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HEAVY MOLECULES IN THE STRONG MAGNETIC FIELD. +

VICTOR IVRII

ABSTRACT. We consider heavy atoms and molecules in the constant magnetic field
under condition B <^ N3 where B is the intensity of the magnetic field and N is
the number of electrons and discuss asymptotics of the ground state and ionization
energies and estimates of the negative excessive charges for atoms and molecules
and estimates of positive excessive charges for molecules.

0. Preface. Multiparticle quantum theory is one of the main topics of modern
mathematical physics, and one of the central questions in this theory is the problem
of the high-density limit. There are different versions of this problem including
the analysis of a heavy atom, and the analysis of a molecule consisting of heavy
atoms. These two versions are the most popular and I am dealing with them.

The first step in the analysis is usually the Thomas-Fermi approximation, which
leads to a non-linear partial differential system describing density and effective
potential. This part of the theory is basically done.

However, justification of this approximation, error estimates and the obtaining
of additional correction terms (Scott and Dirac-Schwinger) is a much more difficult
matter requiring quite different techniques. Until last years the main tool has
been variational methods of mathematical physics. After no less than 20 years
of intensive investigations there remain major open problems, and even recently
essential progress was obtained.

In some steps of the analysis there arise problems lying within the theory of
semiclassical spectral asymptotics. This is a highly developed theory with the
very strong machinery. However, problems specific for the multiparticle quantum
theory have never been treated, and these problems have essential differences from
standard problems of this theory. As a result these particular problems were
treated either by variational methods as well (which led to non-accurate error
estimate and the impossibility of recovering correction terms) or by separation of
variables and investigation of ordinary differential equation by the WKB method
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(this approach has provided very precise error estimate but works only in the very
special cases).

Few years ago M.Sigal and I applied semiclassical spectral asymptotics meth-
ods to the multiparticle quantum theory problems and justified the Scott cor-
rection term for the ground state energy for large molecules. Automatically this
provided some progress in other problems as well. After I managed to recover
Dirac-Schwinger corrections as well.

Now I am studying the same problem with magnetic field and this case seems to
be really challenging. I would like to present my recent results. I was stimulated
by papers [LSY1,2] where the principal term was recovered and it was shown that
the cases B <e N3 and B » N3 are really different (and the transition zone is
the most difficult!). I have been considering the first and this is my final report. I
hope to advance to the second case shortly.

1. Quantum mechanics model. Let us consider the following operator
(quantum Hamiltonian)

(1) H= Y^ ^^-A{x,))2-B-V{xj))+ ^ \x,-Xk\-1

1<:J<^N l<,j<k<,N

describing N electrons in the external electro-magnetic field with the potentials
A, V and repulsing one another according Coulomb law. Here xj G R3 and
(^ i , . . . 5^7v) € IR3^, functions A, V(x) are assumed to be real-valued; B is the
scalar intensity of the magnetic field and we assume that

(2) B = V x A = Bk, B = const.

Mass is equal to j and Plank constant and a charge are equal to 1 here. The
crucial question is the quantum statistics. We assume that the particles (electrons)
are fermions. That means that the Hamiltonian should be considered on the
Fock space T-L = /\i< j<N ^(R3) °f ^e functions antisymmetric with respect to
all variables :TI, . . . ,x^v while for bosons one should consider a space symmetric
functions. I neglect the fact that one particle is described by the wave function
(f) € L2(R3,Cq) rather than by the wave function (/> € L^R3, C) and that the more
correct form of the one particle free Hamiltonian is a bit different because for q >_ 1
no essential modifications of arguments is required and results are the same with
other numerical coefficients. We consider a large molecule with

Zk(3) V(x)= ^
l^M^-^l

where Zk > 0 and x^ are charges and locations of nuclei, the number of nuclei M
is fixed. It is known that operator H is self-adjoint and semi-bounded from below.
This model, rather inconsistent from the physical point of view, is nevertheless
very popular among mathematical physicists.
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First, I am interested in the ground state energy E = E{N) of our system
i.e. in the lowest eigenvalue of the operator H on 7^. The first approximation is
the Hartree-Fock (or Thomas-Fermi) theory. Namely, let us introduce the space
density of the particle with the state ^ € T-i:

(4) p{x) = p^{x) = N |^(a;,a;2,...,a;N)|2^2•••^N.

Then Hamiltonian, describing the corresponding "quantum liquid" is

(5) ^(p) = f{JB{p) - Vp)dx+ JP(p,p),

D^p.p)^! {x-y^p^p^dxdy

where J B {p) is the Legendre transformation of

(6) PB(W) = 2^{W - 2nB)i.B;
n>0

here and below x is reserved for well-known numerical constant. The right-hand
expression is the Riemann sum; replacing it by an integral as B —> 0 one obtains

{^ rt e

P(W) = j^^-? ^d j(p) = jx"3?3 which are well-known in non-magnetic case.
The classical sense of the second and the third terms is clear and the first term is
the kinetic energy in the semiclassical approximation; ja{p) is its spatial density.
So, the problem is to minimize this the functional under restrictions:

(7) ^(p) ̂  inf for P ^ 0, j pdx ^ N.

There exists a unique solution p^ with f p^dx = min(7V, Z). Some properties of
this solution are known as well; in particular, is known that the main contributions
to E^ = ̂ ^(p^) and f p^dx are delivered by zone {£{x) x ry} with TT =
N~^ and TT = B~^N^ for B ^ N^ respectively; £{x) = min/c \x — x^[. Further,
p^ is supported in [i[x) < crs} with rs = min((Z - N)~^ ,B~i ) (for N < Z)
and it is not finite supported for Z = N^ B = 0 only. Finally, Thomas-Fermi
potential W^ = V — \x\~1 * p^ satisfies

(8) PB^ + u} = --^A(y - W) = ̂ TF

47T

where the chemical potential v is the Lagrange multiplier in the variational problem
(7) (and the value of —W^ on the boundary of suppp^) and v ^ 0 for N ^ Z.

2. Asymptotics of the ground state energy. I managed to prove the
following
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THEOREM 1. [Ivr3] Let c-^N < Zj ^ cN, B < N3 and

(9) a = min|x. - x/sl ^ c~1 mm(N~~^B~^ N^Y
j<k v /

(i) Then

(10) l^-^- scott ^c(n+n^+n/ +n//)

with the Scott correction term Scott = -^Scott Yjk^^ ^Scott == 9-l an^ ̂
mainder estimates '

(ii) n=N^ +N^B^ n^=B^N^
n1 = B^tL4, L = 1 + logTV3^ + I)-1

and

(12) TZ'̂
f min((Z - 7V)^^Bi, (Z - N)^N^B^)L4 for N^ < B < N3,

< mm((Z - A^)iB^, (Z - A^)^B^)L4 for {Z - N)^ < B < N ^ ,

(Z-AO-^L4 fo r5< (Z-^)^;

here and below C depends only on M and c.
(ii) Further, for M == 1 these estimates hold with "R! == %" = 0 [Ivr2].

REMARK 2. (i) It is known that

f A^t fovB<N^/-i o\ ?7'TF ^ 1 — '(13) £/ x <
[B57V5 for 7V3 ^ J3 ^ A^3;

(ii) One can easily improve a bit logarithmic factor L4 but who cares?
(iii) For B <€ TV, a ^> TV" 3 one can improve these asymptotics and recover

Dirac-Schwinger corrections (see [Ivr2,3]). 0
The proof of theorem 1 leads us to

THEOREM 3. [Ivr5] In frames of theorem 1 the following estimate holds for the
ground state density p^:

(i4) D{p^ - p^, p^ - p^) < c(n +n'+ T^).

Further', for N = 1 these estimates hold with "R! = 'R!1 = 0.
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3. Maximal negative charge and ionization energy. One can prove easily
(adapting classical arguments of G.Zhislin [Zh]) that

I { N , Z}^E{N - 1, Z) - E{N, Z) > 0
for N <^ Z which means that our system can bind at least Z electrons. Let us
estimate now the maximal N satisfying this inequality (so, N - Z is the excessive
negative charge). It's known that the answer is N == Z in frames of Thomas-Fermi
theory (in which negative ions are impossible). Repeating with modifications
arguments of [SSS] and [Soil] and using heavily ground state energy asymptotics
one can prove

THEOREM 4. [Ivr5] In frames of theorem 1 for N ^ Z satisfying with I ( N , Z) >
0 the following estimates hold:

N^ for B ^ N^

forTV^ ^ B ^ N ^ L 2

B ^ N ^ forA^ ^B < N3

N^ for B ^ N^

for N^ ^ B < N^

for N^ < B < N3

(15) \N-Z\^C\ N ^ B - ^ + B ^ L 2

(16) J(7V,Z)<C^ N2^ +B^L3

[ B^N^L2

Moreover, for M = 1 these estimates hold with L = 1.

REMARK 5. (i) One can see the new "breaking point": B x TV 21. The origin
is rather simple: it follows from theorem 3 that p^ is good approximation for
p^ as i{x) < 7V~^", B <, N^ and as t{x} < r^, B ^ N^. However, all these
exponents seem to be technical rather than "physical".

(ii) This result was motivated by [LSY1,2], [SSS], [Soil] and I used big chunks
of their arguments completed by theorem 3.

(hi) Further, for B <^ N one can improve estimates (15), (16) adding the same
/ \8

factor ({aN)~ 1 + BN~1 + N~1 j into their right-hand expressions. This remains
true for estimates (17), (18) and (19) below. 0

Now I would like to estimate from above and below the ionization energy. I will
do it for M = 1 or B = 0 (or small enough) only (estimates are rather tedious
otherwise).

THEOREM 6. [Ivr5] Let either M = 1 or B = 0. Then the following estimate
holds:
(17) I N + ^ <

( min((Z - N ) ^ N ^ , { Z - N ) ^ N ^ B - ^ ) for {Z - N) ^ B^ + A^

N^ + (Z - N ) ^ N ^ for (Z - AQi ^ B ^ N^

B^N^ + {Z - N ) ^ B ^ N ~ ^ for B ̂  N^
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THEOREM 7. [Ivr5] Let either M = 1 or B = 0 and let one of the following
conditions be fulfilled:

(18)i

(18)2

(18)3

Then

(19)

with

(Z-N)^N^, (Z-N)^B;

{Z-N)^N^B~^, (Z-N)^B^N^

(Z-N)^N^B^s, N^B^N3.

IN+^> -C'(<?i+<?2)

B > N ^ :

(20) S,={

NUZ-N)^

N^(Z-N)^B~^

N^(Z-N^

N^>B^(Z-N^

in case (18)i

forB ̂ N^(Z-N)^;

in case (18) i

for(Z-N)^ ^ B^N^(Z-N)^;

m case (18)2;

in case (18)3.

and

f N^(Z-N)^B-n

(21) <S2 =
N^(Z -N)^B^

N^BHZ -N)^

m case (3.16)i

for(Z-N)^ >B^N^(Z-N)^;

m case (3.16)2;

in case (3.16)3.

In particular, for B <, S = N^{Z — N)^ we get estimate IN -\- v >. —CS.

6. Maximal positive charge. The last question I want to address is "What
can be maximal positive excessive charge for stable molecule (M >_ 2 is very
important here) where now positions x i , . . . , XM are assumed to be optimal as
well". Sure, one needs to count energy of interaction between nuclei. It is known,
that there no stable molecules in frames of Thomas-Fermi theory. Further, I want
to find the estimate from below for the distance between nuclei.
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THEOREM 8. [Ivr5] Let in frames of theorem 1 with M >2

(22) E(N^Z,x)+J^ZjZk\Xj-Xk\-1 <
j<k

mm y^ Ei(N^Zi)
Ni,..,N,:Ni+...+Nn=N ^ J v J 5 3 )

l<j<^n

(where Ej are atomic ground state energies). Then
(i) For all i ̂  j

(23) |x,-x,|^

eTV-A

T i + T j -CB~^

Ti +fj -CB~^N^

for B < N^

for N^ ^ B < TV 3

for TV t < B < TV3

where TI are radii of supports ofpj^ of separate atoms with TV^ == Zi; I recall that
r, x B~^ for B ̂  TV i and r, x B-iTVi for TVt ^ B < N3.

(ii) Further, for N < Z estimate (15) holds with L = 1.

REMARK 9. (i) For estimate (15) remark 5(iii) holds and for B <^ N estimate
|x, - x^| ^ min(7V-A+^r, + fj - CB-^B^N-6} holds.

(ii) All the estimates of theorems 6, 7 remain true if M ^ 2 and 7?/ + K" <, Ti
for given Z, Z — N and B. The estimates.in the opposite case are left to the reader.

(iii) Unfortunately, we don't prove that molecules exist, i.e. that (22) really
holds for appropriate N\ I am not aware of any rigorous result of this type in
frames of our models. 0

6. Case B >_ N3. Let me explain informally why condition B <€ N3 is so
important. First of all, for B = 0 the pressure P(A) is the Weyl expression for the
density of energy of the non-interacting particles, occupying subsequent energy
levels. The same is true for B ^ 0, but now one needs first to separate variables
(a;!,^): electron is described now by one-dimensional Schrodinger operator. The
main contribution for B >_ N^ is given by the zone {\x — x^| x rs} (or their
union). In this zone the length of the electron is x rs and the uncertainty in
a^-momentum is VW = \ / N r g 1 . To have Weyl formula valid one needs to keep
their product ^ / N r s well above 1 (uncertainty principle) and since rs = B~^ TVs
as B ^ TV 3, this gives us exactly condition B <€ N3,

The next case B ^ CN3 I am going to treat in the nearest future. Right now I
am just referring to [LSY1]. One thing is clear: the answer involves an auxiliary
one-dimensional Schrodinger operator on magnetic line depending on (^25^3) (I
recall that B == Bk) and that this answer is simpler for B ^> N3 and it is really
complicated in the transition zone.
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