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Metric Horns
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Institut fur Mathematik

Humboldt-Universitat zu Berlin

1. The results
The spectral analysis of geometric operators on compact Riemannian manifolds is
a highly developed subject. In the last 15 years there has been increasing interest
in extending the more successful parts of the theory to spaces with singularities.
Usually, one deals with compact metric spaces which contain a Riemannian manifold,
M, as a dense open subset. Then M can be decomposed as

M = M i U £ / (1.1)

where Mi (the regular part) is a compact Riemannian manifold with boundary.TV,
and U (the singular part) is open with N = QU. In the present discussion, the most
prominent class of singular spaces are those with conic singularities in which case
we assume that, as a manifold

U = (0,5o) x N, 0 < £Q < 1, (1.2a)

equipped with the metric
g = dx2 Qx^g^. (^b)

Here x is the natural coordinate in (0, Co) and g^ is a smooth metric on N. Contribu-
tions to spectral analysis on these spaces may be found eg. in [Chl], [Ch2], [BS1],
[BS2].

Natural examples of singular spaces arise eg. from projective varieties contained
in some CP^, equipped with the Fubini-Study metric. Looking at the metric near
isolated singularities one discovers, alas, structures which are far more complicated
than conic singularities. To bridge the frustratingly wide gap seems, as of today,
still rather hopeless. All we can offer here is a modest first step: we will, instead of
(1.2b), allow metrics of the form

ga :== dx2 © X^QN, a > 1. (1.2c)

In the context at hand, Cheeger [Ch3] was apparently the first to study such spaces,
he called them "manifolds with metric horns". The main concern of [Ch3] is the
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L2-Hodge theory, whereas Peyerimhoff and Lesch [P],[LP] studied index problems
for geometric operators on these spaces by extendending methods of regular singu-
lar analysis as developed by Briining and Seeley for conic singularities [BS1], [BS2].
They did not succeed, however, in proving a Signature Theorem; this we will do here.

To be more specific, we introduce the signature operator on an oriented manifold,
M, with metric horns: let m == dimM be even and consider on ^lo{M\ the space of
compactly supported smooth forms, the operator

D:=d+6. (1.3)

Then D anticommutes with the involution

^M := V^l^ c (ei)... c {em\ (1.4)

given by the complex volume element of M, where {e^ is a local oriented and
orthonormal frame for TM and "c" denotes Clifford multiplication. More precisely,
if b : TM —> T*M denotes the "musical" isomorphism (with inverse #) then, for
T] € ^o(M),

c(^)7? = e\ A T] - e^L-7?.

Thus, we optain a splitting ^o{M) = ^"(X> © ^o'(M) and

D= 0 D,
D^ 0

defining Ds := D+ as the signature operator on M.

The first question that we encounter concerns the existence and uniqueness of
self-adjoint extension of D anticommuting with (jj or, equivalently, the existence of
closed extensions of D s '

Lemma 1.1 ([PL, Thm. 42) Ds has a unique closed extension which is a Fredholm
operator. D is essentially self-adjoint on ̂ {M).

We identify D and J9+ with their closed extensions. It follows that both D^D+ and
Dj^D\ coincide with their Friedrichs extensions on ̂ {M\ Thus, we obtain as usual

ind Ds = tr^(^M) [UJe~tD2} ^ t > °. (L5)

and we can take (1.5) as the basis to prove an index formula for jD+. The main tool
in the proof is the asymptotic expansion of the function

W := tr .̂M) pe-^2] (1.6)
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as t —^ 0+, for / = 0,1. Such an expansion has been announced by Callias [Ca] in
the most simple case of the scalar operator, 7^, which is the Friedrichs extension in
L\JR^) of

-Ql+x-^, a > l , (1.7)

with domain C^°{0, oo). The complicated details of Callias5 proof have not yet ap-
peared, as far as we know. Moreover, his proof does not seem to provide good
insight into the mechanism that creates the powers of t and log t figuring in the
asymptotic expansion. We will show that the problem fits nicely into the framework
of regular singular analysis. In fact, the asymptotic expansion will result from a
natural generalisation of the Singular Asymptotics Lemma (SAL) in [BS3]. Thus,
as Callias correctly though somewhat mysteriously remarks, manifolds with metric
horns can be well understood from the point of view of "conical" analysis!

The main results of this note read as follows.

Theorem 1.2 For I = 0,1 there are asymptotic expansions

W ~ ^a;.^-m/2+^&;.t(l+^/2a+ ^ c^-^logt. (1.8)
^°+ j>0 j>0 fci,fc2€^4-

m/2-j'+l=fci+fc2/3

Theorem 1.3
mdDs= yL(M)-^(7V). (1.9)

M

Here L(M) denotes the Hirzebruch L-form, and rf{N) the ^-invariant of the "odd
signature operator^ given by

£^:=c^(^+M (1.10)

on Q(AQ.

Both theorems are known in the conic case so we will assume

a =:!+/?, / ? > 0 , (1.11)

in what follows.
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2. Proof of Theorem 1.2
The proof of this result can only be sketched here, the full details will appear else-
where.

We begin with a suitable representation of D on U. It proceeds by separation of
variables as in the conic case; the details have been worked out in [LP, Sec. 2].

Lemma 2.1 On ^0(^)5 D is unitarily equivalent to the operator

D := 7^ + rx^S^x) (2.1)

acting on ^((O.^o)^2 ® ^(AQ). Here

7 = f ° ~1} r - ( ° 1} f22)7 \ 1 0 ) ' [ l 0 ) ' ^'z)

and, with D^ in (1.10),

S{x) = DN + a^-Miag (^-) =: DN + ax^S^

bj = n/2 — j, n = dim N == m — 1.

Moreover, under this equivalence, UM corresponds to

.:=(;_;). (2.3)

From Lemma 2.1, it is easy to compute that

D2 = -9l+x-2a{D],+xft^{8N-dN)-aCJDN)+x2^a2S2,+ua{2a-l)S^
=: -Ql+x-^iD^+x^DN+x^S,}
=: -Ql+x-^As^). (2.4)

We extend the operator function As{x) smoothly to (0, co) in such a way that

As{x)=D],+f{x)DN+f{xYS^

with f{x) = x in (O^oL fW ^ 0 ^d smooth for x > 0, and f{x) = 0 for x > 2eo.
Thus D2 can be regarded as an operator in ^(iR+^^L^A*^)) ==: ^{JR^^^H)
with domain ^((O, oo),(^2(g)Q(A^)). By abuse of notation, we denote by D2 also the
Friedrichs extension of this operator. Then, by Lemma 1.1, the explicit construction
of the unitary equivalence in Lemma 2.1, and standard comparison arguments (as
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explained in great generality eg. in [B2, Sec.4] we see that for ( / ) G C§°(—£o^ 6:0) with
(f) == 1 near 0

^L^IR+^H) [<^e~^2] ~ tr^(^M) [^ 0 TTI^M e-LD2] ^ (2.5)
t -^0+

Z = 0,1,71-1 : [/ —> (0, ^o) the canonical projection. Since the expansion in the interior
is well known, we have reduced the problem to an expansion problem for operator
valued Sturm-Liouville equations of the type (2.4); this is, of course, the heart of
the analysis.

Specifically, we will work with the same abstract framework as in [Bl]. Thus we
assume

the family {As{x))x>_o satisfies the assumptions , s
(1.2) through (1.6) of [Bl]. (2tb)

The expansion result (loc. cit. Thm. 2.1) yields the short time asymptotics for the
operator heat kernel in the commutative case. This does not apply to the family
(As{x))x>o m (2.4); instead we use

for some 7 e [0,2), [As{x^,As{x^] A^)"7

extends to a bounded operator m(T2 ® H^ (2.7)
with uniform norm bound for ^,3:2,^3 > 0.

Next we conclude by local analysis as in [BS1, Sec.4] that ^e""^ is trace class.
Hence the Trace Lemma [BS1, Appendix] implies the existence of an operator heat
kernel with values in the trace class of K and the identity

00

^L^(JR^K) [^Be-^] = f WtTK [Be-^Or, rr)] dx, (2.8)
o

for any B € H{K). To analyze this, we now use the same scaling as in the conic case
i.e. we introduce the unitary operator

U,f{x) := Z1/2 f{zx\ f e L\JR^ K\ x, z > 0. (2.9)

Uz maps (^((O, oo\K\) and D(T) into itself, and we copute

z^r [7; = -Q^ + z-^x-^A^zx) =: T,. (2.10)

Denoting by Tz the Friedrichs extension of r^, we obtain the analogue of (2.10) for
Tz hence

U.e-^U^e-^^ (2.11a)
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and for the kernel
e-^i,^) = ̂ e-^^i/^A). (2.11b)

Using this in (2.8), we arrive at
00

tr^(^) [^Be-^] = J^TK [Be-^2^ (1,1)] dx. (2.12)
o x

The main obstacle to obtain the expansion of this integral by the SAL, as in the
conic case, is the singularity z~20 in (2.10), created by the scaling.
To avoid it we put t := C"20 and rewrite the integrand in (2.12) as

x-^x^^e-W^2^^!^

= x-^WtiK [Be-^-^^T. ̂  ̂

=:(r{x,x^(,xY (2.13)

The next technical difficulty consists in the fact that a is not a smooth function of
x € JR+. But it depends smoothly on the two variables yi = x and y^ = x^ in ]R2

so we can apply the following extension of the SAL.

Theorem 2.2 Let a € C°°{IR^ x (0, oo)) and

W := Crf1,^2,.. .,<-), x € JR ,̂ (2.14)

_ 771

with (3i > 0, and put /? := E A- Assume that a satisfies the following conditions.
i=l

(I) There is a countable familiy (a^j) ^-oo C C00^771),
°<J<J'(At)

such that
( l+ l2 / l ) ' l ^ (2 / ) l<^ fc , A ; € W .

(II) Writing, for N e JN,

^Q/,C):=<r(y,C)- ^ ^(^C^og^'C (2.15)' P - 3
Ot>-N

0<J<J(^)

we have for all N and 7 e Z^

I ̂ ^(2/, C) I < C^ for C > 1, V i . . . Vm < C^.

( I l l ) For all 7 e Z^ and 6 € [0,1] we have the estimate

i i
I [ (3(xy | (9^a){0u(3{x), x) \dudx< C^

0 0
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Then, the Mellin regularized integral

00

!{(:):= faW.xQdx
0

exists and admits the following asymptotic expansion as ^ —» oo :

00

^(0 ~ ^^WfWiog^^dx (2.16a)r^

<-.00C—^oo .. . ̂
^ 0

+ E C-1-^/^^)^)^ (2.16b)
7e^y 5 ''

+ E ^log^C^^QW/O+l). (2.16c)
^>J

</3,7>+^=-1

We recall that the Mellin regularized integral of a locally integrable function / on
JR-}- is defined as

00 1 00

-f-f{x} dx = Reso / x^f^x) dx ̂  + Reso / x^f^) dx ̂  (2.17)
0 0 1 w-

provided both Mellin transforms in (2.17) exist and are meromorphic near w = 1.

Accepting for the moment that Theorem 2.2 applies to (2.13), we see that the
powers occuring in the expansion depend strongly on the exponents /^, the depen-
dence becoming entirely transparent through (2.16).

Moreover, it is useful to remark that contributions to the power t° can come only
from the "interior" terms in (2.16a).

It remains to verify that the a in (2.13) fulfills indeed the assumptions of Theo-
rem 2.2. To do so, we imitate Hadamard's expansion method for the heat kernel in
our setting. This has been done in [Bl] in the more special case of a commutative
family (A(;r))^>o and with only small time estimates. But this approach can be
generalized to the present setting to yield the following result.

Theorem 2.3 Assume the conditions (2.6) and (2.7). Then, for any N € JZ+, we
can write

e-^(l, 1) = (47r^)-1/2 f^y U,{y) e-^ + S^ y\ (2.18)
j=0
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where Uj is a universal polynomial in the variables y~^,y, and A^^y), of degree at
most 2j/3 in the first and third variables. Moreover, with some sequence (^) / oo,

WS^y) ||, £ c^———1-1 ,̂ ;̂;;;1, (2.19)

for 71 G ^+, 72 € ̂ , H < 1, and t > 0.

Two technical adjustments are necessary now to satisfy the assumptions of The-
orem 2.2: Firstly, to remove the singularities, .r"1 in (2.13) and ?/~1/2 in (2.18), we
multiply (2.13) by ^/2, using

t ^ / x = (^2Q)1/2^.

Secondly, to cut down the ^/-support (as necessary for (2.19)) we choose ^ e C^°{]R)
with -0 = 1 in a neighborhood of supp (f) and multiply (2.13) by ^(^). Then it
is easy to see that, in view of the conditions (2.6) and (2.7) each term in the sum
satisfies the assumptions of Theorem 2.2. Thus, the same is true for the left hand
side if we take into account the crucial estimate (2.19). Combining all arguments
completes the proof of Thm. 1.2.

3. Proof of Theorem 1.3
Now we use Thm. 1.2 with I = 1 to derive an index formula for Ds. We choose
e > 0 and write (^(rr) := (f){x/e}, for cf) as in (2.5). Then we derive from (1.5),
Lemma 2.1, (2.8), and the Local Index Theorem the identity

mdDs = tr^(^M) [^-^2QJD2]

= ^L^JR+^H) [^e-^02] + ( (1 - (J), 0 TTi)L(M)

M
+0,(t).

From (1.2c) we see that U is conformally equivalent to a Riemannian product im-
plying that the Pontrjagin classes and hence L(M) vanish on U. Therefore,

mdDs =: ̂ ^I{e^ + f L(M). (3.1)
MI

Since the family
A{x,y) :=y ^As{xy)
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satisfies the assumptions (2.6) and (2.7) we can apply the arguments of Sect.2 to
evaluate I{e^ t) :

oo
I{e,t) = [Wt^^e-W^il,!}]^

i J x

= fWt^H [^-"^^(l, 1)] ^. (3.2)
0

Next we plug in the expansion (2.18) for the kernel and observe that all terms except
the one with j = 0 either get multiplied by a positive power of e or else are Oe(t).
Thus, it follows from Theorem 2.2 that a nonvanishing contribution to t° can at
most result from the expansion of

oo
Jo(^):= />^)(47^te-2Q)-l/2(^)^t^^^e-(te-2a)^^ ^.

0 x

We now expand the exponential around ex = 0. Arguing as before we see that the
e~^ singularity drops out, in view of (2.3), and that only the contribution from the
second term can survive. This gives, with (2.4),

lim lim Ke.t) = lim lim Iiie.t)e_o+t-^o+ v / e^o+t^Q+ A v 7 /

= ̂ (47^)-l/2yo^(a;)(te-2a)l/2t^.H [^e-^2"^] ̂
o

= lim -a7r-1/2 /^(a;)(te-2Q)l/2t^fffD^^e-te-2<>D2'^ dx-
t-^0-}- J I. -I x

0

= ̂  (———J^t/u^u-^tVH [D^e-^} du
\ v 0

=-2^(t72)/u'l/2t^H[^e-^]ritt

= -^(N). (3.3)

To carry out the last limit we have used dominated convergence, observing that the
integrand admits an asymptotic expansion near u == 0 and hence must be integrable
since the (-limit exists. This finishes the proof of Theorem 1.3.

It is remarkable that the same argument does not work in the conic case due
to the lack of e-powers. Thus the metric horns are not only amenable to conical
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analysis, they turn out to be, in fact, much simpler!

However, in the conical case the same type of argument goes through if we deform
the metric (1.2b), conformally on £7, to the metric

ge := dx2 © x^e^gN-

This will change neither the index formula nor the interior contribution.
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