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Inverse Scattering at Fixed Energy for Stratified Media

Jean-Claude Guillot, Département de Mathématiques, Université de Paris 13, 93430
Villetaneuse, France.

James Ralston, Department of Mathematics, UCLA, Los Angeles, CA 90095-1555,
USA.

In this report we describe work in progress on inverse scattering for the wave equation
in a layered medium. We consider the wave equation in R x R™,n > 3, with a variable
sound speed, c(z),

02u = c2(z)Au (1)

as a perturbation of the wave equation with a sound speed, co(x, ), which is a function of
one variable,

02u = c3(z,)Au. (2)

Thus the unperturbed wave equation could be used to model wave propagation in a medium
composed of uniform layers with different physical properties. When one takes the scat-
tering amplitude at fixed energy as the observed data, simple examples, e.g. infinitesimal
perturbations of a homogeneous medium, show that it is not reasonable to expect to re-
cover more than the Fourier transform of the perturbation restricted to a ball from this
data. Hence one needs to assume that the perturbation will be determined by this re-
stricted Fourier transform, and a natural way to do this is to assume exponential decay of
the perturbation. We assume

102 (cg 2 (@n) — ¢ (2))| < Ce™HI7], (3)

for |a|] < n. We assume that the sound speed ¢y is n-times differentiable, and constant
outside a bounded interval, i.e., co(s) = c4 for s > r and co(s) = c_ for s < —r. For.
definiteness we assume c; > c_. With these hypotheses we have

Theorem: co(z,,) and the scattering amplitude at energy k* determine c(z).

Our work is closely related to a recent paper of H. Isozaki [I] which proves the same
result in the case that ¢y takes the constant value c; for xz,, > 0 and the constant value
c_ for z, < 0. This choice enables him to replace n by 0 in the hypothesis (3), and use
perturbations in L°°, but it does not include any problems with ” guided waves”. The work
presented here and in [I] is partially based on [ER], but Isozaki uses a method based on
the Mourre estimate to prove estimates which become elementary under the hypotheses
we have used here.

1. The Scattering Amplitude

The statement of the theorem assumes that one knows what the scattering amplitude
is for this problem. Actually the scattering amplitude here is more complicated than the
familiar amplitude of the outgoing scattered wave in potential scattering. To define the
scattering amplitude one begins with the ”plane wave” solutions of (2):
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u(t,z) = e"**®,(x,6,)),6 € R*, A € R.

Thus c2A®, + k?®, = 0, and we must choose the set of &, to be a complete set of
(generalized) eigenfunctions at eigenvalue k?. For this we take ®,(z,6,)\) = exp(iz’ -
0)da(zn, \), where

i (€n)(—6% + 02 )pa = —k?4a,

ie.,

2 k?
Go = (—02, ~
« = " cp(zn)
One should think of the operator G, defined by the first equality above, as a Schrodinger
operator on the line with a potential taking the values —k3 = —k?/c2 for z, > r and
—k2 = —k2?/c% for x, < —r. We choose the ¢, so that

)¢a = “‘62¢a = /\¢a

U : C(R) = @al?(1a), [Waf](\) = /R #5.(5, \) £ (s)ds

extends to a unitary spectral representation for G in L?(R). The spectrum of G is con-
tinuous with multiplicity two for A > —k?i_. The corresponding generalized eigenfunctions
are ¢o(s, ) with & = 1,2 on the interval [—k%,00) = I, = 1,2. The spectrum of G
is continuous with multiplicity one for —ki > X > —k?%, and the generalized eigenfunc-
tions for this are @3(s, A) on the interval [—k%, —k%) = I3. Below —k? there can be finite
number of simple eigenvalues {A1, ..., A\x}. These give rise to the ”guided waves”, and we
parametrize them by their normalized eigenfunctions ¢4 (s, Ao), @ =4, ..., N + 3. For these
I, = {\s} and L?(I,) becomes C. For simplicity in notation it is convenient to assume
that the ¢, are extended to be identically zero for A outside the intervals where they are
eigenfunctions.

With the plane waves described above the scattering amplitude is defined in the con-
ventional way. One considers the distorted plane waves, i.e. the solutions of (1) of the form
u(t,z) = exp(—ikt)(®q4(z,d, —62) + v(z)) where v is outgoing. The outgoing solution v is
defined by the limiting amplitude principle as v = lim¢_,0, ve, Where v, is the L? solution
to

(=c2A — k% —ie)v, = —(—c*A — k%)@,
or 2
;2-26)’06 = _q¢a7

(-A-

with

g =k (% - c5?).
The validity of the limiting amplitude principle here, i.e. the existence of the limit of v,
in suitable spaces, is proven in [dBP], [BDG] and [BAMM]. Setting g = —¢q(v + ®,) and

h=g= / e—iﬁ-x’g(xl’ :z:n)da:/,
Rn—l
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we have

2
v= lim (A — k—2 —i€)"lg = lim e €7 [(G+¢% - i€) "Th(&, )] (x,)dz'.

6_)04- CO 6—)0+ Rn-1

This gives us the following version of the Lipman-Schwinger equation

e + ' [ €@t -0 e e

= _qA(g - 5, xn)¢a(xn, )\)

Note that we have suppressed some of the variables in h. We really have h(§, z,;6, )\, a)
and are primarily interested in its restriction to A = —§2. However, to simplify notation
we will often suppress some variables, usually in blocks separated by semi-colons.

The scattering amplitude for our problem is defined to be the union over all pairs
(o, B) of the functions [¥,h(E, 58, —62, B8)](—£€2),£,6 € R*1. To reconcile this definition
with one’s intuition that the scattering amplitude ought to have something to do with the
asymptotics of the scattered wave v as |z| goes to infinity, we include a short digression.

Consider the representation of v in terms of the spectral representation ¥,

v=lip (n) ™ [ e ST 0P i) [k, )N (@)

E—)O+

i Do (Tny A [Tah(n, )N
v=Y (2m)" /RH dn/I giv'm9al( Al[?ﬁ —(Z) N 4y

Here d\ becomes the Dirac measure at A; when I, is {);}. When one computes the
asymptotics of v(x) as |z| goes to infinity from this representation, there are two types of
terms. First, when I, is a nondegenerate interval with left endpoint —k2, one introduces
N > 0 by A = —k2 4+ n2 and gets a term of the form

- / i’ Pa(Zn, ‘"ki + nrzl)[\pah("h )](—k?x + 77121)X(77n)
* n n%+n2 —10

dndny,.

When I, = {A;}, one gets a term of the form

Vo = / ei:z:'-'!) ¢j($n, )‘j)[‘l’jh(n, )]()‘J)dn
“ Rn-1 n? + Aj —10

This corresponds to a guided wave. Terms of the first type contribute terms to the asymp-
totics of v(r8),r = |z|,0 = z/|z|, of the form exp(ikyr)r(t=™/2a,(0) for 6, > 0, and of
the form exp(ik_r)r(1=™/2q_(6) for 6, < 0. The coefficents a4 () qnd a_(0) are multi-
ples of [¥; 2h(n,)](—n?) for 6, > 0 and for 6, < —(1 — (k4/k—-)?)'/2, respectively. For
0> 0, >—(1— (ky/k_)%)'/? the cofficient a_(#) is a multiple of [¥3h(n,-)](—n?). Terms
of the second type contribute exp(iy/—X;)r(2~™/2a;(#) when 8,, = 0. The coefficient a;(f)

is a multiple of [¥;h(1/—X;0,-)1(A;).

Xv-3



2. Faddeev’s Scattering Amplitude.

Equation (4) relates the scattering amplitude with the perturbation ¢, but it has no
obvious use in solving the inverse problem because of the complicated integral term in the
equation. In [F] Faddeev found a way to replace (4) with an equation involving several
parameters that could be exploited in the inverse problem. In our setting Faddeev’s method
consists in replacing (G+n?—10)~! in (4) by (G+n%+i0(n-v—0))~!, where v € $"~2 and
o € R. We denote the solution of the resulting equation, assuming that a unique solution
exists, by h} (&, zn;0, A, @; 0), but again we will usually suppress most of these variables,
and will always suppress the subscript v which remains fixed in the rest of this discussion.

The most important property of h* is that there is an integral equation relating Uh* and
Wh, namely . )

[Tah*(&, 58, —6%7;0)](=€2)

+3 27ri/ [Cah(§,sn, —n* B (=€) [¥ph" (n, 56, ~6% ;o)) (=1")dn  (5)
B nv>o

= [Tah(§, 8, —8%,7)](—€%).

Here dn is replaced by (—4);)~/2 times the surface measure on the sphere of radius
+/=Xj when I, = {A;}. Thus the scattering amplitude determines [Th*(¢,-)](—£2). One
can show easily that (5), considered as an equation for ¥h* has a unique solution in the
space of continuous functions if and only if the equation for A* is uniquely solvable. To
put that equation in a more convenient form we introduce h.(&,zn;0, A, ;0) = h*(€ +
oV, Zn;0 + ov, A\, a;0). Then h, is a solution of

b (&, @n) + (2m)' 7" /RH §(& = m2)[(G + (n+ ov)* + 100 - v) " hu(n, )} (n)dny ©)

= —4(€ = 8,2n)Pa(@n, N).

3. The Strategy for Recovering the Perturbation

Equation (6) contains the parameter o, but there is still no large parameter in the
equation that could be used to simplify the equation in the limit. For that we need
to use analytic continuation in o. If we replace (G + (n + ov)? +40n - v)~! in (6) by
(G + (n + itv)?)~! and denote the solution of the resulting equation by h.(¢,z,;iT),
7 > 0, then at least formally h.({,z,;0) at 0 = 0 will be the limit of h,(§, x,;i7) as 7
goes to zero. Our strategy will be to show that h.(§, z,;i7) extends to a meromorphic
function in neighborhood of the positive imaginary axis in such a way that h, (¢, z,; 2) is
the analytic continuation of h,({,z,;0). We will solve the equation for h, (£, z,;2) in a
Banach space of functions analytic in £ on [Im{{}| < € which decay exponentially in z,,.
This analyticity and the exponential decay of A, in z, will lead to the analyticity of

T(s) = [Tahs(£(s), 5 0(s), —(8(s) + 2(s)v)?, B; 2(s)))(— (& (s) + 2(s))?).
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Here (£(s),d(s), z(s)) is analytic in s near the real axis, and £(s) and 6(s) are real for s
real. For s < so the function z(s) is real-valued, and z(s) is on the positive imaginary axis
for s >> 0. Since I'(s) agrees with

[Wah™(£(s), 5 0(s), —(8(s))? Bs 2(s))(~ (£(5))?)

for s < s, it follows by analyticity that I'(s) is determined by the scattering amplitude for
all s. One shows that the integral term in the equation for h.(i7) goes to zero as T goes
to infinity. Hence I'(s) is asymptotic to

Lo(s) = [Wad(é(s) — 8(s), )8, —(8(s) + 2(s)v)*)](= (£(s) + 2(s)v)?).

The family of curves (£(s), (s), 2(s)) for which one can apply this argument is large enough
that one easily recovers the Fourier transform of ¢ on an open set in R™ from the asymp-
totics of T'g(s) as s goes to infinity. This completes the recovery of g from the scattering
amplitude. This approach is used in both [ER] and [I].

4. Estimates

To make the procedure described in the preceding section work we clearly need some
estimates. The starting point for the argument is the equation for h,(i7), i.e.,

[ha (i) + A7) B (07)](€, Zn) = G(§ — 6, Zn) Pa(Tn, A) (7)

where

[A(i7) f1(€, 2n) = (ZW)l'”/ §(€ = n,2za)[(G + (n+imv)*) " f (0, )(zn)dn.  (8)

Rn—1

Our hypothesis (3) implies that the inhomogeneous terms in (7) belong to the Banach
space

B ={f(¢zn) € C{{IIm{{}| < u/3} x R) : fis analytic in [Im{{}] < p/3

and sup(l + |€|)neu|$nl/3|f(§’ xn)' < OO}’

and we will solve the equation for h, in this space. The operator A(i7) is compact on
this space, and the results on the analytic continuation of h, needed here follow from the
extension of A to an analytic compact operator valued function on a domain of the form

D.={z€ C:Im{z} > 0,|Re{z}| < €}.

Since (G —wI)~! is analytic for Im{w} # 0, one sees that (G+ (n+2v)?)~! will be analytic
in D, when |- v| > 2e. Thus, using a cutoff in 1, = 1 - v, we can split A into A; + A,,
where A; has a direct analytic extension to D, and the integration in A, is restricted to
Inv| < 3e. The analytic extension of Aj is less direct. The resolvent (G — wI)~! is, of
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course, analytic for Re{w} < inf{};}, and, since we are working on a space of exponentially
decreasing functions, it has extensions across the real axis for Re{w} > —k2. However,
when Re{—(n+ zv)?} falls between inf{)\;} and —k2, we must define A, by deforming the
contour of integration in |r| = |p — n,v| into the upper half-plane for 7, > 0 and into the
lower half-plane for 7, < 0, as in [ER]. This extends A analytically to D, and one sees that
the limit of A(o 4 i7) as 7 goes to zero, is the integral operator in (6) so that h, (o + i7),
if it exists, will be an analytic continuation of the solution h. (o) of (6), if it exists.

As noted above there are some existence problems here. Fortunately, since A(z) is an
analytic compact operator valued function on D,, they will all be solved if we can show
that (I + A(20))~! exists for one zy in D.. We prove this by showing that ||A(i7)|| goes
to zero as 7 goes to infinity — which we also need to know for the recovery procedure.
In the setting here this requires only the following estimates on the kernel g(s,¢; w) of
(G —wI)~!. Choose M sufficiently large that —k3 and the eigenvalues of G are contained
in lw| < M — 1. Then for |w| > M one has |g(s, t,w)| < C|w|~'/2. For |w| < M one has

l9(s,t,w)| <C Y Jw = Xj|™! + Clw + k2|12, 9)

J

The second term in (9) is exceptional, occuring only when there is a ”half-bound state”
for the Schrodinger operator G at —k2. With these estimates one sees that | A(i7)|| will
go to zero as 7 goes to infinity, provided

supe [ (1€ ="+ irw)? (10)

goes to zero as T goes to infinity for v = 1,1/2. Since

|(n +irv)?| = ((Inf* — %)% + 4r%n]) /2

and hence

|(n +érv)?| > 7((In] = 1) + 4n2) /2,

one can show that the supremum in (10) is bounded by C7~'/2. For n > 3 this is the
estimate in [ER,pp.214-6] and for n = 3 it is simpler.
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