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Saint-Jean-de-Monts, 2-5 juin 1998
GDR 1151 (CNRS)

Large time behaviour of heat kernels on
Riemannian manifolds: fast and slow decays

Thierry Coulhon

Abstract

Upper and lower estimates on the rate of decay of the heat kernel on a
complete non-compact Riemannian manifold have recently been obtained in
terms of the geometry at infinity of the manifold, more precisely in terms of
a kind of L2 isoperimetric profile. We shall give an outline of these results
and show how they can give some partial answers to the following question:
given the volume growth of a manifold, e.g. polynomial or exponential, how
fast and how slow can the heat kernel decay be? The connection between the
volume growth and the L2 isoperimetric profile will be made through Poincare
type inequalities. A large part of the material presented here is the result of
a joint work with A. Grigory'an.

1. Introduction.

Let M be a complete, connected, non-compact Riemannian manifold, and A the
Laplace-Beltrami operator on M. For y 6 M, denote by p<(., y ) the smallest positive
fundamental solution with initial value Sy of the heat equation

9uft^"'
Since pt{x^y) is the kernel of the heat semi-group e^, t > 0, it is called the heat
kernel.

Whereas for small time t > 0, pi{x^x) is comparable with <~71/2, where n is the
topological dimension of M, it is clear that the large time behaviour ofsup^^pt(a*, re),
or pt(x^x)^ for fixed x 6 M, should depend on the geometry at infinity of M.

More precisely, we shall see in §2 below that the on-diagonal heat kernel be-
haviour is controled from above and below by an L2 isoperimetric profile. This
relies on the conjunction of two results: on the one hand, an upper bound on the
heat kernel decay is equivalent to a so-called Faber-Krahn inequality, that says that
the AI of sets dominates a decreasing function of their volume. On the other hand, if

Thanks are due to Sasha Grigor'yan for remarks on the manuscript of this note
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this inequality is optimal (we then say that an anti-Faber-Krahn inequality holds),
the corresponding lower bound on the heat kernel follows.

One may well consider that the most basic geometric information about a non-
compact manifold is its volume growth, and ask about its connection with the heat
kernel behaviour. By the above results, this means that one has to relate the L2

isoperimetric profile to the volume growth. This connection is certainly loose: one
can easily imagine manifolds with a large volume growth, but that shrink from place
to place, so that the heat diffusion is relatively slow.

Therefore the first question which makes sense is to ask for the kind of ingredient
that allows to go from, say, a volume lower bound, to a good upper bound on the
L2 isoperimetric profile, which will in turn give a good upper bound for the heat
kernel. For instance, on a manifold such that V(a-,r) > cr^, r > 0 (here V{x^r)
is the Riemannian volume of the geodesic ball of center x 6 M and radius r > 0),
when can one say that s u p ^ ^ f p f ( x ^ x ) < C'f"^2, t > O? We shall see in §3.1 that
the so-called pseudo-Poincare inequalities provide such a tight connection between
the volume growth and the heat kernel decay. They express a certain homogeneity
of the geometry, and they hold on Lie groups, on manifolds with non-negative Ricci
curvature, but they certainly do not hold in general.

The second question that arises naturally is therefore: what one can say about
the heat kernel behaviour if the only information one has is in terms of volume
growth? Consider, say, the class of manifolds

cr0 <V(x,r) ̂ Cr0, r ^ 1.

What is the range of possible large time behaviours for sup^^p^.a*)? If one has
a uniform upper and lower bound on the volume growth, one can get a relaxed
pseudo-Poincare inequality. Together with the volume lower bound, it implies an
upper estimate on the L2 isoperimetric profile, hence, again, an upper bound on the
heat kernel decay. Applying the anti-Faber-Krahn inequality technology, one can
then build manifolds where the heat kernel decay is that slow, or almost.

We shall not give here complete references, nor give an historical account of the
subject. For this, see for example [7] and [17].

Note finally that Riemannian geometry is nothing but a convenient setting to
present the interaction between the behaviour of solutions of an evolution equation
and the geometry of the underlying space. A similar analysis can be performed
for subelliptic second order operators on a manifold. A parallel theory can also be
developed for random walks on graphs, see the survey [8].

2. Heat kernels and L2 isoperimetric profile.

2.1 Profiles
Let IC(M) be the set of smooth relatively compact domains in M and, for ^ 6 /C(M),
let Lip(n) be the space of Lipschitz functions with support in M. Denote by |n|
the Riemannian volume of H. For 1 ̂  p <^ +00, define

^(y)=sup^-^-;/€ Lip(Q)\{0}, Q€/C(M)JO|=t ; l .
<»s

11-2



In other terms, (pp is the smallest function y such that the following Faber-Krahn
inequality holds:

TO ll/llp^(|^l)|||v/|||,,v/e Lip(n),
for every Q € ^C(M). These inequalities where introduced in [5] and [4], see also [I],
§10.3.

In particular, y»i is what is sometimes called the isoperimetric profile of M, i.e.
the smallest non-decreasing function such that

1^1 .1—
-TTnTV ^ W'^(M) - ' "

for every H 6 /C(M). This is an easy consequence of the co-area formula.
Also, (^oo is the inverse of the volume growth function mfseM V{^', ̂ )-, i-e.

y^(v) = inf{r > 0; V(x,r) >, v, 1 x € M},

where V(x^ r) is the Riemannian volume of the geodesic ball B(x^ r) of center x G M
and radius r > 0. This was proved in [5] 5 p. 89, in a particular case, but the proof
adapts easily.

For 1 < p < +00, <fp is relevant to questions concerning the p-Laplace operator,
see [14], §3.3.

Using Holder's inequality, one checks easily that, for l < p < g < + o o ,

Vq(v) < Cp^p(v).

In some sense, the smaller p is, the more information is contained in (pp. For exam-
ple, the fact that y?i dominates y^ means, in view of Theorem 2.3 below, that the
isoperimetric inequality controls from above the heat kernel decay.

The converse is false: for every e > 0, there exists a manifold with bounded
geometry such that y^) ^ Cv1/0 for v > 1, but yi(v) < Cv^'5 is false, see [11].
This example was later improved in [2]. Again, in view of Theorem 2.3 below, this
means that the heat diffusion on a manifold can stay relatively fast, even though
the isoperimetric profile is relatively bad. Roughly speaking, one can say that the
heat diffusion does not care if the L1 boundary of sets is not so large with respect
to their volume. What matters for the heat to escape is that sets should have a
relatively large L2 boundary.

Let us mention that if M has bounded geometry, one can show, using discreti-
sation techniques as in [13], that

Vi(v) < C^(v), v >. 1.

The connection between y?p, 1 < p < +00 and y?oo is a special case. First, Carron
noticed in [2], [3] that the estimate y^{v) < Cv110 is equivalent for D > 2 to the
Sobolev inequality

11/11 ̂  ^qiv/i^v/eWM),
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and that the latter implies

VQr.r^cr^ W > 0 ,

i-e. ^00 (^) < C'v1^. Again, given Theorem 2.3 below, this means that

s\ippt(x,x) <Ct~~D/2^t>0
xeM

implies
V(x,r) >: cr0, ̂ x e M, r > 0.

The heat flow cannot decrease quickly unless it has room to escape! However, in
general, i.e. outside the polynomial growth range, the domination of y?oo by y?2
is no more optimal. There are heat kernel decays that are more rapid that one
could predict from the volume growth. Indeed, in [18], Pittet and Saloff-Coste
construct, for any n (E IN*, manifolds with exponential volume growth whose heat

n

kernels behave like e"^^ (the typical "good75 heat kernel behaviour for exponential
growth is e"^7, whereas e"^ corresponds to manifolds with a spectral gap).

Let us finally give another description of (^2 in terms of another formulation of the
L2 Faber-Krahn inequalities (which is the way they were introduced by Grigory'an
in [16]).

For n 6 /C(M), let Ai(?}) be the first eigenvalue of the Laplace operator in ^
with the Dirichlet boundary condition, that is

A f m - inf II 1̂ 1 11^Ai(&Zj - mt , . i , 2 ?
/eLip(n) l l / l l^

where Lip(f^) denotes the class of Lipschitz functions with support in H.
Then ̂  is the smallest fonction y such that the following Faber-Krahn type

inequality holds: Mn)' w
for all ^ € /C(M).

2.2 Faber-Krahn inequalities and upper bounds
The following theorem is due to Grigory^an in [16]. It also has a Markov semigroup
version, see [6]. These abstract methods extend to discrete time, which enables one
to treat by the same token random walks on graphs.

Let m be a decreasing differentiable function on IR"p We shall say that m satisfies
(S) if its logarithmic derivative has at most polynomial decay: there exists c > 0
such that

M>cf(t), VOO,n€M^],

where f ( t ) = •~rrL7^' Condition (^) affects the regularity of the decay of m but not
its rate: for example all functions C^ogt)"0^ Ct'^\ (7exp(—cf7), a,/?, 7 > 0 satisfy
(S).
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Theorem 2.1 Let m be a decreasing C1 bijection o/IR* satisfying (^). Then

sup p t ( x ^ x ) < m(<), V< > 0,
xeM

is equivalent to

^w
for every 0 6 ^C(M)^ w/iere m and y are related by —m'(f) = m/^^ or t ==
J^/^ (^(l/^)^ provided the integral converges.

It may be helpful to remember that the smaller ̂ {v} for large v^ the faster the
decay of sup^^pt(x,x).

Note that the above equivalence has to be understood up to some multiplicative
constants: one identifies m(.) and C^m^.), for 8 6]0,1[, y(.) and Cy(.).

One can see the fact that the Faber-Krahn inequality implies the heat kernel
decay in the following way. First

^^^wy^^w
is equivalent to the so-called Nash inequality

/|| f||2\
[ I f||2 f ) ( "J "2 | < f / \ f f \ \ / f ( Z ^00(M\
I I J I I l u I ]] r ip I -^ ^ ^ J U ) ^ V J ^ ^ O { M ) ' )

where 0(x) = 2([/^\' That Nash implies Faber-Krahn is fairly obvious (and not
needed here); the converse relies on truncature techniques that come from [2], [3],
and were developed in [5] and finally [1].

Now, if / is a function in C^°(M) such that ||/||i = 1, applying the Nash inequal-
ity to e^f yields a differential inequality on He^/HJ. By integration, this yields an
estimate on He^Hi-^, hence on

He^Hi-^oo = suppt{x,x),
xeM

which is nothing but the expected estimate. Note that this technique was essentially
invented by John Nash in his seminal PDE paper of 1958!

The way to prove that a general heat kernel decay implies in turn the Faber-
Krahn inequality, or the Nash inequality, was discovered more recently, though it
relies on the very simple inequality

e-M^
(2.2) sMppt(x.x) > . . , W > 0, n € ^(M).

xeM |Sq

As an example of the consequences of the above results, the following sequences
of implications hold: for D > 1,

|n|V ^ Cm =^ Ai(«) > ——— =» snpp^x} < C't-0/2
|i&| / a?6M

and, for a e]0,1[, and H, t large,

(iogî  ̂  cm ̂  xlm ̂  (io^ ̂  S1"^ < c'e~"*-
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2.3 Anti-Faber-Krahn inequalities and lower bounds
The following theorem has been proved in [9], §3, in a general operator semigroup
setting. Again, the only non elementary ingredient in the proof is the inequality
(2.2).

Theorem 2.2 Let m and y be as in Theorem 2.1. Suppose that, for every v G IR ;̂
there exists fly such that |f^| <: v and Ai(n^) < -^-r- Then

s\ippi(x,x) >: m(Ct)^t> 0.
xeM

Take for instance M = TH.0 the D-dimensional hyperbolic space, and embed in
it arbitrary large euclidean balls, whose radii do not grow too fast. Then the above
theorem shows that

supj^.^x^r^/2, w>o.
xCM

This bound is optimal.
Suppose now that \/v >_ 1, there exists ^ly such that |HJ = v and \9S}y\ <:

C . . ^ . This means that y^v) > (log?;)1^, therefore ̂ (v) > (logt;)1/2^ v > 1,
and one concludes that

supj^(;z',.r) ^ e'e"^0 , t > 1.
xeM

2.4 The main result
One can summarise Theorems 2.1 and 2.2 in the following way.

Theorem 2.3 Let y^ be the L2 isoperimetric profile of M. Define m by —m\t) =
^\' (4\\- If171 satisfies (6V then^{l/m(t)) J J \ ) !

cm(Ct) <^ sup pt{x^ x) <^ C m(ct)^t > 0.
x€M

For example, if M is such that

11/11̂  <c'||v/||2,v/eCo~(M),

and if there exists a;o € M and C > 0 such that

(2.3) S^xo^^CV^r}0^

(here S(x, r) is the n — 1-dimensional volume of the sphere in M of center a; 6 M
and radius r > 0), then

cr0/2^ svipp^x^x)^^-^2.
xeM

Indeed, one can show ([9], §3), that the "anti-isoperimetric" inequality (2.3)
implies the anti-Faber-Krahn inequality

C'
\i{B{xo,r))^

(V(xa,r))^
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i.e. a control from below on the L2 isoperimetric profile.
It would be very interesting to go further and understand in which situations

more general anti-isoperimetric inequalities imply a good lower bound on the L2

isoperimetric profile, therefore a good on-diagonal lower bound for the heat kernel.
Q a

For example, when can one improve e"^0'1'1 into e"^0"^ at the end of the previous
section?

3. Heat kernels and volume growth.

One can consider that, contrary to the volume growth or to the L1 isoperimetric
profile, the L2 isoperimetric profile is not really a simple geometric datum. We have
seen that the L1 isoperimetric profile controls from above the L2 isoperimetric profile,
but also that it can be much bigger. Which upper bound on the L2 isoperimetric
profile, therefore on the heat kernel decay, can one deduce from the volume growth,
according to whether one is or is not prepared to assume a certain regularity of
the geometry? in both cases, we shall see that the answer is to be found in some
Poincare type inequalities. Let us mention that from upper bounds on the volume
one can deduce fairly sharp lower bounds on the heat kernel, but this is another
story (see [9], §6,9,10).

3.1 Pseudo-Poincare inequalities and fast decays
Say that M satisfies the pseudo-Poincare inequality (PPp) if

II/ - /.Up ̂  C'r||V/||,. V/ € Co°°(M), r > 0,

where fr(x) = ̂ y JB(^) f(y) dy.
The following Proposition is a variation on [I], Prop. 10.6. Its ancestors are in

[12], §3, [4], p.340. It might however be useful to write a proof here.

Proposition 3.1 I f ( P P p ) holds, then there exists C such that

^p{v) < Cy^(Cv), Vu > 0.

Proof: Suppose p > 1. Take ̂  € /C(M) and / ^ 0 in Lip(Q). Write

W=(/-/rJP-l)+(^/p-l).

By Holder and (PPp),

(/ - /., /p-1) < ii/ - /-y/nr1 ̂  ̂ iiv/iipii/ir1-
Let v > 0 to be chosen later. Set r = yoo(u). By continuity, V{x,r) ^ v, for all
a; € M, therefore ||/,.||oo ^ v^H/Hi, and

(/r,/^) ^ ll/.lloolir-1!!! ^ ^ll/llill/^lli ^ ̂ ||W

since / is supported in f2. Choosing v = 2\Sl\ yields

11/llp ^ 2C'<^(2|0|)|||V/|||,, V/ € Lip(O).
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for all / ^ 0 in Lip(n). The inequality holds for all / in Lip(O) since |V|/|| < |V/|.
Therefore (F^) holds with y(v) = 2(7y?oo(2^), which proves the claim.

The proof for p = 1 can be found in [12], §3.

Now Theorem 2.1 together with Proposition 3.1 yields the following.

Theorem 3.2 I f { P P ^ ) holds, and i f m defined by --m\t) = 2 T^/ d\\ satisfies (S),
then there exist (7, c such that

s u p p f ( x ^ x ) < C m(ct) W > 0.
xeM

For instance, if (P?2) is valid on M, and if V(x^ r) > cr0^ for all x G M, r > 1,
one gets

suppi{x,x) ̂ cr0'2, \/t> i.
x^M

If V(x^r) > ce^, for all x € M, r > 1, one gets

suppt(x,x)<Ce-'ctl/\ V^ 1.
xeM

There are two important classes of manifolds where (PPi) (and in fact (PPp)
for all 1 < p < +00) holds: Lie groups, and manifolds with non-negative Ricci
curvature. The above results are optimal for these classes of manifolds. Since
the analogue of {PPp) also holds on finitely generated groups, one can also get in
this way, through discretisation techniques, an upper estimate of snp^^fpt(x^x) for
covering manifolds. For all this, see [12].

3.2 Relaxed pseudo-Poincare inequalities and slow decays
We shall say that a manifold has bounded geometry if it has Ricci curvature bounded
from below, but much weaker conditions suffice to apply our techniques, see [14].

It was noticed in [12], §5, in a discrete setting, that the conjonction of an upper
bound and of a lower bound of the volume growth imply a relaxed pseudo-Poincare
inequality, of the form

||/-/r||p^»7(r)||V/||p, V/eW^rX),

where rj(r) may be larger than C r. The following general version of this fact was
proved in [10].

Proposition 3.3 Suppose that M has bounded geometry and that

V^r)^V{x,r)<V^r)

for all x 6 M and r > 0, where V\ is strictly positive, continuous and strictly
increasing. Then, for every e > 0 small enough, there exists Ce such that

/r+leV2

II/ - /.||2 < C. (-^j V,{r + £)||V/||2, V/ € WM), Vr > 0,

where fr{x) = V(^fB(x,r)f-
^
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Assuming that V^r +e) > C^l^r), r >_ 1, and replacing in the proof of Proposition
3.1 the full pseudo-Poincare inequality by the relaxed pseudo-Poincare inequality of
Proposition 3.3, one gets the following estimate on y^:

^^V2ovr\cv)^vr\cv)
^(v) ̂  C——————-^—————,

V{~1 being the reciprocal function of Vi. Now Theorem 2.1 yields the following (see
[6], [10]).

Theorem 3.4 Suppose that M has bounded geometry and that

V,(r)<V(x,r)<V,(r)

for all x 6 M and r > 0, where Vi is strictly positive, continuous and strictly
increasing. Assume also that Vz(r + e) <: CeVz(r), r > 1. Define m by

+00

t= f (y^v^dlu^v^dl^du.
m(t)

Then, ifm satisfies (8),

sup pt(x^ x) <^ Cm(ct)^ I t >_ 1.
x^M

In the case where Vi(r) = cV(r) and V^7') = CV(r)^ one gets
+00

(= /V-(l/»)^,
J U2

m(t)

whereas the standard behaviour, corresponding to the case where the optimal pseudo-
Poincare inequality holds, is governed by M{t}^ where, according to Theorem 3.2,

+00

t= I (V-^l/u))2-
J U

M(t)

If V(r) = r0, M(t) == r0/2 and m(f) = t~T^. If V(r) = e'-, M(<) = e-^'3 and
m(f)=!^.

More generally, in the case where V\ and Vz are both exponentials, one gets the
following heat kernel estimate.

Proposition 3.5 Suppose that M has weak bounded geometry and that

ce^ ^ V(x,r) ̂  Ce^^x € M, r ^ 1. (3.1)

Then

(log A ^^
sMppt(x,x)<C -c-) ,V^2 , (3.2)
xeM t )

where 0 = ( 3 / a .
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Note that since on any non-compact manifold with bounded geometry one always
has ^

suppt(x,x) < -j-
xeM \Ji

(this is due to Grigo'ryan, Varopoulos, and Chavel-Feldman, see [10] for explanations
and references), the above result is meaningful only if —. > 1/2, i.e. 0 < 3/2, which
means that the volume growth estimate is sufficiently pinched.

3.3 Getting anti-Faber-Krahn inequalities
Finally, given the volume growth of a manifold, how fast and how slow can the
heat kernel decay be? Some partial answers are given in [10], including a complete
treatment of the polynomial case.

Theorem 3.6 Let M be a manifold with bounded geometry such that

cr0 < V{x,r) ̂ Cr0, V r> 1.^D <- \ / ( ^ ^\ ^ r.^

Then
c'r^ < snppt(x,x) < c'r"^, w > i

and both bounds are sharp.

The upper bound follows from Theorem 3.4 (it was first proved in [12]), and the
lower bound by proving

Ai(B(^,r))<^, Vr>0 ,

and applying Theorem 2.2 (or directly (2.2)!). Let us indicate how one builds a
manifold satisfying the assumptions and such that

s\ippt(x,x) > ct"^, \/t > 0.

The manifold M will be a perturbation of IR^. Let us fix a point o 6 IR^ and
introduce a new Riemannian metric in the polar coordinates (r, 0) centred at o:

ds^dr^h^r^dff2.

The function h(r) will be smooth and positive on (0, oo) and h(r) = r for small r.
Denote B(r) = B(o,r), and let 5(r) = ̂ (r^ = \9B(r)\.

Choosing the function S{r) is equivalent to choosing h^r)^ therefore the metric
on M. The function 5(r) will be chosen to make Ai(B(r)) as small as possible.
The control from above of Ai(B(r)) yields then a lower bound of sup^^p<(a*, x) by
Theorem 2.2.

Here is the way one reaches a small Ai(B(r)): the manifold has from time to
time very narrow parts, i.e. 5(r) is small (the difficulty is to ensure that without
destroying the volume bounds nor the boundedness of the geometry). One then
builds a radial function f { x ) = </(ri(o,a')), which is zero if d(o^x) >_ r, and increases
only in the narrow parts. It follows that f p ^ \ |V/|2 is relatively small with respect
to ;̂ ) I/I2.

Similar constructions, starting with the hyperbolic space instead of IR^ can also
be made in the exponential growth range.
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