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CLR-ESTIMATE REVISITED:
LIEB^S APPROACH WITH NO PATH INTEGRALS

G.ROZENBLUM AND M. SOLOMYAK

0. Suppose that a positive self-adjoint operator B in a Hilbert space is additively
perturbed by a ? weaker7 operator —V^Q. The resulting operator H = B — V may
have non-empty negative spectrum. The question of estimating the number N-{H)
of negative eigenvalues of H arises in many physical and mathematical applications.
A typical example here is the Schrodinger operator H = —A — V in ^(R^), where
V ^ 0 is a, measurable function (the electric potential). Among other estimates for
N- (-A - V), the inequality

7V-(-A - V) ̂  C{d} I V{x}^dx, d ̂  3 (CLR)
<w

has certain distinguished features. It holds as long as the expression on the RHS
is finite, and corresponds to the quasi-classical phase volume picture. Besides, it is
sharp in the function classes for V , in the following sense. If in (CLR) we replace
V by aV, then the RHS of the corresponding estimate for 7V_(—A — aV} involves
the additional factor a^. It turns out that the asymptotic formula

/* 7

7V_(-A - aV) - c{d)a^ / V{x)^dx, c(d) = (2-\/7r)-^(r(l + r-))"1

J^ ' ' ' 2

is correct under the same assumption V G L ( J / ^ . So, within the constant factor,
TV-(—A — aV) is estimated through its own asymptotics.

The above inequality is usually called Cwikel-Lieb-Rozenblum estimate (shortly,
CLR-estima.te), after the names of the authors of three earliest proofs, see [Cw,
LI, R.oz]. Two more proofs, in [LiY, C], appeared later. The proofs give different
values of the constant C(d) and the specifics of Euclidean space is used in them to
a different extent. A closer analysis shows that two of the existing proofs, namely
the ones of [LI] and [LiY], can be adapted to a much more general situation. In
particular, in [LevS], by making abstract the approach of [LiY], a generalization of
the CLR-estimate wa.s obtained, with R^ replaced by an arbitrary space equipped
with a a-finite measure. The role of —A in [LevS] is played by any positive operator
5, generating a, Markov semigroup. The exponent in the estimate is determined
by the exponent in the Sobolev-type embedding theorem for the domain of B^.

Among different proofs of the CLR-estimate, Lieb^s one, using the path integra-
tion formalism, gives the best known constant C(d). Our goal here is to show that
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this approach can also be translated into the pure operator-theoretic language, so
that no mentioning of path integration remains. Like in [LevS], instead of R^ one
can take any space with a-finite measure. The role of —A can be played by any
operator A, generating a semigroup e"^ which is dominated by some positivity
preserving semigroup, bounded as an operator from L^ to L^o. This class is much
wider than the one covered by [LevS], so the results obtained contain the main
theorem of [LevS] as a particular ca,se. Such a generality enables one to treat, in
a uniform way, various opera/tors of Mathematical Physics (while earlier each new
problem required a different version of path integration theory), and, in particular,
to reproduce the best-known constant for the Schrodinger opera/tor.

This investigation wa,s motivated by discussions with E.Lieb, L.Saloff-Coste and
H.Siedentop. We use this opportunity to express them our gratitude.

1. Let a selfadjoint operator B be a generator of positivity preserving (shortly,
positive) semigroup e~^ in L^ = J^^(n,^), where (^/^-) is a measure space with
(7-finite measure. Recall that positivity means that e~tB^^, ^ 0 for any nonnegative
u £ L^.

Suppose also that the semigroup e""^, t > 0 acts continuously from L^ to Loo
and, by duality, also from L\ to L^. Then the semigroup property shows that e~tB

a,cts from L\ to Loo and factorizes through £^. It follows that e"^ can be realized
as an integral operator whose kernel, say QB{t\x^y\ is a function in Loo(^l x H)
for each t > 0. Moreover, the restriction of the kernel to the diagonal, QB^; •^ ^)
is well defined as a nonnegative element of .Loo(^)- Denote

MBW=\\QB^X^)\\^.W^

then Mp^t) is a nonincreasing function on R-p. In this paper we require

r ° °
I MB(t)dt < oo, a > 0. (1)

Ja

We will write B G P if the selfadjoint operator B generates the semigroup
which is both positive and (2, oo)-bounded. For such -B, the kernel Qa{t^^y} 1s

nonnegative.

2. Denote by &[?/,] the quadratic form of the operator 5, its domain is Dom(&) =
Dom(51/2). Let V ^ 0 be a measurable function on 0. Suppose that the quadratic
form f^V u^dfi is form-bounded with respect to &, with a bound less than 1.
Then the selfadjoint bounded from below opera/tor B — V is well defined as a
form-sum. Denote by 7V-(J9 — V) the number of its negative eigenvalues (counting
multiplicities), with the usual convention N-(B — V) = oo if there is some essential
spectrum below zero.
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Let G(z) be a function on [O.oo), polynomially growing at infinity and such
that z~lG{z) is integrable at zero. With any such G we associate another function
9=W:

/•CO

g(\) = HG)(X) := / z^G^e-^dz. (2)
•A)

The following statement is a generalized version of the CLR-estimate.

Theorem 1. Let B G P be such that MB^) satisfies ( 1 ) and Ma(f) = 0(t~0') at
zero, with some a > 0. Fix a nonnegative convex function G, polynomially growing
at infinity and such that C?(z) = 0 near z = 0. Put g = L(G). Then

i /'oc cH rN-{B - V) ^ —— / - / MBWG(tV{x))dx^ (3)
9W J o t J^

as long as the expression on the right-hand side is finite,

REMARKS. 1. The finiteness of the last expression guarantees that the qua-
dratic form of the operator B — V is well defined as a form-sum, so the quantity
N-{B - V) is also well defined.

2. It follows from convexity that G{z) grows at infinity at least as az^ a >
0. Therefore, the condition (1) is necessary in order that the estimate (3) be
meaningful.

3. Function G is involved in the estimate (3) as a parameter. The idea of a
^parametric" estimate (for the case of Laplacian) is due to Lieb [LI]. An appropri-
ate choice of G allows one to optimize the estimate. To make it clear, suppose that
MB(I) = <^~°S 0 < t < oo, with some a > 1; the last assumption is implied by (1).
After the change of variables s = tV(x)^ the inequality (3) turns into

N-(B - V) <, C(G) / V(x)adx, C{G) = cff(l)-1 / G^t-^dt. (4)
Jo Jo

This shows that the choice of G affects only the value of the constant factor in the
estimate.

3. For certain applications the assumption of positivity of e~ / required in
Theorem 1, is too restrictive. A more general class of semigroups is singled out by
the positive domination^ property.

We say that a semigroup P(f) = e~tA of selfadjoint contractions in L^ is domi-
nated by a positive semigroup Q(t) -==- e"^, if

\P{t)u\ <, Q(t)H a.e. on ft, any u G L^. (5)

We also say that A is dominated by B and write A G PV^B). In cases when B
need not to be specified, we simply say that A generates a positively dominated
semigroup.
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If Q(t) is (2, oo)-bounded, (5) implies that P{t) is (2, oo)-bounded too. Such
semigroup P(t) consists, therefore, of integral operators. Denote the corresponding
kernel by P(^;.z',y). The inequality (5), defining domination, is equivalent to

|-P(^; ̂  y)| ^ Q(t\ x, y ) a.e. on R+ x ^ x 0.

The next statement extends Theorem 1 to the case of positively dominated
semigroups.

Theorem 2. Let B G V and A e 7^(J9). Suppose that MB^} satisfies ( 1 ) and
MB^I) == 0(^~°) ft^ zero, with some a > 0. Let G and g he the same functions as
in Theorem, 1. Then

i f°° dt r
N-{A -V)<.—— - MB(t}G{tV{x}}dx (6)

9 { 1 - ) Jo L J^i

as long as the expression on the right-hand side is finite.

Like in Theorem 1, the finiteness of the integral on the right-hand side of (6)
guarantees that the operator A — V is well defined as a form-sum.

Let us stress that the expression on the RHS of (6) involves information on the
behaviour of the integral kernel of e~tB, rather than of the one of e~iA.

4. Here we present some applications of Theorems 1 and 2.
1°. Schrodinger operator. Let (n,/^-) be R^ with Lebesgue measure, and B ==
-A. Then Ma{t} = (27^)-(//2^/2 and after the change of variables (cf. (4)) the
inequality (3) turns into the original CLR-estimate, in the form given by Lieb:

7V_(-A - V) <, C{G) t V^xY^dx, d ̂  3
•W

(7)

The condition d >_ 3 in (7) is implied by (1). The optimal choice of G, which leads
to the best known value of the constant in the CLR-estimate for d, = 3, wa.s pointed
out by Lieb [LI].
2°. Magnetic Schrodinger operator. For a given magnetic vector potential
a(.z') = {aj(x)}^<^j<^d G .Z^ioc^^)? consider the operator A = H^ = —(V — za)2 .
This operator was studied, e.g. in [AHSim] and in [Sim], and it was shown tha.t
H^ G PZ^-A). Theorem 2 gives

7V-(^ - V) ^ C(G) I V^Y^dx, d ̂  3,
J^

with the same constant as in (7). The proof of the magnetic CLR-estimate (3.2),
outlined in [Sim], uses the Ito stochastic integration. A more elementary proof in
[MR-oz] gives a somewha.t worse constant than in the non-magnetic case.
3°. The relativistic Schrodinger operator. In the space ^(R^), d ^ 3, con-
sider the opera-tor B = HR = (-A+1)172 -1. This is a TOO of order 1, selfadjoint
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and nonnegative. It was studied, e.g., in [Ca] and [L2]. The semigroup Q(t} == e tB

is positive, its (2, oo)-boundedness is implied by the explicit representa,tion of the
kernel on the diagonal

Q{t:x^x)={27^rd^ I e-^W^-^d^
.W

It follows that MB(t) <, C(^/2 +t~~d). Thus, Theorem 1 applies and leads to the
estima/te, first sta,ted in [D]:

N-{HR - V) ̂  C ' ( I V{xYdx + I V^xf^dx-} , d ̂  3. (8)v-w .w )
We do not attempt to optimize C ' here.
4°. The relativistic magnetic Schrodinger operator. Consider the operator
A = H^R =• (ffa + 1)1^2 — 1, where H^ is the magnetic Schrodinger operator
considered in 3°. It can be easily shown that the semigroup e""^^ is dominated
by e~iHR. Now, Theorem 2 gives for N-{H^^R — V) the same estimate (8) as for
the non-magnetic relativistic case. Such estimate seems to be new.
5°. Discrete Schrodinger operator. Let 0 = Z^, with the counting measure.
For a sequence u G ^(Z^)? we consider symmetrized difference operators (^u)(&) =
j (^ ( fc4-^^_^( fc_^ . ) )^ where j = l , . . . , r f , k G Z^and^- stands for the d-tuple with
1 in the position j and zeros in remaining positions. The corresponding discrete
Laplace operator is defined as A = ̂  • 6^ thus

(Au)(fc) = ^ ̂ (^(fc + 2^-) + u{k - 2^-) - 2n(fc)).
.7

The operator —A generates a, positivity preserving semigroup in /-^(Z^). The value
on the diagonal of its integral kernel does not depend of k and is equal

Q(f; fc, fc) = (20)-^2 / e-1 ̂  sin2 ̂  d^ k £ Z<
Jy

It follows tha.t Q{t\.) is bounded at 0 and decays as t~^ at infinity. Thus, for a
discrete potential V ( k ) ^ 0, k G Z^, we get the estimate

7V_(-A - V) ̂  C Y^ V(k)^ d ̂  3. (9)
k^

6°. Discrete magnetic Schrodinger operator. When defining the magnetic
discrete Schrodinger operator, we shall follow [Sh], where the ca,se of a constant
magnetic field is considered. So, let A^-(fe) , j = 1, .. . ,rJ be real functions on Z'7. We
set

A^^e-^e^ (10)
j
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thus

(Au)(k) = ̂ (ez(A-(^^•)-A^^)n(fc+2^•)

^_ ^,(k-^)-\,(k))^ _ 3^ _ 2^;)^ k ^ z<

Now, according to the representation (10), the Trotter formula gives domination
of the magnetic discrete Schrodinger semigroup by the nonmagnetic one. Therefore,
the estimate (9) carries over to the magnetic case.

5. Evidently, Theorem 1 is a particular case of Theorem 2. A complete proof
of the latter is given in the preprint [RozS]. In this paper we outline the proof of
a statement, close to Theorem 2 but giving a bit weaker estimate. This happens
because the function G will be specified, so the estimate we obtain is no more
"parametric". Besides, the chosen G does not meet all the assumptions of Theorems
1 and 2. Remind that in the case of "pure powerlike" behaviour of Ma(<) the choice
of G affects only the value of the constant factor in the estimate, cf. (4).

Fix a,n integer N ^ 1 and set FN = (1 - e-^, GN^) = zF^^z} and g^i =
L(G^). Denote by H^r a convex majorant for G N , constructed in the following
way. Let zo be the smallest positive number such that G^(^n) = 0. Then we put
H ^ ( z ) = G N { Z ) for z < zo and H^^z} = GA^C)) + {z - z^G^[z^ for z ^ z^

Theorem 3. Let A and B satisfy the conditions of Theorem 2, and let N > a — 1.
Then

1 /toc dt I 'N-{B - V) <, ——— / - / MB{t)HN(tV(x))dx. (11)
9 N [ ^ - ) J o t .7o

Our approach is an adaptation of Lieb's proof of the estimate (7). The orig-
inal Lieb's approach is based upon the path integrals technique. We do not use
this formalism, though our main technical tool, the "suspended Trotter formula"
(see Lemma 6 below), imita.tes path integrals. However, we make no use of any
probabilistic technique. It is the decisive point: exactly this allows us to prove the
results in such a general setting. A simple trace cla,ss analysis replaces convergence
properties in infinite-dimensional integra.tion a,nd the only structure we need for
our approach is the one of measure space.

We start with some necessary technical statements. In what follows, 62 denotes
the Hilbert-Schmidt cla.ss of compact opera/tors in a Hilbert space, ©i denotes the
trace class.

Lemma 4. Let B G V, A G W[B\ and V ^ 0 he a measurable function on H.
Then

liy^-^^lle,^ MB(2*)l/2||yl/2||^^

Lemma 5. 1°. Let T G ©i. and {Ri^n}, {^2,n} be two sequences of bounded
operators, converginfi to I strongly. Then B^^TR^ ,^ —^ T in G\.

2°. Let Tn be a sequence of bounded operators in a Hilbert space, converging
weakly to an operator T. If R^ R^ G 62, then R^TnR-i -> RiTR^ in ©i.
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Lemma 6. Let A be a nonnegative self adjoint operator in L^ and 0 ̂  V C Î i HLoo.
^r any ^ > 0 a??/ri any 6 > 0 one fca^

/•0-<^
/ ^-,.(A+V)y^-(^-.s-)(.A+V)^

.7^
/ i \ T * V^ / -^A -^VT. / -lA .^V1^= [weak)- Iim — ^ [ e "• e " V ( e " ^ "

n-^cx) n z-^ \ ) \ )
b<]-<_\-b

6. What is given below^ is basically the Lieb construction, as presented in
[RSim]. Suppose first that 0 <, V E L^ n Loo. Choose r > 0 and consider the
Birman-Schwinger operator

Kr{v)=v^A^v^ :=y^(A+r)- ly^

The following equality will be used when deriving (13):

7<,(y)(i+jj<,(y))-1 =yi(A,+J•y)- ly^ j ^ o .

The operator Kr{V) is nonnegative and, under the above condition on V, compact.
Let \k be its eigenvalues and n(A, JC^(Y)) = ^{& ^ ^k > A} - their distribution
function. By the Birman-Schwinger principle, one has N-(Ar — V) = n{l^Kr(V))
and therefore,

N-(A-V)= Iim n{l,Kr{V)). (12)
r-^0+

The function g^i is continuous, nonnegative and nondecreasing on R+. It can be
expressed as

9NW = > ECN^1 + j ^~ 1 ; CN^= (-^ (7V)
7=0 J/

which implies

N °° N

^(A^(y)) =ECA^yi(Ar+^y)~ lyi = / ̂ N^^^^V^dt.. (13)
.7-" b .1=0

The integrand on the right-hand side of (13) belongs to ©i and, moreover, for
N > a — 1 the integral converges in the ©i-norm. This is easy but not quite trivial,
because the last assertion fails for each single term of the integrand. Anyhow, we
obtain gN{Kr(V}) G ©i. This and (12) yield

7V-(A - V) <_ ffN(l)-1 Iim Tr q^{Kr(V}\ (14)
r^0+

XVI-7



The next important relation is
/•oo

Tr gN{Kr(V}} = / Tr Wp(t)dt (15)
Jo

where

((I-?--)

^(^————E^- / ^(A,,+.v)y,-«-.)(A,.+,,y)^ (i^
HP ^ ,__Q ^

•
7 - ( ) tp-1

In (16) p is a,n integer, p > 2. We would like to stress that the equality (15)-(16) is
valid just for traces, the similar equality for the operators fails.

Let us comment the equality (15)-(16). We first note that in view of Lemma 4 the
integrands in (16) belong to ©i, and their ©i-norms are controlled by the expression
^/MB(25)Ma(2< - 2.5)||y||Li. This shows that the integrals in (16) converge in ©i,
so Wp(t) G ©i. Now it is clear that (15) follows from the cyclicity of the trace.
Note that the inclusion Wp(t) G ©i is wrong for p = oo, that is if one integrates
over (() ,<).

Further, choose an expanding (as e —^ 0) family of subsets Og C Q of finite
mea.sure, such that their union is n. Introduce a family of regularizers R^ =
^.fj""^-/2 where Br = B + r and \^ is the indicator function of n^. By Lemma 4,
JL G ©2 and besides, R, -^ I strongly as e -^ 0. Then R^Wp{t)R^ -^ Wp{t) in ©i
by Lemma 5(1°) and therefore,

Tr WM) = lim Tr R,Wp{t)R^ (17)
€—>•()

To evaluate Tr ReWp{t)R^ we apply Lemma 6, substituting Ay- = A + r for A
and setting 6 = p~1. It is convenient to take n == mp, m G N. The limit in this
Lemma exists in weak sense, however according to Lemma 5(2°), after multiplying
from both sides by operators from ©2 we get trace class convergence for products.
Therefore,

L———Tr R.Wp{t)R' =
P

( -1 ^ n—m i ,

lim Tr ^y^, V aje-^-e-^) V (e-^'-e-^Y' R^
n-^oo ^ Z^ 5• / /-^ \ ) \ )
n=mp j=() /=:m+l

Denoting by P r ( t ' ^ x ^ y ) and Q r { t ^ x ^ y ) the kernels of the semigroups e~tAr a.nd
^-/.z:?,.^ ^F^p down the trace in the last expression as a multiple integral:

^^,, Y. I Qr{-y^,Wt-,X^X,)e^^x^...Pr(t-,X{.^X()^^ E / Q^(i;y,^)P^(i;^,.^•l)^•m^)... ?.(*-; .^-i,.^)n L-^ ' L-^ I 2 n n
^——(\ 1——.r>-._L1 '/

1 1 . L-^ ' t-^ i 2 n n
j=o ^w+lnx.'-.xn

x^•?v(•ri)y(.rO...P^^;.r„.-l,^^„)e-^^r")Q,(-^„,,y)^Oy)^.To...r^^^
n z
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Rearranging the terms, we come to
1 /* //

^ / Xe^}Qr{^y,X^\[P^,Xk-^Xk}

^ x - - - x ^ A:=l

N _ j_ . ̂  , r ( v n — m

X^CN,;f " '7 '== l r7/ ^ ^(•^)Qr(^;^n.^)^y^()...&n. (18)

.7=0 /=m+l

The sum over ,; is equal to F^i(^ ^^^ V{x^}) and therefore nonnegative. Thus
we can majorize the last integral by replacing Pr by Qr. After this, all the terms
in (18) become nonnega.tive; we make them even bigger by replacing \^- by 1 and
extending summation over I to all Z, 1 ̂  I <^ n. Then we integrate in ?y, using the
semigroup property. According to (17), we arrive to

1 /' n -i-
TrWp(t) ^ limsup limsup-——, / Qr(e', x,,, ̂ o) TT Qr(-; Xk-i, x^

e—O n-^oo t p- 2 J ^ U
^ x - - ' x ^ l k~l

( i n \
xG [-^^V{x^ A;o...d.T,,,

\ ^=1 /

Now we apply the equality (15). Since its LHS does not depend on p, we can drop
the factor -JL^ in the last inequality. This leads to an important "intermediate"
estimate:

00
/» 7 i /••

Tr g ( K r ( V ) ) ^ / — lim sup lim sup / Qr(^ Xn, ̂ o)
.7 I s—^()+ n-^oo .7
0 f 2 x - - - x 0

/ ft n \x n^^^-^^-^3^') G ^^y(.T,) ^o...^;,, (i9)
k=l n \ 1 //==! /

Finally, for n, £ and t fixed, consider the multiple integral in (19). Replacing G'/y
by its convex majorant H]\J and using Jensen^s inequality, we ma-jorize this integral
by

l " /* n f
-V / Qr(e^ x.n,, ,;()) TT Q,\ -; Xk-A, x k)H N(tV (x ̂ )dxo . . . dxn. (20)
n ^—' / -LA n

^^^x.'-.x^ A'=1

Here, for v fixed, we integrate over all x / ^ with k -^=- 7^, using the semigroup property.
All the resulting integrals are identical and thus (20) is equal to

/ Q r ( t + £ ^ x . x ) H N ( t V ( x ) ) d x ,
.7o

which does not depend on n. Taking into account that

Qr(t + £; ;r, x) ̂  e-^MBit + e) ̂  M^),

we see that this integral does not exceed Ma{t} f^ H^(tV{x^)dx. In view of (14),
integra.tion in t gives (11).
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