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Scattering for the Beam equation

Benoit Pausader

In this paper, we aim at describing recent results about scattering for the non-
linear Beam equation. The Beam equation, sometimes also called fourth-order wave
equation is defined as follows

O + A%u + mu + AMulP~1u = 0. (0.1)

It is a formal fourth-order extension of the classical Klein-Gordon equation and
appears in the study of elasticity (we refer to Love [12] for a comprehensive presen-
tation), in the study of the motion of a suspension bridge in McKenna and Walter
[14, 15], and also as a toy model for the propagation of water waves in Bretherton
[2]. In this equation, u, the unknown is a real-valued function defined on space-time
R x R™ the mass m > 0 and A > 0 are parameters which can easily be normal-
ized to 1. The nonlinearity is chosen to be pure-power-like for simplicity, and we
restrict p to be smaller than the H?-critical exponent, thus if n > 5, we require that
p < 148/(n—4). Besides its physical interest, this equation is also a toy model as
a general dispersive equation, lacking the very special forms of the Schrodinger or
wave equation. In these conditions, to get strong results, we need to rely mostly on
dispersive properties of the equation.

In Levandosky and Strauss [10], the authors could find find an analogue of the
Morawetz-estimate for the wave equation that applied to the Beam equation in
high dimensions n > 5. This led them to conjecture that, as for the Klein-Gordon
equation, scattering should hold true for the Beam equation (0.1), at least for n > 5,
in the subcritical range 1+8/n < p < 14+8/(n—4). Subsequent work by Lin [11] and
Miao [13] proved that, in this case, the local energy was integrable in time. Finally
in Pausader [16], it was proved that this conjecture holds true. In the following, our
main emphasis will be on the proof of this result. More precisely, we will prove the
following (see below for definitions of strong solutions and scattering)

Theorem 0.1. Let n > 5, A > 0 and 1 +8/n < p < 1+ 8/(n —4), then any
nonlinear strong solution of (0.1) scatters.

We start by presenting general features of the equation, in particular, we obtain
good global in time decay estimates. Then, we prove scattering in two steps. First,
we prove that the solution satisfies an almost finite propagation speed principle, and
then we make use of the Morawetz estimate of Levandosky and Strauss to obtain
decay of the solution in Lebesgues spaces. This is sufficient, thanks to our analysis of
the linear propagator. In the end, we give some further results about the scattering
operator, and give miscellaneous remarks.
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1. Presentation of the scattering problem and Beam equation

1.1. Analysis of the linear equation

An important ingredient in the analysis of the nonlinear Beam equation (0.1) is the
analysis of the associated linear equation, namely

8ttu + Azu +u= h,

(u(0), 9u(0)) = (uo, u1)
where the initial data belongs to the energy space: (ug,u;) € H? x L? = €. Indeed
the solutions of (1.1) will be our model both locally in time, and asymptotically,
since we want to prove scattering.

Equation (1.1) can be treated in the setting of semigroups, since, letting &, =
H' x H~! and considering the unbounded operator on &,

(D(A), A) = (H*> x H', A(u,v) = (v, —(A%u + u)),

(1.1)

then A is skew symmetric and (1.1) can be rewritten & = Ax for z(¢) = (u(t), u(t)).
Since A is skew-symmetric and commutes with derivative operators, the flow of A,
et is an isometry on €. In the sequel, we write W(t) = e for the free propagator.

We also note the following sympletic form on &,
(o, w), (v0,01) = [ (wows = wvo) do (12)

Previous results about the decay of W(t) were obtained by Levandosky [9] using
Fourier restriction methods. Here, we will separate the Frequency space in two re-
gions corresponding to two different models for our equation. In the sequel, Py, P<y
and P>y refer to Littlewood-Paley projections.

Using the Fourier transform, we can give explicitly the solutions of (1.1) with
h = 0. These are

u(t) = cos(tv'1+ A?)ug + Sinij%—gfz)m (1.3)

and we see that we need only understand the linear operator eV 147,

First, we investigate the high frequency regime, |£| — oo. The phase function,

B(€) = /1 + |€]4 converges to the standard Schrodinger phase ¢,(€) = |£|* on annuli
{N < |¢] < 2N}, as N — +oo. In this case, we get that, for N > 1, PyetVI+a®
has the same dispersion property as Pye’*®, and hence enjoys the same Strichartz
estimates.

Now, let us consider the low frequency case. As |{| — 0, we have that

4
6(6) =1+ 5 4 o(jef),

and in this case, factoring out a phase factor like e, we expect the same behavior
as for a fourth-order Schrodinger equation.

Concretely, we can prove the following estimate, which is a refinement of the esti-
mate in Pausader [16]. A couple (q,r) with (¢,7,n) # (2,00, 2) is called admissible

VII-2



if 2 <gq,r <oo and
q + ro 2
Proposition 1.1. Let (up,u;) € H?> x L? and h € C(I, H™%). Then, the solution
v e C(R, H))NCY(R, L?) of (1.1), satisfies the following Strichartz-type estimates
2 _2
[IV|e P<yullacr,pry) S |P<ivol|zz + | P<aiua|lze + [[IV]7e P<ah|l por g ooy (1.4)
[ Po1Aul|zagr,ory S [[Po18uolr2 + | Po1wa ||z + [[Po1hl| o g v

where (q,r) and (a,b) are any admissible pairs.

Notice the additional derivative in the low-frequency norm, which is the price to
pay to obtain global Strichartz estimates in the presence of the degeneracy at the 0
frequency!. The Strichartz estimates above come from the following decay rates for
solutions of the homogeneous equation (1.1) with h = 0. Let 2 < p < oo, then

n(l1—2 _n_2
[Pt | V"2 | o S 672070 (| Peyuol| o + || Parua || 1)
_n_2 _1
| Porul| o S 700 ([ Poyuol| L + (14 A2 Poyun]| ) -

The crucial fact here is that the high frequencies decay much faster than the low
frequencies?. In the following, we sometimes identify a linear homogeneous solution
and its initial data.

(1.5)

1.2. Formal structure of the equation

In order to extend the local wellposedness results, we use the conservation laws
derived from the formal structure of the equation. We define the energy

1 2
E :7/ 2 4 | Aul? 4 24 2 ) de
=5 [, (o 180 2 ) o

the momentum

Mom (u) :/ ur(z)Vu(z)de,

n

and the angular momentum (for i # j)
Q= / (xjudu — xu05u) dx.
Rn

These are conserved for all strong solutions u of (0.1). For a complex-valued function,
we also define the charge

Ch(u) = Im /R gt x)a(t, o). (1.6)

Note that the equation (0.1) is formally the symplectic flow associated with the
Hamiltonian E and the symplectic form (1.2), the symplectic gradient of the Mo-
mentum is just the usual gradient (generator of the translations). the symplectic
gradients of the angular momenti are the generators of rotations.

IThis is due to the fourth-order dispersion. By contrast, local estimates can be deduced using
the Schrodinger decomposition of the linear equation 9y + A% = (9; + iA)(9; — iA).
2since to get decay of the solution for the low frequencies, one must use Sobolev’s inequality,

and lower p, hence lower the decay rate
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Conservation of energy is almost always central in any result related to the beam
equation, either through the global bounds that it gives in the defocusing case, as
in Pausader [16], or through the fact that it gives a conserved quantity in certain
proofs of blow-up, as in Hebey and Pausader [6]. Conservation of momentum is
very important through the fact that momentum can be altered to give different
Morawetz/Virial-type estimate as (2.1) below. We also refer to Pausader [17] for
other such bounds. The conservation of Charge can be used to rule out scattering
when the pure power-like nonlinearity is replaced by f(u) = F’(u), where F'(z) < 0
for some x, at least for complex-valued functions. We refer to Glassey [5] for a similar
application in the Klein-Gordon case.

In order to use at best the conserved quantities, we work in the energy space
E = H? x L?. A strong solution is then a function u € E = C(R, H*) N C*(R, L*) N
C?(R, H?%) that satisfies (0.1) in H 2 for all times. Another equivalent requirement
is that u € E satisfy the Duhamel formula

() wlt) = WO o, ur) = [ Wt =)0 JaPuls)ds — (17)

for all time t.

Using the Strichartz-type estimate and the conservation laws, one can prove that
the Cauchy problem associated to (0.1), with initial data in £ is locally well-posed
in E and that all the strong solutions are global®.

1.3. Scattering

Scattering is a quite accurate description of the dynamics of a nonlinear equation
in the sense that is tells that the dynamics is in fact linear, up to waiting for a
certain time. More precisely, we say that a solution u of (0.1) scatters if there exists
a solution w of the corresponding homogeneous linear equation (1.1) with h = 0
such that the difference of the two functions goes to 0 as t goes to +00. We say that
scattering holds for the Beam equation if every strong solution scatters.

When this situation holds true, we can define the mapping W : v — w, and
it is easy to see that this mapping can be inverted. We then define the scattering
operator S = WJW !, where J is the operator associated to the inversion of time.
This operator synthesizes all the nonlinear dynamics in the sense that any nonlinear
solution has the following behavior: it starts with a linear behavior similar to that
of a linear solution w, enjoys some nonlinear behavior, then gets back to a linear
behavior similar to that of Sw.

While such a neat description as scattering for all solutions should be restricted to
very favorable cases, such as the defocusing case or situation in which the nonlinear-
ity is prevented from becoming too strong, (as in “Payne-Sattinger” type potential
well, see Payne and Sattinger [19] and Kenig and Merle [7], Duyckaerts, Holmer
and Roudenko [4] for recent examples), it is conjectured that the “general” asymp-
totic behavior of a nonlinear solution is a decoupling between a scattering part that
radiates away and a soliton-like part which enjoys special features.

Using conservation of Energy and the isometric property of W on £, we observe
that when p > 1 + 4/n, all solutions of (0.1) scatter weakly in the sense that there

30ne also sees that they are the unique functions u € L®(R, H?)NW 1> (R, L?) satisfying (0.1)
in the sense of distributions.
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exists (ug,uy) € € such that

(u(t), ue(t)) = W(t)(ug ,uy) — (0,0) (1.8)
in £ as t — +00. Besides, this scattering state is formally given by
(uf uf) = (o, ur) = [~ W(=5)(0, [ul"u(s))ds (1.9

and subsequent work concentrate on giving a sense to formula (1.9). A sufficient
condition is that u has finite space time norm in appropriate Lebesgues spaces. For
that, a useful criterion in the subcritical case is the following:

If w decays to 0 in some Lebesgues space norm, and 1 4+8/n < p < 1+8/(n —4),
then u belongs to the appropriate space-time norm and hence scatters.

Consequently, our remaining analysis aims at proving such a decay.

2. Nonlinear Bounds

To go beyond global existence and study asymptotic results, one needs to find
bounds on the total contribution of the nonlinearity over time. A prefered can-
didate to do the job is a Morawetz-type inequality. Levandosky and Strauss [10]
have found the following analogue of the Morawetz estimate for the Klein-Gordon
equation:

u(t, z) [Pt
[ M e W o)

which is valid in dimensions n > 5 for any u a strong solution of (0.1). This gives
very powerful control on the solution close to the origin. However, it gives poor
control far away from the origin (observe in particular that the integral over the
space-time region {|z| > tlog®t} is trivially bounded by the energy).

The question now is how to use the control given by (2.1). A first case is when u
is restricted to be spherically symmetrical. In this case, everything “happens” close
to the origin, and using the Morawetz estimate one easily shows that u decays in
LP*1 and hence scatters. However, in general, it is possible that all the “nonlinear
behaviors” happen far away from the origin, or that the solution presents some kind
of drift. For example, in the focusing case A < 0, such traveling waves exist for all
1 <p<1+8/(n—4)asshown in Levandosky [8]. In the defocusing case, however,
these exact solutions cannot exist.

In order to prevent a solution concentrated around the origin to move too far
away quickly, and thereby make the Morawetz-type estimate useless, we first prove
that the solution satisfies an approximate finite speed propagation principle.

2.1. Almost finite speed of propagation

The main result of this step is to show that the solution has to stay in some (space-
time) cone, up to some error. However, the smaller the error, the larger the cone.
In this sense, we say that the solution satisfies a kind of almost-finite speed of
propagation principle.

In order to achieve our goal, we use an observation by Tao [20] that global solutions
of bounded energy to highly dispersive subcritical equations remain bounded in
frequency.
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Proposition 2.1. Let n > 5, and let u be a strong solution of (0.1), then there
exists a solution w of the linear equation (1.1) and n > 0 such that the following

holds

u(t) = w(t) + v(t),

v(t) = 0in H? ast — +oo and
E(Psnv, Psyvy) Sy o(1) + N7

~oUu

where o(1) — 0 as t — 400, independently of N. In particular, for any € > 0, there
exists N such that

I1P>nu(t)][m < e (2.2)
for all times t > 0.

In order to prove Proposition 2.1, we use the fact that formula (1.7) shows that
u can be decomposed in two different terms with very different features. First,
we have the contribution of a linear solution. This has finite space-time norm (so
that all the “nonlinear behavior” is quite localized), but does not enjoy any gain
in regularity. The other term now comes from the contribution of the nonlinearity.
It is less explicit, but has better regularization properties. The first term can be
manipulated easily. To deal with the second, we wish to isolate the contribution of
the nonlinear term. However, the scattering formula (1.9) tells us that this nonlinear
contribution should also create some linear evolution. To get around that problem,
we isolate the nonlinear term “when ¢ tends to infinity”, using (1.8) to find what

the asymptotic linear term should be. This way, we can produce a formula similar
to (1.7):

(u(t), wl®) = WO i) + [ W =)0l u(s)ds,  (23)

where the integral is understood as the weak limit of the integrals over finite segment
[t,T] as T — +4o00. Using also the classical Duhamel formula (1.7) to compensate
for the poor definition of the integral in (2.3), we get two expressions for u that
involve the contribution of the nonlinear term on disjoint time interval. In order
to find better regularity in the nonlinear term, we project both formula (1.7) and
(2.3), on the high frequencies, take the scalar product and we express (v(t), v4(t)) =
(u(t), us(t)) — W(t)(ug,ui) as a sum of different terms, the worst of which is the
“Double Duhamel term” which after some integration by parts, reads as follows:

()= [ [0 )0 Panlul (), 0, Parlul?~ (') dsds

To estimate this term, we split it in two parts.

First, we consider the contribution of times s, s’ which are far away from the given
time ¢. For these times, in particular, |s’ — s| >> 1, and we can use the fact that the
high frequency part of the linear propagator W has a very fast decay, as shown in
(1.5). In fact, in dimensions n > 5, the decay of the high frequencies is so fast that
one can make the integrand in Z integrable around infinity. Thus, the contribution
of {(5,8):0<s<t— N"<t+ N" <} can be made arbitrarily small provided
N is taken sufficiently large.

Then, it remains to deal with the contribution of the times (s, s’) which are not too
far away from the time ¢ we consider. In this region, we can no longer take advantage
of the dispersion. Besides, this region is by no means small (it is of size N", N large).
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However, we consider only the high frequencies, and we have a subcritical equation
(0.1) with a bound on a critical norm, namely the Energy. The idea is then to push
the solution to higher and higher frequencies, which will “select” H? behavior, and
thus should damp the effect of the nonlinearity. In fact one can prove the following
estimate:

ke E
| Ponull por .0y SE@y N7+ [1])a (2.4)

which enables us to get a small contribution of the nonlinearity in the suitable norm
for long time interval.

As a remark, we note that this procedure is quite general, and Proposition 2.1
holds true in many cases when a solution of a highly-dispersive equation has bounded
H?-norm uniformly in time (we refer to Tao [20] for a previous use of that strategy).

Proposition 2.1 goes a long way towards the resolution of the scattering conjecture,
as it identifies the scattering element, and derives some properties of the error term
v. In particular, our goal is to prove that v decays to 0 strongly in H?.

Now, the next step is to use the fact that linear solutions bounded in frequency
almost move at a finite speed, or in our case, the corresponding property of the linear
propagator, together with Proposition 2.1 to obtain an almost-finite propagation
speed principle for the nonlinear solution, in order to be able to use the Morawetz
estimate (2.1). More precisely, we claim that

Proposition 2.2. Let u be a solution of (0.1) such that (2.2) holds true. If € > 0
is sufficiently small, then there exists R > 0 such that

t,2) P dr <gp €° 2.5
/{|x>R<1+t>}|u( DI dr S (2:5)

for all times t > 0, where k > 0 is independent of u,¢.

This means that v is essentially concentrated in a cone of slope R. If u were a
solution of the wave equation, we would have Proposition 2.2 with a cone of slope
1. Here the slope depends on the error €.

In order to prove Proposition 2.2, we first remark that, using our assumption (2.2),
it suffices to consider the low frequency component of u, and then that, taking R
sufficiently large, estimate (2.5) is easily proven for the linear solution with the same
initial data as u (i.e. for the linear component of u in (1.7)). Now, in order to extend
it to the nonlinear solution, we consider o and 6 satisfying

2n 2n 1 1-0 0
—i<a< 0<f<land — = — + — 2.6
n+4 TS hTa an ap 2 +a’ (2:6)

for some small 6 > 0, and the set

1(C) = {t > o;/ lu(t, z)|P < cgpa}.
{lz|>R(1+1)}

Our goal is then to prove that for C' sufficiently large, uniformly in e, there exists
R > 0 such that I(C') contains a neighborhood of 0 and that I(2C) C I(C).
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In order to prove this, we let S; = {|z| > R(1 + t)}, and we split u into several
pieces, using (1.7)

lStU<t) = lStPZNu<t) -+ lstPSNﬂjW(t)(’U/(), 'Lbl)

t

~ 16, Pex / T — $)(0, |ulP~u(s))ds

- min(0,t—¢)

t—9

— 15tP§N/ mW(t — s)(0, 1se lu|P~tu(s))ds
t=0 s
t—0

16 Pey / T — $)(0, 1, . [ul?Lu(s))ds
t=0

:T1+T2+7’3+T4+T5

The first and second terms are small provided that R is large enough, as said before.
The third one is small, provided § > 0 is sufficiently small, depending on ¢, F(u).
As these are the only terms if ¢ < 0, we get that I(C') contains a neighborhood of 0.
Now, the difficulty is to bound the contribution of the nonlinearity over long periods
of time.

First, we consider the fourth term. This terms corresponds to the contributions of
the points close to the origin (i.e. inside the cone) at previous times to the dynamics
of the points far away from the origin at time ¢ (i.e. outside the cone). However, this
interaction is only possible through the action of a linear propagator bounded in
frequency, which thus only enables a finite speed (here of order 2N) of propagation.
Consequently, this contribution is small (by “non-stationary phase” arguments) if
we choose the slope of the cone sufficiently large (here R > N+ will do).

Second, we need to control the contribution of the last term: the points previously
outside the cone that interact with the points now outside the cone. Of course, that
interaction is not banned by the “boundedness in frequency” hypothesis. However,
in this situation, the term that interact are of size €, and interact in a nonlinear way,
so the interaction is of size e? << . More precisely, we first discard the contribution
from t — 1 to t — §, which is easily seen to smaller than e?~%, and then, using the
fact that the sum of the last two integrals is bounded in L? and (2.6), we write, for

tel(0),

[1s,u(t)|| e < dce + [|ra + 5|20 ra + r5]|S o

t—1 o
<des+¢ <€p —i—/o |m PsaW(t — s)(0, |u|p_1u(s))||m/ds> (2.7)

0
<dce+¢ (6” + sup ngsu(s)||1£m>
s€[0,t—1]
where ¢, ¢ are independent of ¢, C, e. Using (2.6) and (2.7), we see that for C
sufficiently large, we get that I(2C) C I(C), and thus u remains concentrated in
the corresponding cone in LP*. By conservation of the energy, Holder’s inequality
then gives (2.5).

2.2. Morawetz estimate and space-time bound

Using the Morawetz estimate (2.1) and Proposition 2.2, we can find an arbitrary
long interval I on which the solution has arbitrarily small nonlinear behavior as
follows: Given € > 0 and L > 1, we get R such that (2.5) holds true with ¢/L
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instead of €. Independently, in any given cone, we can find intervals of length 2L
such that the nonlinear term is small. Indeed, letting

2(k+1)L

ap = |U(t,$’)|p+1dl‘,

2kL /{mI<R(1+t)}

the Morawetz estimate (2.1) ensures that

Qg
Z%ma@+2w)<“”

and for that series to converge, we must have terms a; which are arbitrarily small.
Thus, there exists an interval I = [a,a + 2L] such that

//hmeHMﬁga
I JR™

Thanks to the subcriticality of the nonlinearity, we can improve this smallness in
LPHH(I x R™) to a smallness in L>(I, LP*') as follows. Let M = ||ul| o0z 10+1) and
let ty € I be a point where the maximum is attained (recall that v € C(I, LPT1)).
Then, using the bound on the H%-norm given by conservation of energy, we see that
there exists k > 0 and N Spe) M " such that ||P<yu(to)||ze+1 > M/2. Besides,
still by conservation of energy, we also get that ||0;P<yul||r2 < 2F(u), hence

| P<yu(ty) — Penu(s)| 1z Seg (fo — 8)2.

Since ||P<yu(ty) — P<yu(s)||lze Spw) N2, we get by Hélder’s inequality that for
all s such that [ty — s| Sy MPTVe for ¢ > 0 independent of M, there holds that
|| P<nu(s)||»+1 > M /2. Since the Littlewood-Paley projection is bounded, we get,
integrating on I, that ||u||pr+1(1xrn) ZEw) M, hence, smallness in LPTH(T x R™)
implies smallness in L> (I, LP*1).

Now, we remark that if the “reaction has ended” (in the sense that u has little
nonlinear presence for a long time interval), then it cannot spontaneously ignite
again in the absence of a perturbation by the linear part. Indeed for any time
t > a+L, using (1.7), we see that u(t) is the sum of a linear solution with same initial
data, the contribution of the nonlinearity for times before a, and the contribution
of the nonlinearity between a and t,

(u(t), ue(t)) =W(t)(uo, u1) = W(t — a) /Oa Wi(a = s)(0, [ul"""u(s))ds
- /at W(t — 8)(0, |ulP~ u(s))ds.

But, by the decay of linear homogeneous solutions, if L is large enough, the first
term is small. Similarly, the second term is also a linear homogeneous solution, and
has therefore uniformly bounded H?-norm. Using also the decay in L* of linear
homogeneous solutions (1.5), we get that if L is sufficiently large, this term is small.
Finally, we run a nonlinear argument similar to the one in Proposition 2.1 to prove
that if the nonlinearity is smaller than e, and if the contribution of the other terms
are small, then the nonlinear term remains small.
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2.3. More about the scattering operator

Once it is shown to exist, the scattering operator, whose formula is given by (1.9),
almost directly comes with some regularity properties that can be derived from its
functional equation:

(u(t), us(t)) = W) (ut, ut +/ Wt — )(0, [ulP"u(s))ds.

The results presented here are from Pausader and Strauss [18]. Using an implicit
function theorem, one can get the following regularity property:

Proposition 2.3. Letn > 5, 1 +8/n < p < 1+ 8/(n — 4), then any nonlinear
solution w of (0.1) scatters to a linear homogeneous solution w of (1.1). Besides,
the mapping, u(0) — w(0) and S are C'PI-diffeomorphisms of & commuting with
translation and satisfying 2E(u) = ||0w(0)]|22 + [[(1 — A)w(0)||2..

Besides, still using the functional property, we get a second order expansion of
the scattering operator around (0, 0),

S(u,v) = (u,v) )\/ )(0, |w[P~ w(s))ds + O(u, v)*~!

where w(s) solves (1.1) with initial data (u,v). Using the second term in the ex-
pansion of the scattering operator, one can find that it determines uniquely the
nonlinearity (i.e. it gives A and p in (0.1)). More generally, if we replace A|ul[P~1u
by an arbitrary function f(u) satisfying suitable conditions so that scattering still
holds, then the scattering operator determines the Taylor expansion of f at 0.

In case the nonlinearity is analytic, the scattering operator is analytic, and one can
give an explicit expansion of S around (0,0). Of course, in this case the scattering
operator completely determines the nonlinearity. We refer to Carles and Gallagher
[3] for other results in the case of wave and Schrodinger equations.

3. Miscellaneous remarks
Remark 3.1. We have proved that for any u solution of (0.1), we have that
t,x) [P dadt < oco. 3.1
| Julta)* dadt < o0 (3.1

Then, using an analysis similar to the one in Bahouri and Gerard [1] (but in the
easier context of a subcritical equation), we can prove that the bound in (3.1) depends
on u only through the energy E(u).

Remark 3.2. In a similar way, in dimensions n < 4, we can use a contradiction
argument similar to the one in Kenig and Merle [7] to prove the scattering conjecture
when p > 1+ 8/n. However, the argument in this case does not give such a good
description of the behavior of solutions. We refer to Pausader [17].

Remark 3.3. One could wonder about the significance of the exponents in theorem
0.1. They correspond to the L? and H?-critical exponents, which in turn correspond
to the quantities for which we know an a priori bound, thanks to the conservation
laws. However, we note that, for small initial data in H=* N H? x H=' N L?, one
has scattering even for a smaller power 1 +8/(n+2) < p < 14 8/n, at least in
dimensions n > 6. On the other hand, there is a limit as to how much one can
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lower the exponent, since if p < 1+ 2/n, using (1.2), it can be shown that any
smooth function whose Fourier support is away from 0 does not lie in the image of
the scattering operator (if such an operator exists).
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