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1. Introduction

Consider the incompressible Euler equations

Jt+(^V)^+Vp=0,
I Vn = 0 . v /

Here u = u(x^t) is a velocity field of an ideal incompressible fluid, p{x^t) is the pressure,

re G R^ < G R. In order to define the weak solution of equations (1.1), let us multiply both

sides of the first equation (1.1) by a vector field v{x,t) G C^R"4'1, R71), such that V-z; = 0,

and both sides of the second equation (1.1) by the field Vy, where y(x,t) e C^R714'1, R).

After integration by parts, we get the following relations:

!! - [(^ § f )+ (^® u. ̂ v)}dxdt = 0 .

ff-(u^y)dxdt=0 .
(1.2)

These relations should be true for arbitrary test-functions ^(^,<), v{x,t). The left hand

sides of relations (1.2) make sense for arbitrary vector-function u{x^ t) G L^. This justifies

the following

Definition 1.1. Vector-function u{x^t) is called a weak solution of the Euler equations

ifu{x^t) satisfies the integral relations (1.2) for arbitrary test-functions y^x^t), v(x^t).

The nature of weak solutions of the Euler equations has been quite unclear, and only

a few sparse results about them are known. Thus, it has been proved by P. Constantin,
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W. E and E. Titi [GET] and by G. Eyink [E], that if the weak solution belongs to the

Holder class (7°', and a > - then the kinetic energy W = ^ f [u^x^t^dx is constant in

time, which was the old hypothesis of L. Onsager [0]. Note that the Holder-class solutions

are not classical at all.

Another result is the existence of weak solutions in the 2-dimensional case, satisfying

the initial condition u(x^O) = Uo(x)^ where the vorticity V x uo(x) is a positive measure

(J.-M. Delort [D]).

The following quite striking result has been obtained by V. Scheffer [S]. He has proved

that there exists a weak solution u(x.,t) 6 L2(R2xH^ such that u(x^t) = Ofor [^p+^l 2 > 1.

Thereby this solution is identically zero for t < —1; then "something happens77, and the

solution becomes non-zero; but for all t > 1 the solution disappears again!

The original proof of this outstanding result is long and complicated. Our aim is to

present a simpler and more transparent construction, so that the nature of these strange

solutions is more clear. Instead of the flows on the plane R2 , we consider the flows on

the 2-dimensional torus T2, and construct a weak solution u(x^t) G ^(T^R2), having

compact support in time. This means, in particular, that the weak solution with given

(zero) initial velocity is not unique, and that the kinetic energy is not constant in time.

In fact, our solution, as well as the one constructed by V. Sheffer, is a discontinuous,

unbounded L2 -function.

Our construction is quite different from the original one of V. Scheffer. It is rooted in

the physical idea of the inverse energy cascade in the 2-dimensional turbulence [K].

If the fluid is being pushed by an external force with small space scale (i.e. the force

f{x^ <), whose Fourier-transform /(<^, <), is concentrated in the domain of large [<^|), then the

energy is transported, via the non-linearity of the Euler equations, to different frequencies.

But in 2-dimensional case the energy transport to the higher frequencies is forbidden by

the vorticity conservation; the only possible direction of the energy flow is to the lower

frequencies.

In particular, if the space scale of the force is infinitely-small, the simple dimension

considerations show that it takes a finite time for the energy to reach the low-frequency

range. We are constructing just the example of this inverse-cascade situation. The difficulty
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is that by no means can we solve the Euler equations in any nontrivial case. Therefore, we

have to construct a very complicated hierarchical, finely tuned system of forces, imitating

the inverse cascade. The forces are organized in such a manner, that at every step we have

to solve a simple, linearized problem.

This is still very far from the physical postulate that the energy is transferred from

the infinitely-high to the low frequencies for the generic forces.

"The force with infinite frequency" is still a non-defined mathematically object; it

is zero from the usual viewpoint of distributions, but possibly makes sense as a Young

measure, or some similar object.

In fact, we construct a sequence of solutions of non-homogeneous Euler equations with

the right hand sides getting more and more oscillating, and prove that the limit is a weak

solution of the homogeneous Euler equations. Thus, the weak solution, constructed in our

work, as well as that of V. Sheffer is not in fact a solution; very strong external forces are

present, but they are infinitely-fast oscillating in space, and therefore are undistinguishable

from zero in the sense of distributions. The smooth test-functions are not "sensitive"

enough to "feel" these forces. This is the fault of the sensors, not of the forces.

These examples show, that the usual definition of weak solution, given above, is not

satisfactory. Though every possible candidate to be called weak solution should satisfy

relations (1.2), for they express the local balance of mass and momentum (in fact, when

deriving the Euler equations in the fluid mechanics, we start from the relations (1.2),

or equivalent, and then, assuming sufficient regularity of the field u^x^t)^ pass to the

differential form of the Euler equations), we need some additional conditions. The "true"

notion of weak solution remains still undefined.

2. The Idea of Construction

1. An incompressible vector field u{x^t) G L2 is called a weak solution of the non-

homogeneous Euler equations with the external force f(x^t) G P', if for every test-field

v{x,t) G Co°°, V - z ; = 0 ,

ff^\(u—}+{u®u^v)\dxdt= j{f,v)dxdt (2.1)

Our construction is based on the following simple

XVIII-3



Lemma 2.1. Let Ui(x^t) be a weak solution of nonhomogeneous Euler equations with

external forces fi(x^t), i = 1,2,.... Suppose that Ui —> u strongly in L2, while fi —> 0

weakly in V, as i —> oo. Then u(x^t) is a weak solution of the Euler equations (2.1).

Proof is clear from the definitions.

2. In our construction, we shall use the forces /i(.z',t), having the special form

Ji
fi(x, t) = ̂  fi,(x) . 6(t - ti,) , (2.2)

j=i

where fij{x) G C00. The weak solution Ui(x^t) of the non-homogeneous equations (2.1)

with such external force is a smooth solution of the homogeneous Euler equations (1.1) on

every time interval tij < t < tij+i, satisfying condition u^x^t) = 0 for t < t^i, and the

following jump condition:

Ui(x, t i j + 0) - Ui(x, ti,-0) = fi,(x) . (2.3)

Our construction starts from arbitrary smooth solution UQ^x^t) of the Euler equations

( — o o < < < o o ) . Let us define the first term of our sequence as

fuo(^), |*| <1;
"^•^io, |(|>i. (2A)

This is a weak solution of the Euler equations with the force

/i(^<) = uo(x, -l)6(t + 1) - uo(x, 1)<?(< - 1) , (2.5)

and

^1,1 = ~1 , *i,2 = 1 . (2.6)

3. Now we are going to describe the inductive rule for passage from Ui to Uz+i .

Suppose that at the moment to the solution u^x^t) has a jump. It is smooth and satisfies

the Euler equations for t < to and t > to? but U^X^Q + 0) — u^x^to — 0) = f{x) (we omit

the indices z , j ) . Thus, u(x^t) is a weak solution with the force f{x) ' 6{t — to)-

We shall replace this force by a sum of finite number of <?-like pulses

I
g{x,t)=^g,(x)'6(t-t,), (2.7)

i=o
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so that the weak solution v(x,t) of (2.1) with the force g{x,t} satisfies the conditions

v{x, to - 0) = u{x, to - 0); v{x, to + T + 0) = u{x, to + 0) , (2.8)

where T == tj- - to. Thus, we shift the solution u(x,t) for t > to by T, and inserted

something in the interval (to^to + T).

The most important property of the pulses gi{x} is that each of them is either small

(in the sup-norm), or is an oscillating vector field with a high frequency. In both cases

gi{x) are "weakly close to zero". The nonlinearity of the Euler equations should transform

these high-frequency pulses into a smooth field u(^,<).

Let us apply this operation to the function Ui(x^t) at every moment tij of disconti-

nuity. If Tij is the time delay at the j-th moment, then

m{x, t) = u,+i (x,t + ̂  r,,) . (2.9)
til <t

4. At every step of our construction, we take the new much shorter time delays T^+i ,

and much higher frequencies of the oscillating forces /i+i ,.

The function u^x^t) = lim^oo Ui{x^t) is a smooth solution of the Euler equations

(1.1) on the complement to some perfect set 97t on the *-axis, and zero outside some finite

time interval. The external force is concentrated on 97t, but it has zero space scale, and

therefore is undistinguishable from zero as a distribution. (The rigorous sense of the last

sentence is that the sequence {ui(x^t)} satisfies conditions of Lemma 2.1).

Now we shall describe the construction of the forces fij{x) and the velocity fields

Ui{x,t).

3. Asymptotic Solution for Modulated Kolmogorov Flow

The main building block of our construction is a special type of flow, called modulated

Kolmogorov flow.

Every velocity field v{x) on T2, such that V • v = 0, and f v{x)dx = 0, can be defined
T2

using the stream function ^[x):

v(x) = JV^(^) , (3.1)
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where J = ^ j is an operator of rotation by ^.

The Kolmogorov flow is a flow, defined by the stream function

^x) = k^b^x) sin k{a, x) (3.2)

where a G Z2, k e Z, &(;r) is a given smooth function, independent of k. We are interested

in the asymptotic behaviour of the flow with such initial condition for large fc; in fact,

we are going to construct the asymptotic solution of the Euler equations with the initial

velocity (3.1), (3.2), if k —> oo. The Kolmogorov flow is known to be desperately unstable,

so our asymptotics should be valid on the small time intervals (depending on k). The

asymptotic solution we are constructing has the form

v{x,t) = vo(x) + (t - to)v^x) + ... , (3.3)

where every term Vj may be found explicitly from the Euler equations. Let

^Cr.fl = vo{x) +(t- to)v^x) +.. .+(<- to^vn^x). (3.4)

Let us write the Euler equations (1.1) in the explicit form
9v . . .
^^^^l . (3.5)

where

A(z;,w) =-P(z;,V)w , (3.6)

and P is an orthogonal projector in ^(T2, R2) onto the subspace of divergence free vector

fields. Then v1^ satisfies the non-homogeneous Euler equations
^N

-^--A^,^)^^. (3.7)

Theorem 3.1. Suppose that the functions b(x)^w{x) are trigonometric polinomials, in-

dependent ofk. Then there exist constants d,..., CN, independent ofk, such that

(i) 1^(01 <: C^W^ ; (3.8)

(ii) \RN^}\ <: CN^W^ . (3.9)

Thus, the series ( 3.3) is asymptotic in the domain \t - to\ < fc20'; this means, that for

every s^M there exist N and Cs,M^ such that

\\RN\\S < C^Mk~M (3.10)

for all t in the interval \t -t°\< k-2^.
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4. The First-order Term of the Asymptotic Solution

1. Let us find the explicit expression for the low-frequency part of the term ^i(.r) in

the asymptotic solution (3.30). This term is the most important for our construction.

Suppose that

vo{x) = k^v^x) + w{x} , (4.1)

where

v(x) = JV^) , (4.2)

^(x) = k^b^smk^a.x) . (4.3)

Then the straightforward computation shows that

v^x) = G(x) + H{x} ; (4.4)

G{x)= ^ PG^x)k^-1^ (4.5)
0<j,l<2

^C^- E E ^[^^(^sinm^^^
°<J^<2 l<m<2

+H^{x)cosmk(a,x)k^-^ . (4.6)

Here G^j, H . ^ ^ ^ H . ^ ^ are smooth functions, independent of fc; they are obtained

from the functions b{x\w{x) by some quadratic differential operators of order not more

than 2.

The most interesting and important for our purposes is the term PC?2,o(^)? the main

non-oscillating part of v\{x\ After simple calculations we find that

PG2,o = JP[(XB)X], (4.7)

where B{x) = fc2^); X = Ja is a constant vector field with components ( a 2 ? — < ^ i ) ; we

identify the field X with the differential operator a^-^- — ai —?-; P is the orthogonal

projector in ^(T2, R2) onto the subspace of divergence free vector fields.
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2. Let us consider the inverse problem: for a given field V{x}, such that V • V = 0,

f Vdx = 0, find an amplitude b(x) and the wave vector a of the Kolmogorov flow, such

that

JP[(X . B)X] = V , (4.8)

where B{x) = fe2^), and X = Ja. In general, this is impossible, but the following is true.

Theorem 4.1. There exist two vectors Xi.^2, such that for every smooth vector field

V{x}, satisfying V • V = 0, f Vdx == 0, there exist smooth positive functions B^x), B^{x\

such that

y=Elp?^W]; (4.9)
j=i

Moreover, there exist two pseudo-differential operators $i,$2 of order (-1) with

symbols depending only on ̂  such that

Bj=^jV^+B] . (4.15)

Now we have all the tools ready for the construction.

5. The Construction

Suppose that u(x,t) is a weak solution of the Euler equations with the right-hand-

side 8{t - to)f(x)', u(x,t) is smooth for t ^ to, and if u^x) = u{x,to ± 0), then u^.{x) -

u-(x) = f(x). We are going to construct a sequence of pulses, imposed at the time interval

to < t < to + T in such a manner that it produces the same flow (with the time delay T)

and consists of the pulses, such that part of them are small in the sup-norm, and others

are oscillating with high frequency.

This sequence contains 4 "strong55 pulses, having the amplitudes fi{x), f[ (^), f^ {x\ f^x),

where

f,{x) = JV^- ;

t^j{x) = k~l+o!bj(x)smk(aj,x) ;

b,(x)=(B,{x)+2sup\B,{x)\^ ;
t€T2

B,{x) = (^./)(.r) 0=1,2)
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(Here Xj == J a j ^ j ==1,2 are two vectors, whose existence is claimed in Theorem 4.1.)

The pulses /• follow the pulses fj with the time interval fc"20' between them; / kills

the high-frequency part of the flow field, generated by fj.

We should add a finite number of "weak^ pulses, intended to keep the flow close to the

asymptotic solution v1^ for given sufficiently large N^ and a few weak pulses, truncating

the Fourier transform of the velocity field and thus converting it into a trigonometric

polinomial. As a result, we obtain at t = to + 2fc~2a + T = to + T the velocity field u^-(x).

If the flow field u{x^t} is discontinuous at the moments < i , . . . , ^ j , we may apply the

same operation at every moment t{ and obtain a new flow, which we denote as AZA. The

operation A depends on some parameters; the most important of them are k ^ N .

The idea of our construction is to iterate this operation with growing k and N. Let

us define

t^+i = A(fc, ,A^,. . . )^ . (5.5)

Theorem 5.1. If ki^Ni are growing sufficiently fast, as i —> oo, then the sequences

{ui}^ {fi} satisfy conditions of Lemma 2.1, and thus, Ui —> n, and u is a weak solution of

homogeneous Euler equations, having compact support in time.
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