B1)|R].

We also note that, together, (1.2) and (1.4) are equivalent to the L? boundedness of
the parabolic Calderon commutator [(Z — Delta)'/?, A] (see [H]).

Having defined the class of domains which we shall consider, we are now in a
position to define the parabolic Sobolev spaces on 952, in which spaces we shall take
our boundary data. For each fixed ¢, let §2; denote the cross-section

Q= {(z0,z) e Rx R™ ' : 29 > A(z, 1)}

By (1.2), € is a Lipschitz domain with Lipschitz constant no larger than 8,. We
define do; to be the usual surface measure on the Lipschitz graph 95, i.e., in graph
co-ordinates,

do; = \/1 + |V, A(z,t)|dz.

o~
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We then define “surface measure” do on 0f) as
do = do,dt.

The parabolic Sobolev spaces L{ | ,,(R") are given by L7, ,(R") = (2 - A)_1/2 (LP(R™)),

at least for 1 < p < n+1 (in this paper, p will always lie in this range, and, typically
p < 2). By parabolic singular integral theory (see [FR]),

1y | ey = IVefllr@en) + [Dn fllze @)
Since A is Lipschitz, in graph co-ordinates
do(z,t) = doy(z)dt = dzdt;

thus, we can naturally define (following [FR]) L? , (9Q2) by setting

1
2

”f”L‘;’,%(aQ) = ”f”L‘l’y%(R")

where f(z,t) = f(A(z,1),z,1).

In this paper, we consider the regularity problem

Au — %—1: =0 in Q
(1.6) R, ulsa = f € Li%(aﬂ)

N.(Vu) € L*(09),
and the Neumann problem

Au — % =0 in
(1.7) Ny § Sxloa = f € LP(89)
N.(Vu) € LP(09),

where for any given point (P,t) € 012, 5% denotes differentiation in the direction of

the outer unit normal to 9€); at the point P.
Here N, is the parabolic non-tangential maximal operator

N(F)(A(2,1),2,1) = sup |F(yo, v, 5),
and I' = I'(A(z,t),z,t) is the parabolic cone

I'={(y0,9,9) : l(z — y,t — 9)|| < p(yo — A(z,1))}

It is not hard to see that for y small enough, depending only on 3, and 3; in (1.2)
and (1.4), one has that ['(A(z,t),z,t) C §, at every point (A(z,t),z,t) € I.
Indeed, the non-tangential accessibility follows easily from (1.5).

Our results are the following:
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Theorem 1.1. Given a domain  as in (1.1), which satisfies (1.2) and (1.4), then
d po > 1 such that the regularity problem R, is uniquely solvable in the range 1 <
p < po. Here py can be taken to depend only on By, £, and the dimension n.

Theorem 1.2. Let ) be a domain of the type considered in the previous Theorem.
Then, given p € (1,2], there ezists €, = €(n,p, o), with ¢, = 0 as p — 1, such that
the Neumann problem N, is uniquely solvable whenever, in addition, we assume that
the constant By in (1.4) satisfies B1 < €,. Furthermore, there exist counterezamples
(with By = 0) which show that the assumption €, — 0 as p — 1, cannot, in general,
be relazed. In particular, it is impossible, in general, to obtain L bounds for N.(Vu),
when the Neumann data lies in the Hardy space H'(0N).

We remark that the domains in the counterexamples alluded to in the second
theorem, are given by the region outside of a half-order “cusp.” The key observation
is that, when the domain is completely flat in the space variable, the Neumann and
Dirichlet problems become essentially equivalent. We also note that, by standard
functional analysis arguments, Theorem 1.2 extends to the case p < 2+ 4, § =
8(n, B1). The case p = 2 has already appeared in [HL].

To put these results into context, let us review a bit of recent history. The class
of domains which we consider here was introduced by the second author (Lewis)
and M. Murray in [LM], albeit with a slightly different, but in retrospect equivalent,
formulation of condition (1.4). In [LM], the following result was proved.

Theorem 1.3. Given a domain ) as in Theorem 1.1, there ezists a go < 00 such
that the adjoint Dirichlet problem (D,) (defined below) is uniquely solvable in the
range qo < q < 00. Here qo can be taken to depend only on (o, $1 and dimension.

The adjoint Dirichlet problem (D) entails finding a solution v to the following
problem:
Av+ 3 =0 in
Dg { vlsa = f € L4(0Q)
N.v € LI(0%)

(Remark—by the change of variable ¢ — —t, it is equivalent to solve D;). The
exponents p and ¢ in Theorems 1.1 and 1.3, respectively, are dual to each other, i.e.
’1—, + % = 1. Indeed, our proof of Theorem 1.1 is based on a technique introduced by
Verchota [V] in the case of harmonic functions in a Lipschitz domain, and depends
on showing that the solvability of D] implies that of R, %-}-l = 1. To do the latter is
a fairly straightforward matter of adapting Verchota’s proofq to our situation, except
that we need to handle some bad terms which arise as a consequence of the non-
cylindrical nature of our domains. We remark that the converse to Theorem 1.1
(namely that R, — Dy) is easy, and has been noted in [HL]. Furthermore, in [HL] it
is shown that Theorem 1.1 is optimal, in the sense that even when (3, = 0 (i.e., the
case that A(z,t) = A(t)), one can construct a class of domains for which solvability
of R,, for any given p > 1, can be made to fail by taking (3, large enough. I.e.,
one can never hope to fix a p for which R, holds in all domains § of the type
considered here: to do so, one must impose some restriction on the size of 3;. An
optimal theorem of the latter sort was proved in [HL]; namely that R,,and also

VI-4



N, (as mentioned above) and D,, hold for domains of the type considered here for
arbitrary (o < oo, if f; is small enough depending only on (3, and dimension.

The results of [LM] and [HL] were thus extensions to the non-cylindrical case
of work of Fabes and Salsa [FS] and R. Brown [Brl], [Br2], who had proved that
if /i = 0 (i.e. A(z,t) = A(z)), then one has solvability of D; ([FS]), and R,
and the L? Neumann problem ([Brl,2]), in the optimal ranges 2 — § < ¢ < oo,
1 < p < 2+4. Given these theorems in the cylindrical case, and also the prior
work in the harmonic case of Verchota [V], and of Dahlberg and Kenig [DK], it had
been a reasonable conjecture that R, and also the L? Neumann problem, should be
solvable for p in the dual range to that of Theorem 1.3; Theorem 1.1 states that this
is indeed true for R,. What is surprising though, is that in contrast to [Br2] and
[DK], this is not at all the case for the Neumann problem, as the counterexamples
of Theorem 1.2 demonstrate. An interesting feature of the theory in non-cylindrical
domains, then, is the dichotomy between the regularity and Neumann problems.

In the next section, we conclude the paper by briefly sketching some ideas of the
proof of Theorem 1.2, which is significantly more difficult than that of Theorem 1.8.

Acknowledgements The first author thanks Carlos Kenig for several help-
ful conversations regarding these (and related) questions, and particularly for the
suggestion that we might try to prove Theorem 1.1 by using the method of [V].

2. Outline of the Proof of Theorem 1.9.

As we have mentioned above, there is no H! theory for the Neumann problem in
this setting. Thus, one cannot apply directly the techniques introduced by Dahlberg
and Kenig [DK] in the context of harmonic functions in Lipschitz domains, which
techniques were subsequently extended to the case of the heat equation in cylindrical
domains by R. Brown [Br2], and to the case of divergence form elliptic operators
with L* coeflicients, by Kenig and Pipher (see the exposition in [K]). Nonetheless,
those techniques will be of use to us, in proving estimates for solutions to a certain
auxiliary equation.

The idea is as follows. We define a parabolic approximate identity

P,\f(.’ll,t) @A*fxt)

= ([ ( , s)f(y,s>dyds,

where d = n+1 is the homogeneous dimension of parabolic R", and where ¢ € C§°,
suppy C B1(0) (the unit ball), ¢ > 0, ¢ is even and [¢ = 1. Next, we choose a
small (fixed) constant v > 0, depending only on the constant C(8y + (1) in (1.5),
such that for all (z,t) € R™,

1 0
- < <
5 = 1 a/\ .7,\A(SL' t) 3/2

Consider the Dahlberg-Kenig-Stein mapping

p(X,2,1) = (A + PpA(z,1), 2, 1),

VI-5



which defines a 1 — 1 mapping of the half-space R}t = {(A,z,t) = A > 0,(z,t) €
R"} onto {2, and furthermore p : IR} — 90. We remark that this mapping
appeared first in a paper of Dahlberg [D] (although this explicit construction was
due to Kenig and Stein), and has recently proven useful in our work on the L?
versions of these theorems [HL], as well as in work of Dahlberg, Kenig, Pipher and
Verchota on square function estimates for constant coefficient elliptic equations and
systems in Lipschitz domains.

If u is a solution of the heat equation in €2, then the “pullback” v = uopisa
solution, in the half-space, of a divergence form parabolic equation

div(a(A, z,t)Vv — (1 + €(A, z, t))%;i +B(\,z,t)- Vo = 0,
where
IB(\,z,t)| < CA7!
and

IB(\, z,t)|?2\d)\dzdt

is a parabolic Carleson measure (with small norm, since 3 is small). It turns out that
this singular lower order term causes the difficulties near p = 1; indeed, dropping the
drift term, we obtain an operator to which the Dahlberg-Kenig-Pipher H' techniques
‘can be applied. We then view our original operator (or rather it’s pullback) as a
perturbation of the one without the drift term. Since the error is controlled by a
Carleson measure with small norm, we can adapt the perturbation techniques for
the Neumann problem, developed for elliptic divergence form operators by Kenig
and Pipher (an exposition of their method may be found in [K]).
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