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Abstract

In this paper we consider inequalities for the Dirichlet and Neumann eigenvalues of
the Laplacian for domains in the n-dimensional sphere S71. As background, we survey
the corresponding (and more extensive) results for domains in E71. In particular, we
consider inequalities between the Dirichlet and Neumann eigenvalues of a domain in
S71 and we give the S71 analog of Aviles5 result (also a special case of Levine and
Weinberger's results): for a domain 0 with boundary 9fl having nonnegative mean
curvature at each of its points the (k + 1)^ Neumann eigenvalue is always less than or
equal to the k^ Dirichlet eigenvalue. For fl, C 571, this inequality is sharp for k = 1 and
0 a hemisphere (the boundary of which has 0 mean curvature everywhere). We also
give an S2 analog of a more specialized low eigenvalue inequality of Payne, and show
how our main result extends to a comparison of the eigenvalues of a Robin problem
with the corresponding Dirichlet eigenvalues.

*This paper is based on a talk of the same title given by the first author at the Saint-Jean de Monts
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1 Introduction
We consider inequalities for and comparisons between Dirichlet and Neumann eigenvalues of
the Laplacian for domains in the n-dimensional sphere 6^. For background and comparison,
we also present corresponding (and in many cases more general) results for bounded domains
in Euclidean space R71. We begin with a precise formulation of our problems, setting forth
the notation we shall employ throughout. In what follows, ^ will always denote a bounded
domain in R71 or 6^ with smooth boundary (smooth enough to ensure the existence of an
outward normal v, and, further, to ensure the existence of continuous principal curvatures
at each point of <9Q).

The Dirichlet problem is the eigenvalue problem

(l.la) -/\u-==-\u in Q, a bounded domain in R71 or 571,
(l.lb) u = 0 on 9^1.

It is well-known to have spectrum {\m}^^ consisting entirely of eigenvalues of finite mul-
tiplicity which we list (with multiplicities) as

(1.2) (0 <)Ai < As ^ As <: \4 ^ . . . -^ oo.

A corresponding orthonormal basis of real eigenfunctions will be denoted ^i, u^, ̂ 3, u^ . . . .
The Neumann problem is the eigenvalue problem

(1.3a) -A^ = IJLV in j^, a bounded domain in W1 or S71,
Qv

(1.3b) 7r=° on 9^'Qv
For fl with smooth boundary it is well-known to have spectrum {^m}^=o consisting entirely
of eigenvalues of finite multiplicity which we list (with multiplicities) as

(1.4) 0 = ^o < A^i ^ ^2 < /^3 ^ • . . -> oo.

A corresponding orthonormal basis of real eigenfunctions will be denoted VQ = const.,
^1^2^-...

Note particularly that by convention we have chosen to index our Dirichlet eigenvalues
from 1 and our Neumann eigenvalues from 0. This means that our k^ Dirichlet eigenvalue
will be \k but our k^ Neumann eigenvalue will be /^-i-

Our main object in this paper will be to compare \k and ^, or perhaps \k and ^4-05
where c is some fixed index shift. We would like our comparisons to hold for all k ^ 1.
To begin with, we recall that the min-max principle (*ee, for example, [6]) gives the easy
comparison

(1.5) i^k-i ^ \k tor all k ^ 1.

It was suggested by Payne (see [14],[19, p.l55],[2]) that

(1.6) ^ ^ \k for all k ^ 1

and perhaps more, especially for convex domains.
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2 Background
In surveying the relevant results of previous authors, we shall begin with results for R71 (the
Euclidean case) and then proceed on to results for S71. We shall further divide our discussion
into "first nonzero eigenvalue results" (i.e., results for Ai and /^i) and then general results.
The general results for the case of ^ C S71 are our main contribution here, and are developed
in the body of the paper.

A. Euclidean Case: First Nonzero Eigenvalues

For ^ C W1 one has the Faber-Krahn result (first conjectured by Lord Rayleigh in 1877
and subsequently proved independently by Faber [9] and Krahn [12],[13] in the 1920's)

(2.1) Ai(^)^Ai(^) ^
R2

where v = n/2 - 1, jy denotes the first positive zero of the Bessel function J y , and ̂  is an
n-ball of the same n-volume as ̂  with R^ as its radius. The Faber-Krahn inequality is sharp
if and only if ^ is itself a ball. In particular, if n •==- 2 we have jo ̂  2.40483 (see Abr.amowitz
and Stegun [1] for various further details concerning Bessel functions).

A companion result for ^i was proved by Szego (for simply connected domains in M2)
[23] and Weinberger (in general) [24] in the 1950's. It reads

(2.2) ^(Q)<^(^)=^

where pn/2 denotes the first positive zero of the function [t1"^2./^^)]7, and ̂  and R^ are
as above. This inequality, too, is sharp if and only if ^ is a ball. In particular, if n = 2 we
have pi = j[^ w 1.84118 where j[^ denotes the first positive zero of the derivative of the
Bessel function Ji. Additional discussion may be found in [2].

It follows from the results above that

(2.3) ^i(Q) < Ai(^) for all bounded domains n C R71.

Indeed,

(2.4) /^i(^) ^ ^i(^) < Ai(?T) ^ Ai(^)

and, even better,

(2.5) ^i(^) ^i(^) P'n/2 . . „
-T-77.T <: -TTT^ = ~T < 1 for a11 n
Ai(Q) \i(^} jl

(recall that v = n/2 — 1). For example, for n = 2 one has /^i/Ai ^ .5862. However, one
should not be misled by this result into thinking that f^k/^k ca11 be bounded by a constant
strictly less than 1 for all k: by Weyl asymptotics one can at best hope to get fik/^k < 1
since p . k / ^ k ~> 1 as k -> oo.
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B. Euclidean Case: General Results

The study of general eigenvalue comparisons in this context was initiated by Payne [18]
in 1955. He proved that if ^ is a bounded, smooth, convex domain in R2 then

(2.6) fik+i < ^k for all k ^ 1

and also

(2.7) ^ < A i - — — — —
^^max

and a similar sharper result for ^25 where p and h are functions on 90 defined by

p == radius of curvature of 90
h(P) = distance from an arbitrary (fixed) origin inside 0

to the tangent line to 90 through P G 90
= OP • y with 0 an origin inside 0 and v the

outward unit normal to 90 at P.

For example, for 0 a disk in E2 of radius a and with 0 chosen as its center, we have h = a = p
and hence ^i < AI — ^ leading to the inequality 'p\ < j^ — 2.

It was only some 30 years later that Payne's result (2.6) was generalized to W1. General-
izations were found by Aviles [5] and Levine and Weinberger [15] independently and nearly
simultaneously. Aviles proved that for 0 a bounded domain in E^n ^> 2) with smooth
boundary 90, which is everywhere of nonnegative mean curvature

(2.8) p.k < ^k for all k ^ 1.

By the mean curvature of 90 we mean the quantity

(2.9) H = ̂
n-1

V^^i

i=l

where the /^s are the principal curvatures of 90 (which exist and are continuous due to
our assumption that 90 is sufficiently smooth). Properly speaking, H / ( n — 1) should be
the mean curvature, but H is a bit more convenient for us here. Beyond this, Levine and
Weinberger achieved a more extensive generalization, which contains the result of Aviles
as one case. In particular, they showed that for 0 a bounded, smooth, convex domain in
] r (n>2)

(2.10) /^+n-i < >k for all k ^ 1

and a family of results intermediate between this result and that of Aviles. These results
assert that for an integer R with 1 < R < n

(2.11) ^k+R-i < >k tor all k ̂  1
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if all (n — R + l)-fold sums of the n quantities

(2.12) /^i,^.. . ^n-i,H
are nonnegative on 9^1. Note that the R == n case gives back (2.10) (and Payne^s n = 2
result (2.6)), since a smooth domain is convex iff ^ ^ 0 for all 1 ̂  z ^ n — 1 at each of
its boundary points. Similarly, Aviles' result (2.8) is recovered as the R = 1 case of (2.11).
Levine and Weinberger also established various extensions to nonsmooth domains, including
the result ^+n-i ^ A^ for all k ^ 1 for an arbitrary bounded convex domain in R71.

To complete the story, we remark that relatively recently Friedlander [11] was able to
establish Payne's conjecture (1.6) in the strict form

(2.13) ^ < \k for all k ^ 1

for an arbitrary bounded smooth domain in R71. The proof, which we do not go into here, is
based on estimating the number of negative eigenvalues of the Dirichlet-to-Neumann map for

A + A, A > 0. Some further observations on the method are found in Mazzeo [16]. While
it would indeed be very interesting to extend Friedlander^s method to domains fl, C S71 (and
it does extend to bounded domains in hyperbolic space H71, see Mazzeo's comments in [16]),
there are impediments to doing so (see Mazzeo and the facts quoted below about geodesic
balls in S71 which are larger than hemispheres) and we have nothing more to say about it
here.

C. Spherical Case: First Nonzero Eigenvalues

For domains in S1^ there are analogs of all the low eigenvalue results listed in A, except
that in some cases f2 must be restricted to lie in a hemisphere. In particular, Sperner [22]
(see also Friedland and Hayman [10]) proved the Faber-Krahn analog

(2.14) Ai(Q) ^ Ai(^) for ^ arbitrary,

where ^* now represents the geodesic cap (ball) in Sn which has the same n-volume as f2i.
Similarly, corresponding to the Szego-Weinberger Euclidean result (2.2) we have

(2.15) ^i(^) < ^i(^*) for ^ contained in a hemisphere,

proved by Ashbaugh and Benguria [4] (see also [3]), extending an earlier result of Chavel
[7],[8] which had more restrictive hypotheses.

The two preceding results can be combined to yield
^ ,^ ^i(^) . ̂ i(^) p o , . , . , . i(2.16) ^ tor \l contained in a hemisphere,

Ai(&2) Ai(U'*')

and this, together with the fact that /^i < Ai for a geodesic ball smaller than a hemisphere,
shows that

(2.17) ^i(^) < Ai(Q) for Q contained in a hemisphere but not a hemisphere.
However, even if (2.15) and especially (2.16) could be shown to hold for arbitrary Q,

^i < Ai (or even [i\ <^ Ai) cannot possibly hold for all Q since for geodesic balls ^i = Ai = n
at the hemisphere in 6^, and ^\ > Ai beyond the hemisphere (i.e., for geodesic balls which
are larger than hemispheres). One might also note that for a geodesic ball approaching the
full sphere 5^, IJL\ —> n whereas Ai —^ 0.
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3 The Mean Curvature Result
In this section we develop our main result that ^(^) ^ \kW for a domain fl c 5'" whose
boundary is everywhere of nonnegative mean curvature (with strict inequality if the mean
curvature is ever positive). Since the argument parallels that for 0 c R", relying mainly
on the Rayleigh-Ritz inequality and a suitable choice of trial functions, we give it in a form
that applies for both 6'" and R" simultaneously.

By Rayleigh-Ritz (we use real-valued functions in all cases)

(3.1) M") ^ fc^L^2

where the trial function y is not identically 0 and is orthogonal to the first k Neumann
eigenfunctions, VQ^ ^ i , . . . , z^-i.

As our trial functions we consider
k

(S-2) V = cDUk + ̂  CimUm

m==l

where the Um's are the Dirichlet eigenfunctions and D represents a first-order differential
operator. For now, the key property of D is that it should commute with the Laplacian
(=Laplace-Beltrami operator, in general). In particular, for n C R71 we shall take D =
-^ = Di for i = 1 ,2 , . . . , n, where the rz^s are Cartesian coordinates for R71, and for n C S71

we shall take D = x^ - x^ = L^ for 1 <_ i, j ^ n + 1, where we view 571 as contained
in R714"1 and the rr^s are Cartesian coordinates for R7^1. The angular momentum operators
Lij are well-known to commute with the Laplacian. Also

„ n+i _
(3.3) A,..=1^^^2 _ V^ r2

2 ̂  ̂ ' - 2^ L^
zj==l i<j

(note that La == 0 and Lji = -L^-); a related identity will be used later (see (3.14)). The
coefficients c and dm in y? must be chosen to make (p orthogonal to z^i,... ,^-i- Since
these conditions give a system of k homogeneous linear equations in k +1 unknowns, we are
assured of finding a nontrivial solution (c, a i , . . . , a^). If c = 0, (p is just a nontrivial linear
combination of i ^ i , . . . ,^ and ^ ^ \k follows easily by Rayleigh-Ritz (3.1). To see that
equality cannot hold, we note that /^ = \k would imply that (p is both a Dirichlet and a
Neumann eigenfunction of -A on Q. But then y and 9(p/9i^ (and therefore also Vy?) would
have to vanish on <9Q, and this is impossible due to Hopfs boundary maximum principle (see
[6, p.161], for example). Hence, ^(^) < Aj^) and we need consider this case no further.

For c 1=- 0, we can divide through by it obtaining a new admissible trial function of the
form (3.2) but with c == 1. Henceforth we proceed under this assumption, continuing to call
our trial function (p. We shall not worry now about the possibility that (p = 0; instead we
proceed from the inequality

(3.4) ^W f V2 ̂  f |Vyf
J^i Jo.
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which is true for our (p in any event. (Eventually we shall let D range over the set of operators
enumerated above. We deal with the triviality issue at that stage.)

With

k

(3.5) (ft = (pj, = DUf, + ̂  dmUm

m==l

we compute

k k

(3.6) / ̂  = f (Duk)2 + 2 ̂  am f u^Du^) + V a^
Jfl ^ î ^ î

since f^uiUm = Sim, and, using the Divergence Theorem and the facts that -A^ = Ay^-u^
and that ̂  = 0 on 90.,

k k

I |Vy>|2 = ! |V(£»Hfc)|2 + 2 V a^ t V(Duk) • Vu^ + y a;a^ /' V^ • V^
•7" •7" m=l t/" <,m l̂ •/a;

/* K' p k p

(3.7) = / |V(D^)|2+2ya^ / [-A(D^)]^ + y a;a^ / ^(-A^)
J" m=l •7" ;,m=l •/"

/» Ki p K

= / |V(D^)|2+2A^ysa^ / Um{Duk)+^a^\m
J^ m=l J^ m=l

since by assumption D and A commute. Combining these identities with (3.4) we find

(3.8) (^ - A,) I ^ ^ t |V(D^)|2 - A, [{Duk)2 - ̂ (A, - A^.
Jn J^ t/n m l̂

Hence, since A^ ^ A^ for m = 1, 2 , . . . , fc,

(3.9) (^ -\k) f ̂ < f |V(D^)|2 - A, ^(D^)2

Jn J^ J^

and by the Divergence Theorem

(^ - A,) / ̂  ̂  f V . [(D^)V(Dn,)] + I\Duk)[-^(Duk)} - \k ! {Du^
/Q 1n^ v^ vn '/n t7n
^.1U^ ^

= / {Du^(Du,}
JQ^I oy

where we have again used the fact that D and A commute and where QfQv represents the
outward normal derivative on 9^l. Thus we arrive at

(3.11) (^ -\k} I ^ ^ 1 ^-(Dukf.
Jft 2 J9a w
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At this point recall that we already know that ^(f2) < A^) unless the constants c
associated with each possible choice of D listed above (i.e., D, for i == 1,... , n for n c E"
L,j for 1 ̂  z < ̂  n + 1 for ^ c 5") are all nonzero. In that case by our work above we
may assume that (3.11) holds for all these choices of D, that is,

(3-12) ^ - A.) t ̂  ̂  1 ! ^{Du^
J^i 2 Ja^ dv

(we deliberately leave the indexing of the D's vague here, so as to cover both the IT and S71

cases in a unified fashion) and by summing these we obtain

(3.13) • ̂ -^L^^U^

-UJ^2

since it is known that (here / and g are arbitrary differentiable functions)

(3.14) y(Df)(Dg)=iz^w){Di^=^f•^9 in Rn

^ lE^(^/)(^)=V/.Vp in 5"

and in particular EoW)2 = |V/|2 in R" or Sn. Now since Uk vanishes on 9fl we have
l^fcl2 = (^) there, and by introducing coordinates about 9^1 based on those for 9fl and
on the normal direction v we can write

(3-15) ^^(l^+IV^I2

in a neighborhood of 9^i, from which we conclude

(3.16) |;IW=^ on 9n

since V|[HA: = V^HA = 0 on 9fl. (Here V|| denotes the gradient in 9^t and in the "parallel"
hypersurfaces defined by fixing the "normal coordinate" v at a constant value.) We therefore
have

(3-17) (^-A.)E/^/ y^
D Jn JQfl 9^ 9^

Finally, we employ one last decomposition fact concerning gradients and Laplacians,
namely, that in a manifold M with coordinates based on those for a smooth hypersurface S
and its normal direction field v

(3.18) ^ = - 9 2 + H ^ + ^ s on SQv2 Qv

when acting on a function defined and C2 on a neighborhood of S and then restricted to S
(i.e., one takes the derivatives with respect to v and then restricts to S). Here M denotes
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the ambient manifold, v the normal coordinate to S , A^ the Laplacian in S induced by the
metric for M, and H the "mean curvature function" for S (which we have not normalized
by a dimensional factor). For our purposes here, M is E71 or 6^, as appropriate and S is
(90

Since

(3.19) -A^ = \kUk

and we are interested in ^L on 9^1 (where u^ '= 0), we find, using (3.18),

(^w\ yuk u9^ ^n(3.20) —— = -H—— on (9Q,
<9^2 (9^

and hence, from (3.17),

(3.21) {^-\k)^[ ^<:- [ H(9^\\Q
Q Jfl JQ^I \ov )

if H >_ 0 on (90
This will conclude the proof if we can be sure that at least one of the y?^s is nontrivial

(since then ^^ f^^D > 0 follows). In the Euclidean case one can argue as in Levine and
Weinberger [15] using the Gauss-Bonnet formula that H cannot vanish identically on 9^2;
hence by continuity of H there is a neighborhood in 9fl on which H > 0 and a^- does not
vanish identically (else u^ would have to vanish identically in 0). It then follows from (3.21)
that p,k < \k if H ^ 0 on 9^1, and also ^^ f^ (p2^ > 0. (To see this directly, note that
since (po is Duk on 9fl and hence ̂  ̂  = I^D^k)2 = |V^|2 = (%')2 on <9^ it is
clear by continuity and the argument above that ^^ f^ ̂  > 0.) We thus recover the strict
inequality ^(^) < AA;(^) established by Aviles [5] and Levine and Weinberger [15].

In the case of Q C S71 there are additional complications for (at least) two reasons:
(a) There are bounded domains f2, for example the hemisphere, for which H = 0 on <9Q
(this has to do with existence of closed geodesies, as can be seen clearly in the case of 52).
(b) There are domains, for example geodesic caps (balls) and annular regions, for which
Dum == LijUm = 0 on ^ for certain choices of i,j, and m. The second of these is obviated
by summing over our operators D = Lij as usual. Noting that ^^ y?^ = (^)2 on 9^1 and
that f^ (^) > 0 will imply ̂  Jn ^L > 0 ̂  continuity, we see that it suffices to show
that a^- cannot be identically 0 on 9^i. But this is clear from Hopfs boundary maximum
principle (see, for example, [6, p.161]). Beyond this, if we assume that H ^ 0 and H > 0 for
at least one point of 9^t, then it follows similarly by continuity that

(3.22) (^ - A,) ̂  t ̂  <, - f H (9uk-}2 < 0
Q Jn JQ^I \dv /

and hence that ̂  J^ ̂  < 0 and ^ < >k for k = 1 ,2 ,3 , . . . . This completes the proof of
our main theorem.
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Theorem 3.1. Let 0 C 571 be a domain with smooth boundary 90 with nonnegative mean
curvature everywhere (i.e., H ^ 0 on 90). Then the Neumann [^,k = 0 , 1 , 2 , . . . ) and
Dirichlet (AA., k = 1, 2, 3 , . . . ) eigenvalues of -A on 0 satisfy

(3-23) M")^W) for k =1,2, 3 , . . .

T/^e inequality is strict if H is ever positive on 90. Moreover, the inequality is sharp since
it is saturated for 0 a hemisphere and k = 1 (in which case ̂  = Ai == n and H == 0 on 90).

Remarks. Inequality (3.23) also reduces to an equality for infinitely many other values of
the index k when 0 is a hemisphere. For example, when n = 2 equality occurs at k =

1, 3, 6 ,10 , . . . (the triangular numbers). In general, equality occurs at A; = ( n+m~l ^
\ n j

for m = 1, 2, 3 , . . . . These equalities imply identities between Dirichlet and Neumann eigen-
functions of the hemisphere (and hence spherical harmonics as well) that one could extract
from the details of our proof above. We leave this to the ambitious reader. We note that a
useful summary of information on the Dirichlet and Neumann eigenvalues of the Laplacian
on a hemisphere of S71 (or 571 itself) can be found in Section 4.3 of [21].

4 A First Nonzero Eigenvalue Result for S2

Just as Payne was able to do for ^i and Ai when n = 2 in the Euclidean case, we can do for
^i and Ai for 0 C S2. That is, we can prove an S2 analog of the more detailed bound (2.7)
of Payne. To do this one adds three things to the ingredients we've used already. One is that
(p = Du^ is already orthogonal to VQ = const. so that no coefficients dm are needed and the
c = 0 case never arises. The second is that 90 is one-dimensional so that the mean curvature
function H can be identified explicitly as K = cotp(P), where p(P) is the (geodesic) radius
of the osculating polar cap at P € 90, where the polar cap is the one lying on the same
side of 90, as 0. (To be more specific, we can use the tangent great circle at P to determine
the hemisphere that goes with the "side of 90 on which 0 lies" locally at P. Then of the
two possible centers for the osculating circle to 90 at P, we choose the one that lies in this
hemisphere and measure p(P) as the geodesic distance between P and this center. For a
geodesic cap of radius p, for example, this gives back p(P) = p at each P e 90.) Finally,
given the more explicit forms that the first two items allow, we can use an S2 analog of
Rellich's identity to actually estimate the right-hand side in

( 41 ) „ , ^-S^HC^}' _-S^PW{^
' ' ^ ~ ' ̂  Zo/^i, - ——Liv^——•
since the denominator here is just Ai and an S2 analog of Rellich's identity is (see Molzon
[17])
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(4.2)
\,fu^e-f (9U^ ^i-cose)

Jn ^ J9^\9v } 9v'

=1 { hf9^}2
2.L \9v)

where 0 is the angle from the north pole of S2 and

r\

(4.3) h=-^(l-cos0)

= (sin 0)0 ' v

with 0 = (cos 0 cos ̂ , cos 0 sin <^ —sin0) with respect to the standard Euclidean basis for R3

(0 and (f) are the usual angular variables from spherical coordinates for R3). For Q a convex
domain in S2 we can be sure that h > 0 along 90 if we place our north pole inside Q. This
we shall always assume henceforth. We also assume that K = cotp(P) > 0 on 90, i.e., that
0 ^ p{P) <. 7T/2 for all P € 90,. Note that our function h is a spherical analog of Payne's h
in the case o f ^ e R 2 .

We now have

(4.4) /.i ^ Ai -
2^cotp(P)%)^cos0<9m\2

^i\2f ^f^1-'!Jan/l V Qv )

and therefore, if f^ u[ cos 0 >_ 0, we obtain

f 4 ^ „ <\ ^M^_<A 2(cos0)^^•5) /^l S AI - .. . ,.n^—— < AI -(/^tanp(P))^ - (fttanp(P))^'

which is the 5'2 analog of Payne's result that we sought. The last inequality in (4.5) holds
even if (cos0)min <: 0 (since we already know that jUi < Ai), but of course it is only of real
interest if (cos0)min > 0, i.e., if Q lies in the northern hemisphere.
Remarks. (1) For the case of a polar cap in 52 with center at the north pole, (4.5) reduces
to

0 POS f)
(4.6) jui < Ai - ——— for 0 < p < 7T/2

sin p

where p denotes the radius of the polar cap. Note that (4.6) is sharp at the hemisphere
(0i=^/2).

(2) To finish the analogous argument in Payne's case one simply uses the usual Rellich
identity [20] (or see, for example, [6, p.200], [17],[18])

(4.7) ^-M^)2
2,/an \9i^ }
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with h as defined following (2.7). Using the same approach, one can also obtain an n-
dimensional Euclidean analog of Payne's special inequality for ^i — Ai. One simply combines
(4.7), which is valid in W1 of any dimension, with (3.21). On the other hand, the Rellich-
type identity of Molzon [17] contains an additional term containing the curvature for all
dimensions other than 2. This leads to an additional term (giving a tighter inequality) in
the n-dimensional analog of (4.5) for fl, C S71. By dropping the curvature term one finds
that inequality (4.5) continues to hold for f^ C S71 for all dimensions n ̂  2.

5 Robin Boundary Conditions
As noted in the Euclidean case by Levine [14], the techniques used above can also be used
to bound the eigenvalues of the Robin problem,

(5.la) —A^ = /w in ^, a bounded domain in W1 or 5^,
9v

(5.1b) — = —a(x)v on 9^t,

by Dirichlet eigenvalues. It turns out that the function a(x) on 9^i enters our calculation
on the same footing as the mean curvature function so that direct pointwise comparisons
between a{x) and H{x) on 9^1 yield eigenvalue inequalities. In particular, letting /^M for
k = 0 ,1 ,2 , . . . denote the Robin eigenvalues of ^ (counting multiplicities), we obtain the
following theorem.

Theorem 5.1. Let fl. C S1^ be a domain with smooth boundary 9^1 which has mean curvature
function H (in the sense of (3.18)^ obeying H[x) ^ a[x) for all x € Q^l. Then the Robin
eigenvalues of ̂  for a, p,k[^\ fo^ k = 0 ,1 ,2 , . . . , obey

(5.2) M^Xk /orfe=l,2,3,. . .

where the A^ <27^ the Dirichlet eigenvalues of ̂ l (with multiplicities).

Remarks. (1) The case a =. 0 gives back Theorem 3.1 for the Neumann eigenvalues.
(2) This theorem allows us to consider domains ̂  for which the mean curvature function

is not always nonnegative, but at the expense of using "weaker" boundary conditions since
as a decreases the Robin eigenvalues drop lower (cf. the Rayleigh quotient (5.3) below). In
particular, in S2 we can treat spherical caps beyond the hemisphere using this theorem.

(3) We could also formulate conditions under which (5.2) will be strict, as was done in
Theorem 3.1. For example, a continuous on 9n and such that a <_ H and a(x) < H{x) for
at least one point x 6 90, is sufficient to ensure strict inequality.

(4) The ideas from Section 4 can be applied directly to the Robin problem (in W1 or
6'72) with similar results. Because the right-hand side of our new inequality involves only
H — a and Dirichlet information, so that (3.21) changes only by ̂  being replaced by /^[a]
and H being replaced by H — a (see (5.5) below), one can get corresponding inequalities
for ^i[a] — AI which will involve a factor of (H•f^L)^^ (in place of (^/^)min for ^i — Ai)
in the "correction term". Similarly, Payne^s ^2 — AI result can be promoted to a result for
^[a] - Ai for ^ C R2.

1-12



Proof. Since the proof follows the general outline of the proof of Theorem 3.1, we only
highlight the most pertinent formulas here. First, the Rayleigh quotient (compare to (3.1)
above) for the Robin problem (5.1) is given by

(. ̂  7?^ - ̂ lv^2+•^a^2
(5.3) K[V\ - —————p—2—————•

Proceeding as above yields

Wa] - \k] f ̂ D^I ^-{Duk)2 + ! a(x)^
(5.4) 7n 2j9flw J<m

= - / -(W+/ a{x)(Du,)2
2 Jan w JQ^

since <po = Duk on 9^1. Summing over D then gives, much as before,

(5.5) Wa] -\^[^D<.- [ [H{x) - a(x)] (^)2

p 7n Jw \ov )

in place of (3.21), which completes the proof. D
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