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The Magnetic Schrodinger Operator
And Reverse Holder Class

Zhongwei Shen'!
Department of Mathematics
University of Kentucky
Lexington, KY 40506
U.S. A

Abstract: We present some recent results on the number of negative eigenvalues
and eigenvalue asymptotics for magnetic Schrodinger operators. The conditions on
the electric potential and magnetic field are given in terms of the reverse Holder

inequality.
1. Introduction

Consider the magnetic Schrodinger operator

n 2
(1.1) HzH(a,V)zZ(l,—a——aj(m)) +V(z) on R", n>3

o\ Oz;
where a = (a1, -+ ,a,) : R® - R™ is the magnetic potential, and V : R® — R is

the electric potential. We shall assume that, H admits a self-adjoint realization,

which is still denoted by H, in L*(R™).

Let N(\, H) denote the number of eigenvalues (counting multiplicity) of H
smaller than A (or in general the dimension of the spectral projection for H cor-
responding to the interval (—oo, A)). In the case a = 0, the classical theorem of

Cwikel-Lieb—Rozenbljum states that

(1.2) N, —-A+V) <cpl {(z,6) eR" xR™: [{> + V() < A}

However, there exist some simple potentials V(z) (e.g. V(z) = z2z3---22) for

which, the right hand of (1.2) is infinite and, nevertheless, —A + V() has a discrete
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spectrum. Furthermore, the phase-space volume estimate fails completely when
the magnetic potential a(z) is present and V(z) = 0. There has been considerable
interest in this kind of non-classical eigenvalue asymptotics in recent years. See e.g.
[R], [Si], [F], [HM], [MN], [I]. In this note we will present some recent results on
the number of negative eigenvalues and eigenvalue asymptotics for the Schrodinger
operator with magnetic field in certain reverse Holder class. Our results are closely
related to the work of Fefferman and Phong [F|, Helffer, Mohamed, and Nourrigat
[HM], [HN1], [MN]. In particular, we generalize the Fefferman-Phong estimates on
the number of negative eigenvalues for —A + V(z) (using minimal dyadic cubes)
to the operator H(a,V). Our estimates incorporate the contribution from the
magnetic field in an effective way. We are also able to extend the results of B.
Helffer, A. Mohamed, and J. Nourrigat on the eigenvalue asymptotics to potentials
with minimal smoothness assumptions. Finally, we will mention some related LP—

estimates and weak-type (1,1) estimate for the magnetic Schrédinger operator.
2. The Reverse Holder Class

. Our assumptions on potentials will be given in terms of the reverse Holder in-

equality.

Let Q(z,r) denote the cube centered at z with side length r.

Definition 2.1. Suppose that W € L (R") (1 <p<oo)and W >0 a.e. on R™

loc

We say W € (RH)p, 10c if there exists Cy > 1 such that

1/p
1 1
(—; / WP(y)dy) <Cp L / W (y)dy
™ JQ(z,r) T JQ(z.r)

for every z € R™ and 0 < r < 1. If (2.2) holds for 0 < r < oo, we say W € (RH),.

(2.2)

The reverse Holder class (RH), was introduced by Gehring and Muckenhoupt in
the study of quasi-conformal mapping and weighted norm inequalities, respectively.

It has been studied extensively in harmonic analysis. See [St].
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Example 2.3. If « > 0 and P(z) is a polynomial of degree k, then W(z) =
|P(z)|* € (RH), for any p > 1 with a constant Cy = Cy(n, a, k).

Example 2.4. W(z) = el®l is in (RH),, 1oc, but not in (RH), for any p > 1.

Definition 2.5. For a nonnegative function W, the auxilary function m(z, W) is

defined by

1 1
_—_— — : < .
@) sup {r >0 = /Q(I’T) W(y)dy <1 }

The function m(z, W), which is closely related to the uncertainty principle, plays
a very important role. The definition of m(z, W) generalizes the earlier version of
a very useful auxiliary function for polynomial potentials. Indeed, if W = |P(z)|

and P(z) is a polynomial of degree k, then

(2.6) m(z, W)~ Y |02 P(x)| T,
|81<k

The following proposition summarizes the basic properties of m(z,W) when

W € (RH),/, [Shi].

Proposition 2.7. Suppose W € (RH),/;. Then there exist C > 0, ¢ > 0, and

ko > 0 such that

(a) m(z, W) = m(y,W) if |z —y| < @)’
(b) m(y, W) < C {1 + |z — ylm(z,W)}* m(z, W),
(c) m(y, W) > cm(z, W)

| 2 T = s, W)pre

Similar properties hold if we assume W € (RH)n /2, 10 and restrict z, y to the
case |z — y| <1 [Sh3].
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3. The Number of Negative Eigenvalues

Using a sharper form of the uncertainty principle, C. Fefferman and D. H. Phong
were able to refine the classical estimate (1.2). In [F], it was shown that, for p > 1
and A <0, N(A,—A+YV)is bounded by C,,- Ny, where Ny is the number of minimal

(disjoint) dyadic cubes which satisfy

1/7’ 1
2 xr xXr C
(3.1) 4@ (157 / Vi) 2e>0, 4Q)< T

{(Q) denotes the side length of cube @, and ¢ depends on n and p.

In this section we generalize the Fefferman-Phong estimate to the magnetic
Schrédinger operator under certain conditions on the magnetic field B(z). The
conditions on B in particular are satisfied if the magnetic potentials aj(z), 7 =

1,2,...,n are polynomials. More importantly, our estimates incorporate the con-

tribution from the magnetic field.
Let B(z) = curl a(z) = (bjx(¢))1<j,k<n be the magnetic field generated by a(z)

where

Theorem 3.3. [Sh5] Let n > 3. Suppose a € C*(R"™), V € L} (R") for some

loc

p > 1. Also assume that |B| € (RH),/, and
(3.4 VB(@)| < C1 {m(z, B’

where |B| = |B(z)| = >_; ; |bjk(2)|. Then, there exist C = C(n) > 0 and ¢ =
c(Cy,C1,n,p) > 0, such that, for A < 0, N(\, H) is bounded by C - Ny where Ny is

the number of minimal (disjoint) dyadic cubes () which satisfy

(3.5) UQ)? (IQI/ V(z) |de)l/pzc, UQ) < T
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and

e g
(3.6) «Q) (IQI /Q B(2) d) <1

- Remark 3.7. Note that the conditions |B| € (RH),/; and |[VB(z)| < C {m(z, IB|)}®
in Theorem 3.3 are dilation invariant. Roughly speaking, these two conditions mean
that the values of |B| do not fluctuate too much on the average and |VB]| is uni-
formly bounded in the scale {m(z,|B|)}™"'. It follows easily from (2.6) that the
hypothesis of Theorem 3.3 is satisfied if the magnetic potentials a;j(x) are poly-
nomials. Moreover, in this case, the constants Cy, C; depend only on n and the

degrees of a;(z).
Remark 3.8. The condition (3.6) in Theorem 3.3 may be replaced by

1/q
(3.9) () (,-}ﬂ /Q |B(m>|qu) <1

where 0 < ¢ < oo [Sh5].

Corollary 3.10. [Sh5] Under the same assumption as in Theorem 3.3, we have

V(z)l?

{m(z,|B]) 27 ¥

(3.11) N(,H) L C
{z€R™: V(z)<0}

for p > n/2, where C depends on n, p, Cy and Cj.

In the case p = n/2, this is the classical Cwikel-Lieb-Rozenbljum estimate.

The following lower bound estimate suggests that the upper bound in Theorem

3.3 is almost optimal.

Theorem 3.12. [Sh5] Suppose a € C}(R"), V € L} (R™) and V < 0 a.e. on

loc
R™. Then, there exists C's > 0 depending only on n, such that, if there exists a
collection of cubes {Qk,k = 1,2,..., Ny}, whose double are pointwise disjoint, with

the properties
1 1
(Q)? | — Vid 14 —
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and

| 1 1/2
¢ 2 (- 2
@ (IQI /w B| dx) <1,

N\ H) > No.

then

4. The Eigenvalue Asymptotics

Theorem 4.1. [Sh3] Suppose a € C*(R"), V € L"/z(R") and V > 0 a.e. on R",

loc

n > 3. Also assume that

}B’ +V+1le (RH)n/Z,Ioc’
IVB(z)] < C1 {1+ m(z,|B| + V)}*.

Then, there exist constants C = C(n,Cy,C1) > 0 and ¢ = ¢(n,Cy,C1) > 0, such

that, for A > C,

N\ H(a, V) < Cl{(2,€) : €] + {cm(z, | B| + V)}* <A},

N\ H(a,V)) > c|{(2,6) : |¢]* + {Cm(z,|B| + V)}* < A} |,
where (z,€) € R™ x R™.
Theorem 4.1, which generalizes a result by Helffer, Mohamed, and Nourrigat
[HM] [MN], allows one to estimate the leading power of N(A, H(a,V)) in many

cases for degenerate potentials V(z), as well as degenerate magnetic fields B(z).

Indeed, it follows easily from Theorem 4.1 that
N\, H) < C A2 {x eR™: m(z,|B|+V) < c\/X} I

N\ H) > cA™? {x €R™: m(z,|B|+ V)< C\/X} |.

Corollary 4.2. Suppose a(z) and V(z) satisfy the same hypothesis of Theorem

4.1. Then H(a,V') has a discrete spectrum if and only if

m(z,|B|+V)— oo as |z| — oo.
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5. The Uncertainty Principle

The proof of Theorem 3.1 and Theorem 4.1 relies on a new form of the uncer-

tainty principle.

Theorem 5.1. [Sh3] Suppose a € C*(R™), V € Ln/Q(R") and V(z) > 0. Also

loc

assume that

{ IBI +V+1le (RH)n/2,loc

[VB(2)| < Cy {m(z, |B| +V +1)}°.
Then, for u € C$(R™),

- Im(z, |B|+V + 1) u(z)|*dz
=€ {Z/ 237 —aj(@)ufde+ [ (V@) + 1>|u|2dx} .

Corollary 5.2. [Sh5] Suppose a € C*(R"). Also assume that B € (RH),, and
[VB(2)| < C1 {m(z, |B|)}".

Then
/ |m(z, |B|)u(z)|*dz < CZ/ ; b—;— — aj(x))u|2d:v.

The estimate in Corollary 5.2 implies that the operator H(a,0) is bounded from

below by {m(z,|B|)}?. Using this lower bound, we may deduce the following decay

estimate

)l < Ci !
z, < .
YI=T0Fz —yim(@ B+ DY [z — g2

(5.3) IT'A(

where I'(z,y) denotes the kernel function of the operator (H(a,0) + |\|)™! and &

is any positive integer.

To prove Theorem 3.3, we follow the approach of Fefferman and Phong [F]. Also

see [KS]. The key step, which requires the systematic control over the magnetic
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field B, is to establish the following trace inequality:

where

1/p
(5.5) M, supf(Q) (Iéﬂ/ |V]pda:>

and the supremum is over all dyadic cubes @ satisfying

(87

€@ m(z,|B| + A

(5.6) Q) < 1n

Note that (5.4) is equivalent to

—~~
ot
-~1

/ VI I(H(a,0) + \)"/2 fPde < C - M, / \flPde.
Rn Rn

Let K(z,y) denote the kernel function of the operator (H(a,0) + |A])~Y/2. It

follows from (5.3) that, for any k > 0,

- Ck : .
|I\/\(:L'>y)’ < {1 + |3; — ylm(.’L’, |B| + |)‘|)}k i:t - yln_l .

(5.8)

The proof of the trace inequality (5.4) is based on (5.8) and techniques from har-

monic anaiysis. See [Sh5].
6. The L? Estimates

In this section we give the LP and weak-type (1,1) estimates for the magnetic
Schrédinger operator (1.1). For —A + V/(z), similar results can be found in [HN1]
[Gu] [Z] [Sh1]. For the Schrédinger operator with magnetic field, the only known
result is an L2-estimate given by Guibourg [Gu] for potentials which behave like

polynomials.

Let Lj = la—a- — aj(a:).

XVII-8



Theorem 6.1. [Sh4] Suppose a € C*(R"), V € L (R™) and V > 0 a.e. on R”

loc )

n > 3. Also assume that

|B| +V+1le (RH)n/Z,Ioca
V(z) < Ci{m(z,|B|+ V +1)}%,
|VB(z)| < Co{m(z,|B|+V +1)}’.

Then, for 1 < p < oo,

> ILiLe(Hlly < C{IH @ V)l + 11f1}

1<j,k<n

for any f € C§°(R™). We also have the weak-type (1,1) estimate

{zeR™: Y |L;Li(f)(=)| > A} < %{IIH(a,V)flll +[1£Il }-

1<j,k<n
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