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1. Introduction

Harper equation is the following difference equation with a periodic coefficient:

%(¢(m+h)+¢(x—h))+cosxw(x)=E¢($), (L.1)

where z € R, ¢ (z) € C, his fixed, 0 < h < 27, E is the spectral parameter,
E e C.

One encouters Harper equation in a series of problems of the solid state physics,
in particular, it is a popular model for two-dimensional Bloch electrons in a weak
magnetic field [H]. This equation is known also in the theory of operator algebras.

The spectrum of equation (1.1) in Ly(IR) is rather complicated, see, for exam-
ple, [BS], and it depends on the number theoretical properties of h/2m.

Our final aim is to give a detailed description of the geometry of the spectrum
of Harper equation. However, the aim of this text is to describe properties of
the solutions of (1.1) being entire analytic functions of z. These two problems
are tightly related in view of the monodromization procedure, see [BF4, BF6],
only briefly discussed here. The monodromization procedure forms a base for a
systematic approach to the spectral theory of difference equations with periodic
coefficients. It has many common points with the renormalization method sug-
gested by B.Helffer and J.Sjostrand [HS], but is independent of any semiclassical
hypothesis on the number h. In our first works, the monodromization method
was also developed under some semiclassical hypothesis [BF1, BF2, BF3, BF4].
Here we continue the work begun in [BF6] and complete the description of ana-
lytic properties of entire solutions of Harper equation without assuming that the
parameter h is small.

The subject of the paper is in a certain sense very close to the subject of the
classical analytic theory of differential equations.

The structure of the text is the following. Section 2 is devoted to the study
of canonical solutions defined in a vicinity of the singular point of the equation
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(z = 00). There we construct also entire solutions, minimal in a certain sense,
and introduce the main objects of the theory: the coefficients characterizing the
asymptotic behaviour of minimal solutions in the vicinity of the singular point.

In Section 3, we construct of two minimal solutions a natural basis in the
space of the entire solutions of (1.1). The choice of this two solutions reflects the
symmetries of the equation. We introduce the monodromy matrix corresponding
to this basis. Its elements are explicitely expressed in terms of the above coef-
ficients characterizing the minimal solutions. Futhermore, we show that, in the
case where h/27 is a Diophantine number, knowing these coefficients, one can
reconstruct the minimal solution itself.

In section 4, we relate to the symbol of the operator corresponding to (1.1) two
other operators Hy and H; generated by this symbol on the lines iR and 7 + iRR.
These operators have simple discrete spectra oy and o;. The above asymptotic
coefficients are explicetely described in terms of these two spectra. The proof
of the corresponding representations is essentially based on the analysis of the
behavior of these coefficients as E — oo.

The spectra oy and o, are not independent. The relations between these two
spectra are discussed in Section 5. These relations lead to some analytic properties
of the trace of the monodromy matrix. We discuss them in the end of the section.
Note that, in the case where A is small,the trace of the monodromy matrix plays
almost the same part in the spectral theory of (1.1) as the Lyapounov function
does for the differential equations with periodic coefficients.

2. Minimal solutions
In this section, we reproduce results of [BF6] in a slightly modified form.
Space of analytic solutions.

Fix o, B € R, a < 3. Let S be the strip
S={z=z+iyeC: a<y<pf}

and let Mlg be the set of the solutions of (1.1) analytic in this strip. Denote the
ring of all h-periodic functions analytic in S by K.

In the case of S = C, we use the simplified notations: Ml = Ml¢ and K = K.

The set Mg is a two dimensional module over the ring KKg. This means that
there exists a basis of two solutions, 11, ¥, € Mg, linearly independent over the
ring Kg. In other words, any solution ¥ € Mg can be uniquely represented in the
form

w:aw1+b¢2, a,bE]KS.

For any two solutions 91, ¥, € Mg the wronskian

{¥1(2), ¥2 (2)} = ¥1(2) ¥a(z — B) = Y1(z = h) a(2)

is an element of Kg. The solutions 1, ¥, form a basis if {1(2),¥2(2)} # 0,
z € S. The proof of the existence of such basis for S = C (and thus, for any 5)
was obtained in [BF1] for sufficiently small h, and in [BF6] for any h, 0 < h < 2.
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Bloch solution f.

To discuss the behavior of analytic solutions of (1.1) as z — %ioco, it is natural
to change the variable z — (, ¢ = e**. This transforms the original equation to
an equation with a rational coefficient having simple poles at ( = 0 and ¢ = oo.
Thus, one can speak about Harper equation itself as about an equation with two
singular "points” y = 400 and y = —oo. Here we are going to describe the
simplest solutions living in certain vicinities of these points.

As y — 400, Harper equation has the formal solution

fo(z, E) = et (=™ g5 2 > fa(E) €™, fo=1. (2.1)

n>0

If h/27 is a Diophantine number, the series in (2.1) converges in the strip S, =
{z: y > a> 0}, where a is a number depending on E and h, and gives a solution
of (1.1) belonging to Mlg, . This solution possesses the property

fo(z+2m,E) = —eizhlzfp(z, E) (2.2)

which allows to call it a Bloch solution. The proof of the existence of this Bloch
solution can be obtained by means of the techniques of [BF5].

For arbitrary h/2m, the series (2.1) does not converge and there is no natural
way to fix a unique solution possessing a canonical behavior as y — +00. Never-
theless, one can construct a solution f continuous in A, analytic in 2z, f € Mg,,
and having the asymptotic representation:

F(z,E)=emCE™ 37 (14 0(e7Y)), y— oo, (2.3)
For this solution the relation (2.2) is replaced by
f(z+2m,E)=s(z, E) f (2, E), (2.4)
where s is an h-periodic function,
s(z+h, E)=s(z E), (2.5)
having the property:
s(z, E) = —e "2 (1+o0(e™?), 2z— +ico. (2.6)

Note that the solution f is not uniquely defined. The methods of proof can be
also borrowed from [BF5].
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Canonical basis.

Introduce the following basis in Mg, :
fi(z,E) = f(2,E), fa(z B) = *™/" f (-2, E),
where the bar denotes the complex conjugation. One can easily see that
{fi, o} =14+0(e7Y), y— +oo.
On the strip S_ = S, = —S,, we shall consider the basis

91(2,E) = —fi(2m — 2,E), ¢:(2,E) = —f,(27 — 2, E).

Minimal solution.

Let ¥ € Ml. Then one can write

v=Af+ B[, A,BEKS+, (27)

and
Yy=Cg+Dg,, C,DeKg_.

Theorem 2.1. Let 0 < h < 27. Equation (1.1) possesses a solution ¢ € M,
such that the coefficients A and B from the corresponding representation (2.7)
are bounded as y — +00, the coefficients C' and D are bounded as y — —oo, and

D(z) -0, y— —o0.

This solution is unique up to a constant factor.

This theorem is proved in [BF6] !. The solution described in the theorem is
called minimal.

The coefliients A, B, C' and D can be represented in the form

A(z) =) An(E)C", B(2)=>_ Bu(E)(",

n>0 n>0
C(2) =3 Au(E)CT", D(2)=(" 3 An(E)CTM,
n>0 n>0

where ( = e??/h. The series for A and B converge in Kg,, the series for C and
D converge in IKs_. In the sequel, we are mostly interested in the coefficients Ay,
By, Cy and Dy, and, in particular, in their dependence on E. The results we are
going to discuss are proved in [BF6] and in [BF7].

1For the case where the number h was sufficiently small, this theorem has been proved in
[BF3].
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3. Monodromy matrix

Basis of the module M.

Consider two solutions of (1.1):

101(2, E) = 'QD(Z, E)a 102(2, E) = ¢(27r -2 E)

One can calculate their wronskian in terms of the coefficients By and Cy, see
[BFé],

{41, 2} = ByC.
Thus, for all E such that ByCy # 0 the solutions v, and 1, form a basis in M.

Note that since the product BoCy is entire in F and is not identically zero, the
set of its zeros is descrete. We describe this set later.

Monodromy matrix.

Together with ¢, and 1), consider the functions ¢, (z+27, E) and ¢, (2+27, E).
They also form a basis in Ml, and so one can write

(BE1B)-mem (38),

where M is a matrix with coefficients belonging to the ring K.
In [BF1] for sufficiently small h, and in [BF6] for all h such that 0 < h < 27
one has proved that the monodromy matrix has the following structure:

a(E) - 2cos (2nz/h) s (E)+ it (E)e2miz/h
M (z,E) = .
—s(E) — it (E) e2miz/h d (E)

where
d=ist, ad=1-—s*+1t2.

So, t and s can be considered as the only independent parameters of the mon-
odromy matrix.
The functions s (E) and ¢ (E) can be expressed in terms of the coefficients Ay,
By, Cy and Dy of the minimal solution:
. Ay Dy

t=1—, s$=-——.
By

- (3.1)

Let

The role of this function in the spectral theory of (1.1) is as important as one of
the Lyapounov function for the differential equations with periodic coefficients,
see [BF4].
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Reconstrucion of the minimal solution.

The coefficients 4, B, C, D and the monodromy matrix M are connected by
the relation

M(zE)T (2, E) = ~T(z + 2r, E) T (2, E), (3.2)
where Az, B) ( )
z, B(z, E
[z E) = ( Cr -2 E) D2 E) ) )

re0=("%" in)

and s (z, F) is the coefficient charcterizing the Bloch property of the solution f,
see (2.4).

As we have remarked, if h/27 is a Diophantine number, then, instead of the
solution f, one can construct the Bloch solution for which

s(z, E) =exp (z%z) .

In this case the relation (3.2) allows to reconstruct explicitely the Fourier series
for T' (i.e. the Fourier series for A, B, C and D) in terms of Ay, By, Cy and D,.
In result, knowing Ay, By, Cy and Dy, one can reconstruct the minimal solution

Y.
4. Analytic properties of the coefficients Ay, By, Cy and D,
Operator H,.

The analytic properties of the coefficients Ay, By, Cy and Dy, and, therefore,
the analytic properties of the functions s (F) and ¢ (E) can be described in terms
of the spectra of two operators Hy and H; generated by the same symbol as Harper
equation,

cos p + cos 2,

but on the lines :R and 7 + iIR.

The selfadjoint operator Hy is defined by the expression

. hd
HOZChﬁ+Ch?/, b=,
1 dy
on the natural domain in Ly(R). Note the functions from this domain are analytic
in the strip [Imy| < h. The operator Hy has simple discrete spectrum op =
{tn}zozl ’
2<th <...<t, <..., t, = 400, n — 00.



Operator H,.

Let .
Hy=chp—-chy, p= —}Ei
1 dy
We say F is a point of the spectrum of the operator H, if there is a solution of the
equation Hi¢ = E'¢ analytic in the strip [Im y| < h and having the asymptotics:

é (y) ~ ¢ie¢y/2 e—iy2/(2h), y — +oo0.

The spectrum o; of the operator H; consists of points {is,}%, lying on the
imaginary axis,

0<s1<...<8, <., Sp — 00, M — 00.

Note that o; can also be described as the spectrum of a compact operator.

Infinite products.

The properties of the functions Aq, By, Cy and Dy depend on the normal-
ization of the minimal solution (which is defined only up to an independent of z
factor). The coefficients of the monodromy matrix s and ¢ are independent of the
normalization of the minimal solution 7. One has

Theorem 4.1. The minimal solution 9 can be normalized so that the
coefficients Ay, By, Co and Dy could be represented by the infinite products
Ay(E) = —i l;[l(l — E/ta), (4.1)
By(E) = —V2e™/4 8 T (1 +4E/sn), (4.2)
n>1
Co(E) = I>Il(1 + E/ty), (4.3)
Do(E) =2 e"’i/h—i;/“—”‘/s 11 —iE/sn) (4.4)
n>1

which converge uniformely in F € C.

Note that to prove this theorem, one has to investigate the behavior of the
minimal solutions as £ — oco. This is done in [BF7].

Theorem 4.1 and formulae (3.1) imply that

1 - E/t,

t(E) = H m’

n>1

(4.5)
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1—1iE/s,

s(E) = —ie™ /" ] —=L2, 4.6
};[1 1+iE/s, (4.6)
Symmetries of Harper equation.
Note that the representations (4.1) — (4.4) lead to the formulae
Ao(E) = —Ao(E), (4.7)
Ao(=E) = =i Co(E), (4.8)
By(E) = —e/*=""i/h Dy(E), (4.9)
By(—E) = —ie” /" Do(E). (4.10)

These formulae, being an immediate consequence of theorem 4.1, reflect the the
main symmetries of Harper equation: the invariance with respect to the complex
conjugation, v (2, E) — % (z, E), the invariance wrt the reflections ¥ (z, E) —
Y (-2, E) and ¢ (2, E) — ¢ (21 — 2, E), the invariance wrt the Fourier trans-
form, and the invariance wrt the transformation v (z, E) — e™/* 4 (1 — z, E).
Formulae of the type (4.7) — (4.10) can be obtained directly, without representa-
tions (4.1) — (4.4), and moreover, in fact, such formulae were used to prove the
theorem 4.1. The full list of the formulae following from the invariance properties
of Harper equation includes also

By(E) Bo(E) = CU(E) - A(E), E€R,

which follows from the invariance with respect to the complex conjugation. In
fact, this formula is an explicit relation between the spectra oy and oy:

[I'a-E/t)+ ] 0+ E/ty) =2 ] (1 +iE/sy) [[(1 —iE/sn).  (4.11)

n>1 n>1 n>1 n>1

We shall discuss it in the next section.

Representations (4.5) — (4.6) lead to the formulae

E e/ E L 412
$(-E) =~ tB)= 1 (4.12)
and L
t(0)=1, s(0)=—ie"™ /" (4.13)
and to the relations
t(E)eR, |s(F)|=1, E € R. (4.14)

The last ones imply that £ (F) =€ R if E € R. This is the property of the
monodromy matrix which was very important for the spectral analysis of Harper
equation in the case of small h, see [BF4]. In that paper, we have found that
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the spectrum of Harper equation can be considered as the Julia set of a certain
dynamical system, and the relations (4.14) themselves were important to describe
the phase space of this system.

Asymptotic formulae.

In [BF7] we have investigated the minimal solution as |E| — oo and have
described the asymptotics of the coefficients Ay, By, Cy and Dy. For the functions
t (E) and s (FE) this has implied

Theorem 4.2. Fixe O0<e<nm. If —m+e<argFE < 7w —¢, then
t(E) = 22T h+0(1) co5 (202 /0 + 0 (1)),
A =1n(2F), E — o0;
if —=371/2+e<argFE < 7/2—¢, then
s(B) = —2i e 2R +0(1) co5 (202 /h + 21id B + 0 (1)),
A=1n(2E), E — oo.

The asymptotic formulae for ¢ and s on the complements of the described
sectors of the complex plane, can be obtained by means of the formulae (4.12).

The asymptotic formulae described in the theorem 4.2 caracterize, in particu-
lar, the asymptotics of ¢, and s,:

ty ~ e\/vrhn/2, Sy ~ e\/whn/2, n — oo.

5. Relations between the spectra oy and o
Direct relation.

Knowing the spectra oy and o; of the operators Hy and H; one can explicitely
describe s and t. However, these two spectra are not independent, see (4.11). In
principle, one can reconstruct o; in terms of oy.

Formula (4.11) and the representation (4.5) imply that
t(sn) = (=)™t p(s) = (=) (5.1)
This allows to split (4.11) into two relations:

[T -B/t) i [[Q+E/t) =0+ [[AFi(-1)"Efs)).  (52)

n>1 n>1 n>1
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Additional relation and the trace of the monodrony matrix.

We have seen before that the pair 1);, 1, exists and forms a basis in M if
By Cy # 0. Now we can say that this pair is a basis if E & (—aq) N (—ay).
Note that if E' € gy then ¢ (E) = 0. This implies that

a(E) —2cos(2rz/h) s(E)
M (E) =
-s(FE) 0

where a (E) is a finite number. Since det M = 1 this implies that s (t,) = +1. In
fact, one can get more precise relation:

s (ta) = (=1)™.
This formula is independent of (5.1), it complements formulae (5.2).

The last result allows to get the following representation for the function £ (E)

1-E/r
& (E) = 2cos (n?/h) —Lr
Oi==%p,
where 7, are real numbers,
2>Tr1>T19> ..., Tp — —00, N — 00,

satisfying the equation:
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