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AN ESTIMATE ON THE HESSIAN
OF THE HEAT KERNEL

DANIEL W. STROOCK

ABSTRACT. Let M be a compact, connected Riemannian manifold, and let p¢(z,y)

denote the fundamental solution to Cauchy initial value problem for the heat equation

%‘ = %Au, where A is the Levi-Civita Laplacian. The purpose of this note is to

describe the behavior of the Hessian of logpr( - ,y) for small T > 0.
Emphasis is given to the difference between what happens outside, where the
behavior is like %, as opposed to at the cut locus, where it is like %

§0: INTRODUCTION

Let M be a compact, connected, d-dimensional Riemannian manifold, denote by
O(M) with fiber map 7 : O(M) — M the associated bundle of orthonormal
frames ¢, and use the Levi~Civita connection to determine the horizontal subspace
H.(O(M)) at each f € O(M). Next, given v € R let &(v) be the basic vector
field on O(M) determined by properties that

¢(v). € H(O(M)) and dr€(v).=ev forallee O(M).

(Here, and whenever convenient, we think of e as a isometry from R¢ onto Tr(e)(M).)

In particular, if {ej,...,es} is the standard orthonormal basis in R? then we set
Er(e) = E(ex).. If, for O € O(d) (the orthogonal group on R%) Rp : O(M) —
O(M) is defined so that

Roev=1¢0v, ¢€O(M)andveR?
then it easy to check that
(0.1) dRo€(v)e = €(Ov), ., e€O(M)and veR?

Given a smooth function F on O(M), we define VF : O(M) — R¢, Hess (F) :
O(M) — RI@R? and AF : O(M) — R by

d
VF =Y 6Fe, Hess(F)=((€oCF)) ;g
1

(0.2) )

- 2
and AF =) &F.
1
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In particular, when f is a smooth function on M, we set
Vf=V(for), Hess(f)=Hess(for), and Af=A(fom).
Starting from (0.1), it is an easy matter to check that

(Vf)oRo=0TVf, (Hess(f))oRo=O"Hess(f)O,
and (Af)o Ro = Af.

Hence, |Vf|, ”Hess (f)”HS (the Hilbert-Schmidt norm), and Af are all well-
defined on M. In fact, Af is precisely the action of the Levi-Civita Laplacian
on f.

Now consider Cauchy initial value for the heat equation

Ju . .
i sAu, te€(0,00) with tl{r(l)u(t,z) = f(z), ze€M.

By standard elliptic regularity theory, one knows that there is a unique, smooth

function (t,z,y) € (0,00) x M x M — p(z,y) € (0, c0) such that

u(t,z) = /M Fy)pe(z,y) A (dy), (t,z) € (0,00) x M and f € C(M;R),

where Ay denotes the normalized Riemann measure on M. Moreover, because A
is essentially self-adjoint in L2(Apr), pe(z,y) = pi(y, z).

§1: THE RESULTS

We begin by considering the logarithmic gradient Vlogpr(-,y), for which our
initial result depends only on the dimension d and the lower bound

1.1 = 1 i i ‘
(1.1) o eerg%l]}l)V‘Ignsldn_l(v,Rlc(e)v)}R

for the Ricci curvature. One (cf. [SZ]) can then show that there is a
C(d, @) < ico such that, for each € € (0, 1),

(1.2)
€)e?T)? p(z o
|Vlong(-,y)|(m) < ((1+ ) T) p(z,y) (E’E;a)%))

(T,z,y) € (0,1] x M?,

where we have introduced p(z,y) to denote the Riemannian distance between z
and y.

Notice that the preceding result does not feel the cut locus. To get a result which
does, we look at what happens asymptoticly as 7'\, 0. What one finds (cf. the
first part of Theorem 3.12 in [KS]) is that

y ouside the cut locus of z = 7(e) =
(1.3) lim T'[V1 . >) =
Jim T[VIog Pr(-,)](2) = ¥(&),
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where v(e, y) is the element of R? which is determined by the requirement that the
path f € C1([0, 1]; O(M)) satisfying

(1.4) f(0) = e and f(t) = €(v(e,y)) 1)

is the horizontal lift to e of the (unique) minimal geodesic going from z to y. When
y is at the cut locus of z, one should not expect (1.3) to hold. In fact, take S(z,y) in
Tz(M) to be the set of initial directions in which minimal geodesics from z to y can
proceed. When S(z, y) forms a non-trivial differentiable submanifold, then one can
use the second part of Theorem 3.12 in [KS] to see that the limit on the left side of
(1.3) exists and is a non-trivial convex combination of elements of ¢~ (S(z,y)). In
particular, since all elements of have the same length, this limit has length strictly
less than p(z,y) in this case. For example, when M is the circle centered at the
origin in R? with unit circumference,

(1.5) pr(0,%) = (27T)"2 Z exp ( _B;g_;_m)_) ,

meZL

and so it is clear that
im T 1) (0) =
qlﬂl\r\rh [Viogpr (-, 3)] (0)=0.

The analysis of the Hessian of logpr( -, y) is more challenging. What it leads to
is a general estimate (cf. [S]) of the form

T2
for e € 77 1(z) and (T, z,y) € (0,1] x M2

(1.6) “% < [HesslogPT(-,y)](e)§C<_11:+g_(_{,_g)j)

Unlike the constant in (1.2), the C in (1.6) depends on more than the lower bound
a in (1.2). In fact, asymptotic analysis based on [KS] gives

y outside the cut locus of —

(1.7) 7l’i{‘r%)T[Hesslong( . ,y)](e) — _I+A (1 _ t)zsec(f(t),v(e, y)) dt,

where v(e,y) € R? and f € C*([0,1]; O(M)) are defined as above (cf. (1.4)) and
Sec: O(M) x R4 — R4 @ R? is the (unnormalized) sectional curvature given by

(E) Sec(g, V)’I)]Ka = (Riemg(é.’ V)’I: V)Rd'
On the other hand, when y is at the cut locus of z and the set S(z,y)
has the sort of structure described in the preceding paragraph, then one can

show that

li{n T? [Hess log pr( -, y)] (e) exists and is strictly positive definite.
T\,0
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For example, in the case of the circle considered above,

. 1
%%T2 [Hesslogpr (-, 3)] (0) = T

The proofs of these results are based on probabilistic representations of pr( -, y)
and its derivatives in terms of the Brownian motion on M (cf. (2.2) and (2.12) in

[S).
Remark: Because, by an old result of Varadhan’s, one knows that

p(x,y)?

5 for all z,y € M,

lim Tlogpr(z,y) =

the expression on the right hand side of (1.7) must equal the Hessian of £p(-,y)>.
However, to date, the author has found no corroboration in differential geometry
texts.
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