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A PERTURBATION
THEORY OF RESONANCES

SHMUEL AGMON*

1. INTRODUCTION

The notion of a resonance of an operator was introduced in quantum mechanics for
Schrodinger operators. The notion had several definitions. It is now accepted to identify
resonances of an operator with poles of the associated resolvent operator function taken
in some generalized sense. The resonance poles are hidden spectral objects. They are
uncovered by analytic continuation of the generalized resolvent through the continuous
spectrum.

Problems on resonances arise in mathematical physics and in other fields such as ge-
ometry and number theory. There are many recent studies dealing with such problems
(see [5] for many references). These studies indicate that resonances should be treated in
some formal way like eigenvalues. The question arises whether one can push this analogy
further and show that resonances of an operator are in fact eigenvalues of some closely
related operators. In this paper we show that in some general abstract setup this is in-
deed the case - resonances can be equated with eigenvalues. We note that in the special
case of a Schrodinger operator with a dilation analytic potential there is a well known
procedure which identifies resonances with eigenvalues. However, our approach is different
and it applies in various concrete situations where the dilation analyticity "trick" is not
available.

Our study was motivated by a quest for a good perturbation theory for resonances.
The resonance-eigenvalue connection established in this paper yields such a theory. The
theory is as good, and it is essentially the same, as the classical perturbation theory for
eigenvalues. (For other theories of perturbation of resonances see Howland [3], Albeverio
and H0egh-Krohn [I], Gesztesy [2] and references given there).

*Partially supported by the Edmund Landau Center for research in Mathematical Analysis, sponsored
by the Minerva Foundation (Germany).
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2 A PERTURBATION THEORY OF RESONANCES

The plan of this paper is as follows. The main definitions and hypotheses are given in
Section 2. The resonance-eigenvalue connection is established in Section 3. Some more de-
tails on this connection are given in Section 4. Finally, a perturbation theory for resonances
of holomorphic families of operators is outlined in Section 5.

2. THE SETUP

We consider a closed linear operator P in a given Banach space B. We assume that
cr(P) (the spectrum) ^ C. We denote by D a domain in C such that D D a(P) C crdis(P).
Thus the resolvent R(X) := (P - A)"1 is a well defined meromorphic operator function
in D with values in £{B). Its poles in D (the isolated eigenvalues of P) are of a finite
rank. Next we introduce a notion of a generalized resolvent. To this end we assume that
in addition to B there are given two Banach spaces BQ and £?i with BQ C B C BI such
that the injections:

(2.1) Jo : Bo ̂  B and J : B ̂  Bi

are continuous. For A € D \ crdis(P), we set

(2.2) ^(A) = JA(A)Jo.

Clearly R(\) is a meromorphic operator function in D with values in C(BQ, £?i). We refer
to R(\) a the generalized resolvent of P. We shall assume that the following basic
condition holds.

Hypothesis 2.1. The operator function R(\) admits a meromorphic continuation with
finite rank poles from D to a domain D^. D D, where

(P+na(P))\<7dis(P)^0.

(The last restriction is of course the statement that R(\) does not admit such a meromor-
phic continuation to D^.).

We note that in thejbllowing the term "generalized resolvent" will apply to the mero-
morphic extension of .R(A) from D to £>+. The function in P+ will also be denoted by
J2(A). The domains D and D-\. will be fixed throughout.

We are in a position to define the notion of a resonance.

Definition. A resonance of? is a pole Ao ofR{\), Ao € D+ \ D, which verifies one of the
following conditions. Either
(i) Ao 1 <7dis(P), or
(ii) Ao € <7dis(P) but the relation (2.2) does not hold (identically) in any deleted neighbor-
hood of Ao.

Remark. The definition of resonances clearly depends on the auxiliary spaces Bo, Bi. In
this paper we don't investigate the "uniqueness problem" for resonances.

The set of all poles of R{\) in D^. will be denoted by A(P). It is clear that A(P)
is composed of the following two disjoint sets. (i) Resonances of P in D+. (ii) Isolated
eigenvalues of P in Z)+.

We impose a second condition of P which is also basic for the theory. We assume
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A PERTURBATION THEORY OF RESONANCES 3

Hypothesis 2.2. Consider P as an operator in J?i. Denote this operator by P, i.e.

DomCP) = Dom(P) C Bi
Pu = Pu for u € Dom(/P).

The following holds.
(i) P is a closable operator in Bi.
(h) Denote by Pi the closure of? in Bi. Then the resolvent JZi(A) := (Pi - A)-1 e r(Bi)
exists for X in some open set 0 in D.

We conclude this section with a simple lemma which will be very useful later on.

Lemma 2.3. For any Ai € P+ \ A(P) and \^ 6 0 (0 as above), the following formula
holds:

(2.3) RiWRW = (^2 - \ir\R(\2) - ̂ (Ai)),

with the obvious interpretation of (2.3) when Ai = Aa.

Proof. If Ai 6 0 then (2.3) is (essentially) the resolvent equation for J?i(A) in 0. The va-
lidity of (2.3) for any Ai in D^. \A(P) follows from its validity in 0 by analytic continuation
in Ai.

3. THE RESONANCE-EIGENVALUE CONNECTION

In this section we shall establish that resonances of P are in fact eigenvalues of some
closely related operators acting in different Banach spaces. To this end we introduce certain
Banach spaces, depending on the operator P, which are intermediate spaces between Bo
and jE?i. The construction is as follows. We pick a bounded domain A in C, with a boundary
r of class C1, satisfying (i) A C D^.. (ii) T n A(P) = 0. Having chosen A we denote by
Br the linear set of elements / in the Banach space J3i, admitting a representation of the
form:

(3.1) f=9+ /A(C)$(C)rfCJr
where g is some element in BQ and $(C) is some continuous function on F with values in
BQ (the integration in (3.1) is over the positively oriented boundary with respect to A).
Next we introduce a norm in 2?r? setting for / 6 Bp:

(3.2) ll/l|Br=^f(||^||Bo+||$||c(r;Bo))

where the infimum in (3.2) is taken over all g € Bo and $ G G(r;Bo) which verify (3.1)
((7(r; Bo) denotes the Banach space of continuous functions on F with values in Bo). It is
easy to see that under the norm (3.2) By is complete. Hence By is a Banach space. We
have the following inclusion relations with continuous injections:

(3.3) Bo CBr CBi.
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4 A PERTURBATION THEORY OF RESONANCES

Next we associate with any A e P+ \ A(P) a linear operator Tr(A) : Bp -^ Bi defined
as follows. For any / 6 Br, where / is given by (3.1), we set

(3.4) Tr(A)/ = R(\)g + /(C - A)-^) - A(A))$(CX.
Jr

We have to show that Tr(A) is well defined on Br (i.e. Tr(A)/ is independent of the special
representation of /).

Suppose first that A e 0 (0 defined in Hypothesis 2.2). Applying JZi(A) to (3.1) and
using (2.3) we have:

(3.5) rr(A)/=J2i(A)/ for / e Br

which shows that Tr(A)/ is well defined for any A in the open set 0. From (3.5) it follows
by analytic continuation in A that if / = 0 then IT (A)/ = 0 for any A e D^. \ A(P).
Thus the operator Tr(A) is well defined for all A. Also, it follows readily from (3.4) that
Tr(A)6r(Br,Bi).

We shall now show that if A e A \ A(P) then RanTr(A) C Br and that Tr(A) is in fact
an operator in ^C(Br). To see this let / € Br be given by (3.1) and rewrite (3.4) in the
form

(3.6) Tr(A)/ = R{\)g^ + I J?(C)((C - A)-1^^))^
Jr

where

g x = g - /(C-Ar^CXeBo.
Jr

Let p(^) ^ 0 be a polynomial of minimal order such that p(^)R(Q is holomorphic in A.
By Cauchy's formula:

(3.7) J?(A)^ = (27rzp(A))-1 / ^(C)((C - A)-1?^)^)^.
Jr

Combining (3.6) and (3.7), we get:

(3.8) Tr(A)/ == / ^(C)((C - A)-^,(C))rfC
Jr

where
^(C)=$(C)+(27^zp(A))-lp(C)^.

Hence: Tr(A)/ e Br. It is also readily checked that Tr(A) is in fact a continuous operator
in Br.

We are going to use the following notation. For any A € A \ A(P) we shall write jRr(A)
for the operator Tr(A) when considered as an operator in ^C(Br). It is clear from the
above that A 9 A i-̂  J?r(A) G ^(Br) is a meromorphic operator function in A with poles
contained in the set A(P).
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A PERTURBATION THEORY OF RESONANCES 5

Proposition 3.1. The following equation holds:

(3.9) RrWRrW = (Ai - \2)~\RrW - RrW)
for any Ai, Az € A \ A(P).

Proof. (3.9) follows from the following more general relation which we shall need later on:

(3.10) TrWRrW = (A - ̂ -^(A)/ - TrW)
for any \eD+\ A(P), ^ € A \ A(P) and / € Br.

To prove (3.10) we consider the resolvent equation for the operator Pi:

(3.11) RiWRiW = (A - ̂ ~\RiW - PiW
which holds for all A, /j, in 0. From (3.11) and (3.5) it follows that

(3.12) RiWrW = (A - ̂ -\Tr(\)f - TrW)
for A,/2 € 0 and any / 6 J9r. By analytic continuation in p, it follows that (3.12) holds
for all ^ in D+ \ A(P). Restricting /^ to A, using (3.5), yields (3.10) for A € 0. Finally,
an analytic continuation in X establishes (3.10) for all A G D^. \ A(P) and ^ e A \ A(P).

Proposition 3.2. -Rr(^) ls an mj^ctive operator in By for every p, 6 A \ A(P).
Proo/. Suppose by way of contradiction that jRr(^)/ = Tr(^)/ = 0 f011 some /^ 6 A\A(P),
/ G Br, / ^ 0. Applying (3.10) it follows that Tr(A)/ = 0 for all A € D+ \ A(P). Using
(3.5) it follows that J2i(A)/ = 0 for all A 6 0. This, however, contradicts the injectivity
of^i(A). D

It follows from Proposition 3.1 and Proposition 3.2 that -Rr(A) is the resolvent of an
operator Pp in By\
(3.13) ^r(A) = (Pr - A)~1 for A e A \ A(P),
where Pp is a closed linear operator in By defined as follows:

Dom(Pr)=Ran^r(Ao),
PTU = XQU+ f

for u = JZr(Ao)/ € Dom(JF^), / G Br. Here Ao is some fixed point in A \ A(P).
One should note that (3.14), (3.10) and (3.5) imply that Pi is an extension of Pp in the

sense that
Dom(Pr)cDom(Pi),

(o.lo)
PTU=P^U for ^eDom(Pr).

From (3.5) it follows, by analytic continuation, that

(3.16) RrWf = RW for / € Bo,
for any A G A \ A(P).

From (3.16) and (3.15) it follows in particular that

(3.17) Ran^(A) C Dom(Pr) C Dom(Pi)
for any A G A \ A(P).

From (3.16) and (3.8) it follows that -Rr(A) and R{\) possess the same poles in A. This
yields
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6 A PERTURBATION THEORY OF RESONANCES

Theorem 3.3. The operator Pp has a discrete spectrum in A given by

(3.18) <7(flr)nA=A(P)nA.

In particular, all resonances ofP in A are eigenvalues of Pp.

4. MORE ON THE RESONANCE-EIGENVALUE CONNECTION

We continue with the discussion of the last section. We shall assume now that the
domain A was chosen to contain a given resonance \o of P. By Theorem 3.3 Ao is an
isolated eigenvalue of PT. We wish to explore this relation more closely.

Now, Ao is a pole of R(\) of order r and also a pole of Rr(\) of order n. From (3.16) it
follows that n>,r (later we show that n = r). We consider the Laurent expansions about
Ao:

(4.1) RW= ̂ ^-\^S,,
]>-r

(4.1)r RrW= ̂  (A - Ao)^,
j>-n

where Sj € C{BQ, Bi) for j > -r, Sj € £(Br) for j ^ -n; S-r and S^n / 0.
The relation (3.16) implies that

(4.2) Sjf=S^f for JeBo

and all j >, -n (if n > r we set Sj = 0 for -n < j < -r). From (4.2) and (3.17) it follows
that

(4.3) RanSj C Ran^ C Dom(Pr) C Dom(Pi).

We now claim that

(4.4) RanSj = RanS^

for —n<^j< —1. (Note that this proves that n = r). In this connection we recall that Sj
and S^ are finite rank operators for j <_ —1, and that (by spectral theory)

(4.5) RaxiS] C Ran.S'J+i

for -n < j <, -2.

Proof of (4.4) (sketch). Let / e By and suppose that / is given by (3.1). Using (3.4) one
finds by integration over a small circle 7 centered at Ao that

(4.6) /(A - X^-^RrWfdX = /(A - \o)^-1 R(\)F(\)d\
Jf J^
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A PERTURBATION THEORY OF RESONANCES 7

for —n <, j <, -1 where F(A) is some analytic function in A with values in BQ. From (4.6)
it follows that

(4.7) Ran5f C © RanSjk
^<k<j

for -n<j< -1. Combining (4.7), (4.5) and (4.3) yields (4.4). D

Recall that by standard spectral theory —S^ is a projection operator in By which
projects on the set of generalized eigenvectors ("root vectors") of Pp at \o and that

(Pr-Ao)^^ for j > -n, j + 0,

(Pr-Ao^^O.

Taking account of (4.3), (4.4), (4.5), (4.8) and (3.15), we obtain

(4.8)

Theorem 4.1. Let XQ € D^. be a resonance of P, \o a pole of JR(A) of order r. Let
Sj G jC(Bo,2?i) be the coefficients in the Laurent expansion of R(\) about \o given by
(4.1). The following holds.
(i) Ran5j is a finite dimensional invariant subspace of Pi for any j < —1.
(ii) Ifr>2 then Ran^-i C Ran5y for -r + 1 < j < -1.

^ (Pi-Ao)^=^-i for j>- r , j^0,

(Pi - Ao)5_, = 0.

Definition. Let \o be a resonance of P. Denote by 5-i the residue of R(\) at \o as
above. Then
(i) The integer dimRan5-i is called the multiplicity (or the algebraic multiplicity) ofAo.
(ii) An element u € Ran5-i such that

(Pi - \o)u = 0

is called a resonance vector of P at XQ. Any element in Ran5-i is called a generalized
resonance vector at \o.

Remark. In this paper we adopt the convention that a resonance vector is also a gener-
alized resonance vector and that an eigenvector is also a generalized eigenvector.

Finally, we elaborate on the relation between resonances of P and eigenvalues of Pr
given in Theorem 3.3.

Theorem 4.2. With the same notation as above, let £ denote the space of resonance
vectors (resp. generalized resonance vectors) of P at \o. Then £ coincides with the space
of eigenvectors (resp. generalized eigenvectors) ofPp at \o. Also, £ C Dom(Pi) and
PI == Pp on £.

Theorem 4.2 follows readily from (4.4), (4.8) and Theorem 4.1.

Remark 4.3. If Ao € A is an isolated eigenvalue of P then the same arguments used
in this section show that Theorem 4.2 holds with £ replaced by the space of eigenvectors
(resp. generalized eigenvectors) of P.
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8 A PERTURBATION THEORY OF RESONANCES

5. PERTURBATION THEORY

We turn to perturbation problems. With P the operator studied before, we consider a
family of operators P(t) in B, defined for t in a connected open neighborhood ft of the
origin in C, of the form:

(5.1) ?{t)=P+V(t)

where V(t) : B —^ B is a closable linear operator for any t in ft, verifying the following
conditions.
(i) Dom(T(<)) = Dom(P), V<.
(ii) V(0) = 0.
(iii) V(t)u is a holomorphic function of t in ft (with values in B) for any u G Dom(P).

Our first observation is that P(t) is a holomorphic family of operators of type A in the
sense of Kato ([4]) if t is restricted to some sufficiently small neighborhood of the origin.

To prove this we need only to show that P(t} is a closed operator for all t sufficiently
small. Now, since the resolvent set of P is not empty it follows by standard arguments
(closed graph theorem) that V(t) is a P bounded operator for each t. More precisely, we
find that

\\V(t)u\\B<e(t)(\\Pu\\B^\\u\\B}

e(t^ —> 0 as i —> 0. Rv a wpll Tcnnwrfor any u € Dom(P) where e{t) —^ 0 as t -^ 0. By a well known theorem it follows that if
e(t) < 1 then P + V(t) is a closed operator. Hence the result.

Replacing ft, if necessary, by a smaller domain we may assume without loss of generality
that P(t) is a holomorphic family in ft of type A. let Ao be a simple isolated eigenvalue
of P. A classical result in perturbation theory asserts that for ( sufficiently small P(t) has
a unique simple eigenvalue \(t) near Ao, A(<) being an analytic function of t. Moreover
the theory furnishes "explicit" formulas for the derivatives of A(t) at Ao. When Ao is a
degenerate eigenvalue similar results hold for A(<) which is the mean of the "eigenvalue
group" of V(t) near Ao (see [4]).

The question arises whether similar perturbation results hold for resonances of P(t).
We shall show that this is indeed the case under a suitable restriction on the perturbation
V(t). We introduce the following assumption.

Hypothesis 5.1. There exists a family of closable operators Vi(t) : Bi —^ £?i, defined for
t 6 ft, with Vi(0) == 0, such that the following holds.
(i) Dom(yi(f)) = Dom(Pi) and RanYi^) C BQ, V*.
(ii) V\(t)u is a holomorphic function with values in BQ for t 6 ft, for any u € Dom(Pi).
(iii) V(t)u = V^t)u for u € Dom(P), V<.

Let Ao € 25+ be a resonance of P. We propose to study resonances of P(t) near Ao (for
small <). To this end we pick a domainO' satisfying: (i) D1 CC D. (ii) D1 HO ^ 0 where 0
is the set in Hypothesis 2.2. Then we choose an open set 09 such that 0' CC P' n 0. Next
we pick a domain 25^, containing the resonance Ao, verifying: D\ CC 25+ and D ' , D D1.
Finally we fix some domain A, with a boundary F of class C1, satisfying: (i) A C D+.
( i i )ADP+ . ( i i i)mA(P)=0.
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A PERTURBATION THEORY OF RESONANCES 9

With P and A fixed, we denote by By and Pp the Banach space and the operator
introduced in Section 3. We recall that Bo C Br C Bi and that Dom(J^) C Dom(Pi).
Next we consider two families of operators P\(t) : B\ —^ B\ and Py{t) : By —> Br, defined
for any t € Q, as follows:

(5.3)

(5.3)r

Dom(-Pi(<)) = Dom(Pi),

Pi(t)u == Piu + Vi{t)u for u € Dom(Pi).

Dom(-Pr(*)) = Dom(Pr),
-PF(<)M = PTU + Vi(t)u for u € Dom(Pr).

We have

Proposition 5.2. 'Pi(^) and'Pr(^) are holomorphic families of type A in fl,o, with 'Pi(O) =
PI, ̂ (0) = PT, where Q,o C ft is some domain in C containing the origin.

The proof of the proposition is similar to the proof of the same result for the family
T(t

Âpplying well known perturbation results for holomorphic families of closed operators
([4]) we find that for t in some sufficiently small disc u? centered at the origin the following
holds:
(i) P(t) has a discrete spectrum in D9.
(ii) Pi(t) has no spectrum in 0'.
(hi) Pr(t) has a discrete spectrum in D. .

For any t G c^ we introduce the resolvents:

J^;A):=CP(f)-A)-1,

(5.4) Ri^\):={P^t)-\r\

I?r(*;A):=(Pr(<)-Ar1.

JZ((; A) is meromorphic in A in D'; J?i(<; A) is holomorphic in 01 and -Rr(<; A) is meromor-
phic in A in D^ (all poles are of finite rank). We also introduce the generalized resolvent
of P(t) defined by

(5.5) R(t\ A) = JR(t', A) Jo

where J\ Jo are the injection operators (2.1). J2(<;A) takes its values in C{BQ^B\). It is
meromorphic in A in D9.

Since P(t) is a restriction of Pi(t) to B and Pr(t) is a restriction of Pi(t) to By (see
(3.15)), we find that for any t G ^ and A € 0' the following relations hold:

(5.6) Ri{t',\)f=R^X)f f o r / eB , J?i(<; A)/ = J2r(<; A)/ for / e Br.

Since BQ C B and Bo C Br, it follows from (5.6) and (5.5) that for any t G a; and A G O ' :

(5.7) ^(<; A)/ == %-(*; A)/ for / € Bo.
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10 A PERTURBATION THEORY OF RESONANCES

Finally, since JF?r(*;A) is meromorphic in A in D^ (recall that D^ D D' D 0'), it follows
that R{t\ \}f admits a meromorphic continuation from O1 to D^ given by the r.h.s. of
(5.7). This shows that Hypothesis 2.1. holds for the operator P(t\ any t 6 a;. Also, the
first relation (5.6) shows that Hypothesis 2.2 holds for the operators P(t\

Let D^. be a domain in C such that D^. CC -D+, 2)4. D A. The above considerations
show that by choosing a; sufficiently small we may further assume that R(t\ A) admits a
meromorphic continuation in A from 0' to £)+, for any t 6 a;. Now, using the relation
(5.7) it is not difficult to show (by arguments similar to those used in the proof of (4.4))
that J2(f; A) and J?r(^; ̂ ) possess the same poles in D\ for any t 6 a; and that if fi 6 -D'l.
is a pole of J2(<; A) and Rr(t\ A) for some t e a;, then:

RanResJZ(<;A)JA=^ = RanRes^r(<;A)|A=^.

This yields the following

Theorem 5.3. Let P{t) and Pr(t), t € ̂  be as above. The foiWin^ holds.
(i) The operator functions (in X) R(t'^ A) and Rr(t', A) possess the same poles in PY.
(ii) Let p, € D^ be a pole of ./?(<; A) and 2?r(^;^)- Denote by € the space of generalized
eigenvectors ofPr(t) ̂  the eigenvalue fi. Then £ coincides with the space of generalized
resonance vectors ofP(t) at the resonance ^. (If ̂  is an isolated eigenvalue ofP(t) then
£ coincides with the space of generalized eigenvectors of'P(t) at IJL.)
(in) £ is a finite dimensional invariant subspace for the operators Pi(t) and Pr(t). The
two operators coincide on £.

It follows from Theorem 5.3 that perturbation problems for resonances of the family 'P(t)
can be translated into perturbation problems for isolated eigenvalues of the family Pr(t)'
Thus perturbation theory for resonances (in our setup) is reduced to classical perturbation
theory for eigenvalues. Using this reduction we can obtain perturbation series formulas for
resonances which are essentially the same as those obtained for eigenvalues in the classical
theory.

In conclusion we remark that the perturbation theory for resonances described in this
paper is applicable to many concrete differential problems. Here are some examples of
operators P to which the theory is applicable (with a suitable choice of perturbations).
(i) P the operator —A + V on R71 \ Q where V is an exponentially decaying potential and
^ is a compact obstacle.
(ii) P the operator —A + V\ + Vz on R71, where V\ is a periodic potential and Vz an
exponentially decaying potential.
(in) P the Laplace-Beltrami operator on a non-compact hyperbolic manifold with a finite
volume.
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