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AN ESTIMATE ON THE HESSIAN
OF THE HEAT KERNEL

DANIEL W. STROOCK

ABSTRACT. Let M be a compact, connected Riemannian manifold, and let p t ( x ^ y )
denote the fundamental solution to Cauchy initial value problem for the heat equation
^ = I-An, where A is the Levi-Civita Laplacian. The purpose of this note is to
describe the behavior of the Hessian of logpy( • , y) for small T > 0.

Emphasis is given to the difference between what happens outside, where the
behavior is like — as opposed to at the cut locus, where it is like —.

§0: INTRODUCTION

Let M be a compact, connected, d-dimensional Riemannian manifold, denote by
0(M) with fiber map TT : 0(M) —> M the associated bundle of orthonormal
frames e, and use the Levi-Civita connection to determine the horizontal subspace
H,(0(M)) at each f C 0(M). Next, given v C IR^ let (£(v) be the basic vector
field on 0{M) determined by properties that

(S(v)e G^e(0(M)) and d7r(S(v)e = ev for all e G 0(M).

(Here, and whenever convenient, we think ofe as aisometryfromIR^ onto T^^\{M).)
In particular, if { e i , . . . ,e^} is the standard orthonormal basis in IR^, then we set
(^(e) = (£(efc)e. If, for 0 E 0{d) (the orthogonal group on M^) Ro : 0(M) —>
0{M) is defined so that

RO^V = eOv, e G 0(M) and v G M^,

then it easy to check that

(0.1) dRoW, = (S^v)^, e G 0(M) and v E IR<

Given a smooth function F on 0(M), we define VF : 0(M) —> R^, Hess (F) :
0(M) —^ IR^ 0 IR^, and AF : 0(M) —> R by

(0.2)
VF = ̂  (£,Fe,, Hess (F) = (((^ o ̂ F))^,^,

i
d

and AF=^(SJF.
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In particular, when / is a smooth function on M, we set

V / = V ( / o 7 r ) , Hess (/) EE Hess (/ o 7r) , and A / = A ( / O T T ) .

Starting from (0.1), it is an easy matter to check that

(V/) o Ro == (^V/, (Hess (/)) o Ro = C^Hess (/) 0,
and (A/) o Ro = A/.

Hence, |V/|, ||Hess (/)||^ g (the Hilbert-Schmidt norm), and A/ are all well-
defined on M. In fact, A/ is precisely the action of the Levi-Civita Laplacian
on /.

Now consider Cauchy initial value for the heat equation

-" = ^Aiz, ^ e ( O . o o ) with \imu(t,x) = f(x), x e M.

By standard elliptic regularity theory, one knows that there is a unique, smooth
function (f, x , y) G (0, oo) x M x M i—^ pi{x, y) G (0, oo) such that

u(t,x)= I f{y)pi{x,y}\M{dy\ (t^ x) C (0, w) x M and / G G(M;IR),
J M

where AM denotes the normalized Riemann measure on M. Moreover, because A
is essentially self-adjoint in L^AM)) Pt(^, y ) = Pi{y^ x)'

§1: THE RESULTS

We begin by considering the logarithmic gradient Viogpj^ • , y), for which our
initial result depends only on the dimension d and the lower bound

(1.1) a= min min (v, Ric(e)v)^v / eeoCAOve^-^ v / / M

for the Ricci curvature. One (cf. [SZ]) can then show that there is a
C{d, a) < zoo such that, for each e G (0,1),

IviogM, '̂0^^^. (r,.,»)e(0,i].^,

where we have introduced p { x , y ) to denote the Riemannian distance between x
and y .

Notice that the preceding result does not feel the cut locus. To get a result which
does, we look at what happens asymptoticly as T \ 0. What one finds (cf. the
first part of Theorem 3.12 in [KS]) is that

y ouside the cut locus of x =. 7r(e) =>

(L3) ^imr[VlogPT(-^)](^)=v(c^),
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where v(e, y) is the element ofIR^ which is determined by the requirement that the
path f C ^([O,1]; 0(M)) satisfying

(1.4) f(0)=eandf(<)=(S(v(e^))^

is the horizontal lift to e of the (unique) minimal geodesic going from x to y . When
y is at the cut locus of a-, one should not expect (1.3) to hold. In fact, take S(x, y) in
Tc(M) to be the set of initial directions in which minimal geodesies from x to y can
proceed. When S(x, y) forms a non-trivial differentiable submanifold, then one can
use the second part of Theorem 3.12 in [KS] to see that the limit on the left side of
(1.3) exists and is a non-trivial convex combination of elements of e~1 (S(x, y)). In
particular, since all elements of have the same length, this limit has length strictly
less than p { x , y ) in this case. For example, when M is the circle centered at the
origin in M2 with unit circumference,

(1.5) PT (0, ,) = (2.T)-. ̂  exp f-^" mn

2Tmez

and so it is clear that

^r[viogpr(-,^](o)=o.

The analysis of the Hessian of logpj^ • , y) is more challenging. What it leads to
is a general estimate (cf. [S]) of the form

^ -% <. [HesslogM^)](c) < C (^ p(^)
(1

for e G Tr"1^) and (T, x, y) G (0,1] x M2.

Unlike the constant in (1.2), the C in (1.6) depends on more than the lower bound
a in (1.2). In fact, asymptotic analysis based on [KS] gives

y outside the cut locus of =^

(L7) l imT[HesslogpT(-,2/)](e)=-I+ f\l-^Sec^^^y))T\o J o
e)=- I+ / (l-^^f^^e.T/))^,

o

where v(e, y) G ^d and f C C1 ([0,1]; 0(M)) are defined as above (cf. (1.4)) and
Sec: 0(M) x R^ i—> IR^^R^ is the (unnormalized) sectional curvature given by

(^Sec(0,v)7?)^ = (Riem^.v)^)^.

On the other hand, when y is at the cut locus of x and the set S(x^ y)
has the sort of structure described in the preceding paragraph, then one can

show that

lim T2 [Hess logpj^ • 5 y)} (^) exists and is strictly positive definite.
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For example, in the case of the circle considered above,

^r^HesslogprC,!)]^)^.

The proofs of these results are based on probabilistic representations of p r ^ ' ^ y )
and its derivatives in terms of the Brownian motion on M (cf. (2.2) and (2.12) in
[S]).

Remark: Because, by an old result of Varadhan's, one knows that

lim T}ogpr(x, V) = p^'^ for all x, y £ M,
— ^('- ~

the expression on the right hand side of (1.7) must equal the Hessian of ^p( • , y)2.
However, to date, the author has found no corroboration in differential geometry
texts.

REFERENCES
[KS] Kusuoka, S. & Stroock, D., Asymptotics of certain Wiener functionals with degenerate

extreme Comm. Pure & Appl. Math. XLVII, 477-501.

[S] Stroock, D., An estimate on the Hessian of the hear kernel (to appear).

M.I.T., 2-272, 77 MASS. AVE., CAMBRIDGE, MA 02139, USA
E-mail address', dws@math.mit.edu

XXI.4


