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The resolvent expansion for the signature
operator on a manifold with a conic singular

stratum

Robert Seeley

May 30, 1996

This is a report on a joint project with Jochen Briining, concerning the
signature operator Dg on a manifold M with a conic singular stratum E.
Locally near E, M is represented as

(0,€)x7V;

N is a fibre bundle with base E^ of dimension h and fibre Yv of dimension
v:

N^^E^, ^(point)^^.

This fibration induces a vertical bundle of tangents to the fibres, TyN C
7W, and a horizontal cotangent sub-bundle TyN = 7r*r*E of cotangents
annihilating TyN. We take a complementary tangent sub-bundle TffN C
7W, inducing a vertical T^N that annihilates TnN^ such that

TN^TyNCTffN, T^N^T^NOTyN.

Then we give M a metric defined, for x in (0,c), a in T^N, ft in T^N , by

9M{odx + a + 0) = aW + ^gy{a) + ̂ (/9) (1)

The horizontal part gn is induced from a metric on E, and the vertical part
gy forms a family of metrics on the fibres of N.

The metric determines a signature operator on C°° n I2(AM). Near E,
it has a representation

D - (^ + x^A{s) + B + X^VY (2)
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acting on functions from (0,c) to forms on N. Here s is in E; ^ and 7 are
morphisms, with 72 = 1; B is essentially a Dirac-type operator on the singular
stratum E, and A(s) is a Dirac-type operator in the fibre ̂ (s). Generally,
the operator D has many closed extensions, and we need to pick one. When
the middle cohomology of the fibres is 0 (the "nonsingular" case), this can be
determined locally in E. For each operator 9^-\-x~~lA{s) we choose a domain
that varies nicely with the metric, and thus we define a closed extension,
denoted D^. In the singular case, when the fibres have middle cohomolgy,
these forms define a M middle cohomology^ bundle over E in which A(s) = 0.
There D = (9y + B + 3^)7 is an operator requiring a boundary condition
of Atiyah-Patodi-Singer type; with this condition, we have again a closed
signature operator Ds.

In the nonsingular case, we construct the resolvent for the ^fulF signature
operator, ^-[^P
and obtain its asymptotic expansion as /i —^ oo. The supertrace of an ap-
propriate term in this expansion then gives an index formula

md(^)=/^+/^. (3)

The form ̂  is the usual index form. In principal, it might be singular along
E, but in any case the integral can be regularized by analytic continuation.
The form a is determined locally in E, but a{s) involves spectral data from
A(s). In the case that dimE = 1, it turns out to be a constant times the
famous adiabatic limit [3]

1 / ^tT{ftQA{98)Ae-tAldtd8=l ! tr[ift9Af a^AiA^Y^ds
27T JE JO 27T JE

where p8/9s is the leading term in B.
In the singular case, we expect an added term in the index formula (3),

essentially the eta invariant of B acting in the "middle cohomologyM bundle.
Here are some details of the derivation of the represention (2) for the

signature operator. The map a ® 0 i—> a A 0 defines an isomorphism

©A^®A^A(^)

(L) /{fot^ f^t T^Ae A ^ ^^ Por^f^ Ji^ers ^^ ^

A ^ Z.3J ky ^e t^r^ -^/ / ^ t r o J c t c ^ J ^e/oc^
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and hence a bigrading A{N) = (fyA^(N)-, p is the "vertical degree" and
q the "horizontal degree". The C°° sections of these bundles are denoted
\P^(N). Then the exterior derivative on N is a sum

(IN = dy + djf + ̂

mapping
\P>^\P^Q\P^1 Q ^-J-l̂ +2

Q<j<p
Here dy is a "vertical" operator, in the sense that on any fibre, dyu) depends
only on the restriction of u to that fibre. Moreover, d^ = 0, dydy + dydy =
0, d]f is a vertical first order operator, and ^ is a bundle morphism raising
the horizontal degree by at least 2. Adjoints 6y = dy and SN = d*^ of these
operators are taken with respect to a metric on N derived from (1),

9N{a + /?) = gy{a) + gn(0). (4)

Again, 6y and <$^ are vertical operators, and S^r = 0, 6y6n + SH^V = 0.
We define operators (vd) and (<rf) in \{N) which, in A^, are simply

multiplication by p and p + g, respectively; and a further operator i/ =
(vd) - v/2, where t; is the dimension of the fibre V. We map the pair a ©/?
in \(N) (S)\(N) to a^a + dx A a^0 in A(M). Then, for forms supported in
0 < x < e,

/[H^)l& + IIWI&]<to = Ij^a + dx A ̂ /?||̂  .

We have also a "Clifford volume element" on N^

-y = - ̂  ,m/2+(td)(td4-l) (̂  ̂  dim(M))

satisfying 72 = 1, 7* = 7, 7i/ = -1/7. Then we find that the signature
operator Ds on M can be represented in C^°((0,c), A(jfV)) as

^s? ^ ^a;7+a:~l(dy+^v-i/7)+(d^+^)+a?^7
= : (^ + a?""̂  + B + x^y/.

The various relations above imply that

A* = A, B* = B, AB + BA is vertical and first order
and (A + B)2 - Ajv has order less than 2.
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All these operators are defined independent of any coordinate system,
which is important when we want to split off, say, the part acting in the
middle cohomology bundle of the fibres. However, to construct the pseudo-
differential parametrix for the resolvent we need a representation of Ds lo-
cally in E, as a differential operator on E with coefficients which are opera-
tors in a fixed Hilbert space. To this end, we introduce local coordinates in
a neighborhood U C E, and a map

T : U x ^(V^AJ^] -^ h(^(U))

preserving fibres and bigrading^. We introduce a norm on the left such that
T induces an isometry of the Hilbert space structures on the forms. Then,
using a subscript T to indicate an operator conjugated by T, we have

^DsT = (^ + X^AT{B) + BT + a^rhr

where AT and By have the properties of A and B. Moreover

BT = Y,W9/9sk + RT(S) (5)
k

with a vertical operator RT and bundle morphisms 0k satisfying

^AT + AT^ = 0 and ($> )̂2 =: -|a^J. (6)

Although T is defined only locally in E, it is defined globally in the fibres.
Essential to our analysis is the spectral resolution of

A(s)=(dv+6v(s))-r(s)-^

where v = (vd) — v/2. Using the appropriate metric in each fibre, we have

A^7- (5y+dy)®l ~^®1 inA(y)0A77E.

We decompose A(Y) into harmonic, closed, and coclosed forms, and obtain

A = Ah (B Ad © Acd
= -v ® WY ® 1) - v\ ® WY ® 1) - y\.

The eigenvalues turn out to be

^j == j — v/2 (0 < j < v) with eigenforms in H3^ A^)
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/4rf == -| ± VA + (^y1 - j)2 with A in 5pec(d^(y, A;)

/i .̂ = | ± y^ + ("y1 ~ J)2 with A in 5pec(&<),(r, A:)

f4 = -^±\/AwithAin5pec(^)(^i)/2(^A^)

Note: 1) The "harmonic eigenvalues" j - v/2 are independent of the metric
on V. 2) The lew eigenvalues, those in the interval (-1/2,1/2), come only
from dimension j between v/2 — 1 and v/2 + 1. 3) If the metric on Y is
small enough, then the Laplace eigenvalues A are large enough that all the
p^ eigenvalues are > 1/2, and all the /-r eigenvalues are < -1/2.

We use this spectral decomposition to split our forms into three parts.
Let Ys = Tr"1^) denote the fibre over s in E. Then

^(A^IV,) = E^s)(^Eo(8)@E^3)

where

^<(8) = sum °^ eigenspaces of A(s) corresponding to the fjT eigenvalues
together with the H^Y,^) for j less than v/2,

Eo{s) ^ JT^X^A^E
E^(s) = sum of eigenspaces of A(s) corresponding to the ̂  eigenvalues

together with the W{Y, A;) for j greater than v/2.

Then in the local coordinate representation (5), the 0k preserve fib, and
exchange £*< with 2?>.

The domain of Ds is defined with respect to this splitting. Let ^>{s)
denote projection on J5>(3), and so on. Supppose for now that EQ = 0. Then
we define the domain of Ds by

lk>7t̂ )IL.AW = O^^forall^O (7)
||7r<7u(̂ )|̂  = 0(x^w)toTsome6>0

With this domain, Ds is closed, and the domain of its adjoint is defined by

IK>^)lbAW = O(arW) for some 6> 0 (8)

II^^^II^AW = O^2'5) tor all <? > 0.
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Now we come to the resolvent parametrix. For simplicity of notation,
we drop the subscript S on the signature operator. Rather than treat the
Laplacians A-(- = D*D and A- = DD* directly, we consider the first-order
operator ^-[^l
with inverse

D(ur1 ~ f ^(A+ + /i2)"1 ^(A-+ ̂ 2rl 1 (Q}Dw - [ -25(A4- + /i2)-1 /i(A^+^1 j W

This will give us the various zeta -^ . . functions for JD. We treat D as a
differential operator on E with operator coefficients, and principal symbol

D= (^ + o^AOO +ZS/WY-

The domain of ̂  + x~~lA(s) is defined by the growth relations (7). In view
of the relations (6) involving 0k and A, the corresponding symbol Laplacians
are

^+ A^== -og + ̂ (A2 ± A) + (1^ + A (10)
a family of regular singular operators on the cones over E. In this symbol, the
dual transform variable a combines with the resolvent parameter /^. When
we compute the trace, we take the asymptotics of such symbols and integrate
over a and s.

In view of (9), we take as leading term in our parametrix the operator on
E with symbol

A
P==
^ +^r1 y (A. +/i2^1

-p(A^2)-1 ^L+u^r1

The symbol resolvents (A± ^-/A2)"1 have kernels which can be viewed as
direct sums of Bessel functions with orders determined by the eigenvalues of
A. They can be represented as '' ^

(xyY^(xz)K^(yz) (x<y)

with z2 = \ff\^ + /A2, and the orders p± given by

_ J A ± 1/2 in E>
P±-\ -(A±l/2)in£?<
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A very tedious check, using relations among the Bessel functions, shows that
Op(P) maps into the the domain of Z)®P*, as defined in (7) and (^).
Locally

^-^([w^ o^*^*]^^) (u)
where R is a vertical first-order operator. The remainder terms —> 0 as
p, —^ oo, so the Neumann series

^-•-^{^([w^ r^*]?)-^)....
(12)

gives an expansion for large /i. In view of (9) we can extract from this the
powers of the individual resolvents (Adb + t^2)^ and obtain the asymptotic
expansion of their traces, using the Singular Asymptotics Lemma of [[!]]. Let
Gm{x^ y, s, t\ p) denote the kernel of (A + /^"^and (rjy denote the trace in
H = L^AV) ® A^. The function

ff(x,s\p) = tru^x, x, s, 5; fi/x)

has the usual resolvent kernel expansion in decreasing powers of ^: <r(a?, 5; /i) ̂
Eaa^,^)^. And for functions <f){x) and ^(s) with suitable small support,
we have

<r(^(A+/i2)~w) == /°° / ^(a;)^(^)£r(a?,̂ ;a;/i)d^da?.v / Jo J^
As in [2], this integral has an aymptotic expansion as /i -> oo, with three
types of terms:

E/00/ <(>W{^a(x,s)(x^dsdx (13)
^ JO JRh

+ E '̂1 ̂  ̂  f^W^ (o.a; Orf^C

+ E ̂ (o)/^^)^'1^5)^^?^-
The first sum comes from the resolvent expansion away from the singular set
E; when we compute the index from (13, Sec 6), those terms will give the
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usual index form, regularized (if necessary) by analytic continuation. The
other two sums give the contribution from the singular stratum E. Note
that these "singular" terms depend on the Taylor expansion of the operator
in powers of a?. As we go farther out in the Neumann series (12), the terms
vanish to higher order as x -+ 0. Similarly, lower order terms in the expan-
sion of ^do products vanish to higher order. (This vanishing is checked by
rescaling (x^s) —> (tx^ts).)

In particular, to get the index, we need the term in {jT^ fromstr^"~^b^"
taking m large enough that the trace exists. When dimE = 1, in view of the
vanishing just noted, the only contributions to the singular term come from
the first two terms in the Neumann series (12). The supertrace contribution
from Op(P) is zero, because erf symmetry. For the next term we need just

the leading term in the ^do expansion, O p [ p \ ̂ i^ n \ P} •\ [ pd/dyy U J y
Juggling with commutators reduces this to the consideration of

x^0aA/as[G^-G2.],

where G^ is the kernel of Op(A± +/i2)"1. Since the kernels are given by
Bessel functions, it is a question of finding the right Bessel asymptotics.
This tedious calculation is justified by the resulting clean index formula

md(Ds) = / ^ + c / frpaA/a^A2)-^!^.
jM «/2j

for a constant c.
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