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Journées Équations aux dérivées partielles
Évian, 2 juin–6 juin 2008
GDR 2434 (CNRS)

Asymptotic behaviors of internal waves
J. Bona D. Lannes J.-C. Saut

Abstract
We present here a systematic method of derivation of asymptotic models

for internal waves, that is, for the propagation of waves at the interface of two
fluids of different densities. Many physical regimes are investigated, depending
on the physical parameters (depth of the fluids, amplitude and wavelength of
the interface deformations). This systematic method allows us to recover the
many models existing in the literature and to derive some new models, in
particular in the case of large amplitude internal waves and two-dimensional
interfaces. We also provide rigorous consistency results for these models. We
refer to [5] for full details.

1. Introduction

This note is devoted to the study of the equations describing the interface between
two layers of immiscible fluids of different densities. This is the simplest idealization
for internal wave propagation (see [12] for a recent survey).

The idealized system that will be the focus of the discussion here, when it is at
rest, consists of a homogeneous fluid of depth d1 and density ρ1 lying over another
homogeneous fluid of depth d2 and density ρ2 > ρ1. The bottom on which both fluids
rest is presumed to be horizontal and featureless while the top of fluid 1 is restricted
by the rigid lid assumption, which is to say, the top is viewed as an impenetrable,
bounding surface. We also assume that that the deviation of the interface is a graph
over the flat bottom, so overturning waves are not within the purview of our theory
(see Figure 1 for a definition sketch).

Many models describing the motion of such internal waves have been formally
derived in the literature. Weakly nonlinear models in two-dimensions have been
derived by Camassa and Choi [6]. Nguyen and Dias [15] have derived and studied a
Boussinesq-type system in a weakly nonlinear regime. Fully nonlinear models were
obtained in the two-dimensional case by Camassa and Choi [7]. A different and
systematic approach has been carried out by Craig, Guyenne and Kalisch [9] in the
one-dimensional case; these authors use the Hamiltonian formulation of the Euler
equations (due originally to Zakharov [19] for surface waves and to Benjamin and
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Bridges [2] for internal waves) and expand the Hamiltonian with respect to the
relevant small parameters.

The strategy followed here is inspired by that initiated in [3]. Namely, following
the procedure introduced in [9, 11, 19], we rewrite the full system as a system of
two evolution equations posed on Rd, where d = 1 or 2. The reformulated system,
which depends only upon the spatial variable on the interface, involves two non-local
operators, a Dirichlet-to-Neumann operator G[ζ], and what we term an “interface
operator" H[ζ], defined precisely below. Of course the operator H[ζ] does not appear
in the theory of surface waves. A rigorously justified asymptotic expansion of the
non-local operators with respect to dimensionless small parameters is then mounted.
For the considered scaling regimes, these expansions then lead to an asymptotic
evolution system, which can be further analyzed. This analysis recovers most of the
systems which have been introduced in the literature and also some interesting new
ones, such as the Shallow Water/Shallow Water equations (25). For instance, in
the so-called shallow water/shallow water regime, a non-local operator appears in
the two-dimensional case whose analog is not present in any of the one-dimensional
cases.

2. The internal waves equations

2.1. The two layers Euler equations
As in Figure 1, the origin of the vertical coordinate z is taken at the rigid top of the
two-fluid system. Assuming each fluid is incompressible and each flow irrotational,
there exists velocity potentials Φi (i = 1, 2) associated to both the upper and lower
fluid layers which satisfy

∆X,zΦi = 0 in Ωit (1)

for all time t, where Ωit denotes the region occupied by fluid i at time t, i = 1, 2.
As above, fluid 1 refers to the upper fluid layer whilst fluid 2 is the lower layer (see
again Figure 1). Assuming that the densities ρi, i = 1, 2, of both fluids are constant,
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we also have two Bernoulli equations, namely,

∂tΦi +
1
2 |∇X,zΦi|

2 = −P
ρi
− gz in Ωit, (2)

where g denotes the acceleration of gravity and P the pressure inside the fluid. These
equations are complemented by two boundary conditions stating that the velocity
must be horizontal at the two rigid surfaces Γ1 := {z = 0} and Γ2 := {z = −d1−d2},
which is to say

∂zΦi = 0 on Γi, (i = 1, 2). (3)
Finally, as mentioned earlier, it is presumed that the interface is given as the graph
of a function ζ(t,X) which expresses the deviation of the interface from its rest
position (X,−d1) at the spatial coordinate X at time t. The interface Γt := {z =
−d1 + ζ(t,X)} between the fluids is taken to be a bounding surface, or equivalently
it is assumed that no fluid particle crosses the interface. This condition, written
for fluid i, is classically expressed by the relation ∂tζ =

√
1 + |∇ζ|2vin, where vin

denotes the upwards normal derivative of the velocity of fluid i at the surface. Since
this equation must of course be independent of which fluid is being contemplated,
it follows that the normal component of the velocity is continuous at the interface.
The two equations

∂tζ =
√

1 + |∇ζ|2∂nΦ1 on Γt, (4)
and

∂nΦ1 = ∂nΦ2 on Γt, (5)
with

∂n := n · ∇X,z and n := 1√
1 + |∇ζ|2

(−∇ζ, 1)T

follow as a consequence. A final condition is needed on the pressure to close this set
of equations, namely,

P is continuous at the interface, (6)
if we neglect surface tension effects (see Remark 11 for a comment on this point).

2.2. Transformation of the Equations
In this subsection, a new set of equations is deduced from the internal-wave equations
(1)-(6). Introduce the trace of the potentials Φ1 and Φ2 at the interface,

ψi(t,X) := Φi(t,X,−d1 + ζ(t,X)), (i = 1, 2).
One can evaluate Eq. (2) at the interface and use (4) and (5) to obtain a set of
equations coupling ζ to ψi (i = 1, 2), namely

∂tζ −
√

1 + |∇ζ|2∂nΦi = 0, (7)

ρi

(
∂tψi + gζ + 1

2 |∇ψi|
2 −

(
√

1 + |∇ζ|2(∂nΦi) +∇ζ · ∇ψi)2

2(1 + |∇ζ|2)

)
= −P, (8)

where in (7) and (8), (∂nΦi) and P are both evaluated at the interface z = −d1 +
ζ(t,X). Notice that ∂nΦ1 is fully determined by ψ1 since Φ1 is uniquely given as
the solution of Laplace’s equation (1) in the upper fluid domain, the Neumann
condition (3) on Γ1 and the Dirichlet condition Φ1 = ψ1 at the interface. Following

V–3



the formalism introduced for the study of surface water waves in [10, 11, 19], we can
therefore define the Dirichlet-Neumann operator G[ζ]· by

G[ζ]ψ1 =
√

1 + |∇ζ|2(∂nΦ1)|z=−d1+ζ . (9)
Similarly, one remarks that ψ2 is determined up to a constant by ψ1 since Φ2 is
given (up to a constant) by the resolution of the Laplace equation (1) in the lower
fluid domain, with Neumann boundary conditions (3) on Γ2 and ∂nΦ2 = ∂nΦ1 at
the interface (this latter being provided by (5)). It follows that ψ1 fully determines
∇ψ2 and we may thus define the operator H[ζ]· by

H[ζ]ψ1 = ∇ψ2. (10)
Using the continuity of the pressure at the interface expressed in (6), we may

equate the left-hand sides of (8)1 and (8)2 using the operators G[ζ] and H[ζ] just
defined. This yields the equation

∂t(ψ2 − γψ1) + g(1− γ)ζ + 1
2
(
|H[ζ]ψ1|2 − γ|∇ψ1|2

)
+N (ζ, ψ1) = 0

where γ = ρ1/ρ2 and

N (ζ, ψ1) :=
γ
(
G[ζ]ψ1 +∇ζ · ∇ψ1

)2
−
(
G[ζ]ψ1 +∇ζ ·H[ζ]ψ1

)2

2(1 + |∇ζ|2) .

Taking the gradient of this equation and using (7) then gives the system of equations
∂tζ −G[ζ]ψ1 = 0,
∂t(H[ζ]ψ1 − γ∇ψ1) + g(1− γ)∇ζ

+ 1
2∇
(
|H[ζ]ψ1|2 − γ|∇ψ1|2

)
+∇N (ζ, ψ1) = 0,

(11)

for ζ and ψ1. This is the system of equations that will be used in the next sections
to derive asymptotic models.

Remark 1. Setting ρ1 = 0, and thus γ = 0, in the above equations, one recovers the
usual surface water-wave equations written in terms of ζ and ψ as in [10, 11, 19].

2.3. Non-Dimensionalization of the Equations
The asymptotic behavior of (11) is more transparent when these equations are writ-
ten in dimensionless variables. Denoting by a a typical amplitude of the deformation
of the interface in question, and by λ a typical wavelength, the following dimension-
less independent variables

X̃ := X

λ
, z̃ := z

d1
, t̃ := t

λ/
√
gd1,

,

are introduced. Likewise, we define the dimensionless unknowns

ζ̃ := ζ

a
, ψ̃1 := ψ1

aλ
√
g/d1

,

as well as the dimensionless parameters

γ := ρ1

ρ2
, δ := d1

d2
, ε := a

d1
, µ := d2

1
λ2 .
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Though they are redundant, it is also notationally convenient to introduce two other
parameter‘s ε2 and µ2 defined as

ε2 = a

d2
= εδ, µ2 = d2

2
λ2 = µ

δ2 .

Remark 2. The parameters ε2 and µ2 correspond to ε and µ with d2 rather than d1
taken as the unit of length in the vertical direction.

The equations (11) can then be written in dimensionless variables as
∂t̃ζ̃ −

1
µ
Gµ[εζ̃]ψ̃1 = 0,

∂t̃

(
Hµ,δ[εζ̃]ψ̃1 − γ∇ψ̃1

)
+ (1− γ)∇ζ̃

+ ε

2∇
(
|Hµ,δ[εζ̃]ψ̃1|2 − γ|∇ψ̃1|2

)
+ ε∇N µ,δ(εζ̃, ψ̃1) = 0,

(12)

where N µ,δ is defined for all pairs (ζ, ψ) smooth enough by the formula

N µ,δ(ζ, ψ) := µ
γ
(

1
µ
Gµ[ζ]ψ +∇ζ · ∇ψ

)2
−
(

1
µ
Gµ[ζ]ψ +∇ζ ·Hµ,δ[ζ]ψ

)2

2(1 + µ|∇ζ|2) ,

and where the operators Gµ and Hµ,δ are the nondimensionalized versions of the
Dirichlet-Neumann and interface operators defined in (9) and (10) (see §3.1 and
§3.2 for precise definitions).

Notation 1. The tildes which indicate the non-dimensional quantities will be sys-
tematically dropped henceforth.

Remark 3. Linearizing the equations (12) around the rest state, one finds the lin-
earized dispersion relation

ω2 = (1− γ) |k|√
µ

tanh(√µ|k|) tanh(
√
µ

δ
|k|)

tanh(√µ|k|) + γ tanh(
√
µ

δ
|k|)

; (13)

corresponding to plane-wave solutions eik·X−iωt. In particular, the expected insta-
bility is found when γ > 1, corresponding to the case wherein the heavier fluid lies
over the lighter one.

2.4. Asymptotic regimes
Our work centers around the study of the asymptotics of the non-dimensionalized
equations (12) in various physical regimes corresponding to different relationships
among the dimensionless parameters ε, µ and δ. Here is a summary of the different
asymptotic regimes investigated in this paper.

It is convenient to organize the discussion around the parameters ε and ε2 = εδ
(the nonlinearity, or amplitude, parameters for the upper and lower fluids, respec-
tively), and in terms of µ and µ2 = µ

δ2
(the shallowness parameters for the upper

and lower fluids) (notice that the assumptions made about δ are therefore implicit:

• The interfacial wave is said to be of small amplitude for the upper fluid layer
(resp. the lower layer) if ε� 1 (resp. ε2 � 1).

• The upper (resp. lower) layer is said to be shallow if µ� 1 (resp. µ2 � 1).

V–5



This terminology is consistent with the usual one for surface water waves (recovered
by taking ρ1 = 0 and δ = 1). In the discussion below, the notation regime 1/regime
2 means that the wave motion is such that the upper layer is in regime 1 (small
amplitude or shallow water) and the lower one is in regime 2.

1. The small-amplitude/small-amplitude regime: ε � 1, ε2 � 1. This regime
corresponds to interfacial deformations which are small for both the upper
and lower fluid domains. Various sub-regimes are defined by making further
assumptions about the size of µ and µ2.

(a) The Full Dispersion /Full Dispersion (FD/FD) regime: ε ∼ ε2 � 1 and
µ ∼ µ2 = O(1) (and thus δ ∼ 1).

(b) The Boussinesq / Full dispersion (B/FD) regime: µ ∼ ε � 1, µ2 ∼ 1.
This configuration occurs when δ2 ∼ ε, that is, when the lower region is
much larger than the upper one.

(c) The Boussinesq/Boussinesq (B/B) regime: µ ∼ µ2 ∼ ε ∼ ε2 � 1. In this
regime, one has δ ∼ 1.

2. The Shallow Water/Shallow Water (SW/SW) regime: µ ∼ µ2 � 1. This
regime, which allows relatively large interfacial amplitudes (ε ∼ ε2 = O(1)),
does not belong to the regimes singled out above. The structure of the flow is
then of shallow water type in both regions.

3. The Shallow Water/Small Amplitude (SW/SA) regime: µ � 1 and ε2 � 1.
In this regime, the upper layer is shallow (but with possibly large surface
deformations), and the surface deformations are small for the lower layer (but
it can be deep). Various sub-regimes arise in this case also.

(a) The Shallow Water/Full dispersion (SW/FD) regime: µ ∼ ε2
2 � 1, ε ∼

µ2 ∼ 1.
(b) The Intermediate Long Waves (ILW) regime: µ ∼ ε2 ∼ ε2 � 1, µ2 ∼ 1.

In this regime, the interfacial deformations are also small for the upper
fluid (which is not the case in the SW/FD regime).

(c) The Benjamin-Ono (BO) regime: µ ∼ ε2 � 1, µ2 =∞.

The range of validity of these regimes is summarized in the following table.

ε = O(1) ε� 1
µ = O(1) Full equations δ ∼ 1: FD/FD eq’ns
µ� 1 δ ∼ 1: SW/SW eq’ns µ ∼ ε and δ2 ∼ ε: B/FD eq’ns

δ2 ∼ µ ∼ ε2
2: SW/FD eq’ns µ ∼ ε and δ ∼ 1: B/B eq’ns

δ2 ∼ µ ∼ ε2: ILW eq’ns
δ = 0 and µ ∼ ε2: BO eq’ns

Remark 4. The small amplitude/shallow water regime is not investigated here. It
corresponds to the situation where the upper fluid domain is much larger than the
lower one, which is more of an atmospheric configuration than an oceanographic
case.
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3. Asymptotic expansions of the Dirichlet-Neumann and in-
terface operators

3.1. Asymptotic expansion of the Dirichlet-Neumann opera-
tor

Let us first define the nondimensionalized Dirichlet-Neumann operator Gµ[εζ]· that
appears in (12). Denoting the non-dimensionalized upper fluid domain by

Ω1 = {(X, z) ∈ Rd+1,−1 + εζ(X) < z < 0}

and assuming that the height of this domain never vanishes,

∃H1 > 0, 1− εζ ≥ H1 on Rd, (14)

we can state the following definition:

Definition 1. Let ζ ∈ W 2,∞(Rd) be such that (14) is satisfied and let ψ1 ∈
H3/2(Rd). If Φ1 is the unique solution in H2(Ω1) of the boundary-value problem{

µ∆Φ1 + ∂2
zΦ1 = 0 in Ω1,

∂zΦ1 |z=0 = 0, Φ1 |z=−1+εζ(X) = ψ1,
(15)

then Gµ[εζ]ψ1 ∈ H1/2(Rd) is defined by

Gµ[εζ]ψ1 = −µε∇ζ · ∇Φ1 |z=−1+εζ + ∂zΦ1 |z=−1+εζ .

Remark 5. Another way to approach Gµ is to define

Gµ[εζ]ψ1 =
√

1 + ε2|∇ζ|2∂nΦ1 |z=−1+εζ

where ∂nΦ1 |z=−1+εζ stands for the upper conormal derivative associated to the elliptic
operator µ∆Φ1 + ∂2

zΦ1.

The following lemma connects ζ with the vertically integrated horizontal velocity
via the Dirichlet-Neumann operator Gµ[εζ]· (the proof is a consequence of Green’s
identity).

Lemma 1. Let ζ ∈ W 2,∞(Rd) be such that (14) is satisfied and let ψ ∈ H3/2(Rd)
and Φ1 be the solution of (15) with ψ1 = ψ. If V µ is defined by

V µ[εζ]ψ :=
∫ 0

−1+εζ
(√µ∇Φ1)dz,

then one has
Gµ[εζ]ψ = √µ∇ · (V µ[εζ]ψ).

As suggested by the terminology used in §2.4, two kinds of asymptotic expansions
of Gµ[εζ]ψ are needed to cover the full range range of asymptotic regimes. Namely,
we need small amplitude and shallow-water type expansions of Gµ[εζ]ψ. This is
done in the next subsections (we in fact give, for later use, expansions of V µ[εζ]ψ,
which is a more precise result according to Lemma 1).
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3.1.1. Asymptotic Expansion of V µ[εζ]· when ε� 1 (small amplitude)

When ε � 1, the approach to obtaining an asymptotic expansion of V µ[εζ]ψ is to
make a Taylor expansion in terms of the interface deformation around the rest state,
viz.

V µ[εζ]ψ = V µ[0]ψ + ε(d0(V µ[·])ζ)ψ + · · · .

Proposition 1. Let s > d/2 and ζ ∈ Hs+3/2(Rd) be such that (14) is satisfied. Then
for ψ such that ∇ψ ∈ Hs+1/2(Rd), the inequality∣∣∣V µ[εζ]ψ − [T0,µ∇ψ + ε

√
µ(−ζ + T1,µ[ζ])∇ψ

]∣∣∣
Hs

≤ ε2C( 1
H1

, ε
√
µ, |ζ|Hs+3/2 , |∇ψ|Hs+1/2),

holds for all ε ∈ [0, 1] and µ > 0, where T0,µ = tanh(√µ|D|)
|D| , T1,µ[ζ] = −∇T0,µ(ζT0,µ∇T ),

and V µ[εζ]ψ is as defined in Lemma 1 (so that Gµ[εζ]ψ = √µ∇ · V µ[εζ]ψ).

Proof. The key point in the proof is an explicit formula of the derivative of the
mapping ζ 7→ V µ[εζ]ψ, which generalizes the formula obtained in [14] for the shape
derivative of Dirichlet-Neumann operators: for all ζ, ζ ′ ∈ Hs(Rd) (s > d/2) the
derivative of V µ[ε·]ψ at ζ in the direction ζ ′ is given by the formula (see Lemma 2
of [5] for a proof)

dζ(V µ[ε·]ψ)ζ ′ = −εV µ[εζ](ζ ′Zµ[εζ]ψ)− εζ ′
(√

µ∇ψ − ε√µ∇ζZµ[εζ]ψ
)
,

where Zµ[εζ]ψ := 1
1+ε2µ|ζ|2 (Gµ[εζ]ψ + εµ∇ζ · ∇ψ).

A second order Taylor expansion then reveals that

V µ[εζ]ψ = V µ[0]ψ + d0(V µ[ε·]ψ)ζ +
∫ 1

0
(1− z)d2

zζ(V µ[ε·]ψ)(ζ, ζ)dz,

which, together with the above formula for the derivative of V µ[·], yields
V µ[εζ]ψ = V µ[0]ψ

−εV µ[0](ζGµ[0]ψ)− ε√µζ∇ψ +
∫ 1

0
(1− z)d2

zζ(V µ[ε·]ψ)(ζ, ζ)dz.

By a simple Fourier analysis, one gets that Gµ[0]ψ = −√µ|D| tanh(√µ|D|)ψ and
V µ[0]ψ = tanh(√µ|D|)

|D| ∇ψ. It remains therefore to control the residual integral term
in the expansion; this can be done as in Proposition 3.3 of [1]. �

3.1.2. Asymptotic Expansion of V µ[εζ]· for Large-Amplitude Waves and
Shallow Water (ε = O(1) and µ� 1)

For larger amplitude waves, the expansion of the Dirichlet-Neumann operatorGµ[εζ]ψ
(and also of V µ[εζ]ψ) around the rest state no longer provides an accurate approxi-
mation. However, if µ� 1 (shallow water regime for the upper fluid), it is possible
to obtain an expansion of V µ[εζ]ψ with respect to µ which is uniform with respect
to ε ∈ [0, 1].

Proposition 2. Let s > d/2 and ζ ∈ Hs+3/2(Rd). Then for all µ ∈ (0, 1) and ψ
such that ∇ψ ∈ Hs+5/2(Rd), one has∣∣∣√µV µ[εζ]ψ − µ(1− εζ)∇ψ

∣∣∣
Hs
≤ µ2C(|ζ|Hs+3/2 , |∇ψ|Hs+5/2),
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uniformly with respect to ε ∈ [0, 1]), where V µ[εζ]ψ is as defined in Lemma 1 (so
that Gµ[εζ]ψ = √µ∇ · V µ[εζ]ψ).
Remark 6. As in Prop. 3.8 of [1], one can carry out the expansion explicitly to
second order in µ, thereby obtaining

√
µV µ[εζ]ψ = µ(1− εζ)∇ψ + µ2

3 ∆∇ψ +O(µ3, εµ2).

Proof. This follows from well known results on the Dirichlet-Neumann operator in
the case of one single fluid layer (e.g. Proposition 3.8 of [1]). �

3.2. Asymptotic expansion of the interface operator
We first define here the dimensionless operator Hµ,δ[εζ]· that appears in (12). De-
noting the non-dimensionalized lower fluid domain by

Ω2 = {(X, z) ∈ Rd+1,−1− 1/δ < z < −1 + εζ(X)},
and assuming that the height of this domain never vanishes,

∃H2 > 0, 1 + εδζ ≥ H2 on Rd, (16)
we can state the following definition:
Definition 2. Let ζ ∈ W 2,∞(Rd) be such that (14) and (16) are satisfied, and
suppose that ψ1 ∈ H3/2(Rd) is given. If the function Φ2 is the unique solution (up
to a constant) of the boundary-value problem{

µ∆Φ2 + ∂2
zΦ2 = 0 in Ω2,

∂zΦ2 |z=−1−1/δ = 0, ∂nΦ2 |z=−1+εζ(X) = 1
(1+ε2|∇ζ|2)1/2G

µ[εζ]ψ1,
(17)

then the operator Hµ,δ[εζ]· is defined on ψ1 by
Hµ,δ[εζ]ψ1 = ∇(Φ2 |z=−1+εζ) ∈ H1/2(Rd).

Remark 7. In the statement above, ∂nΦ2 |z=−1+εζ stands here for the upwards conor-
mal derivative associated to the elliptic operator µ∆Φ2 + ∂2

zΦ2,√
1 + ε2|∇ζ|2∂nΦ2 |z=−1+εζ = −µε∇ζ · ∇Φ2 |z=−1+εζ + ∂zΦ2 |z=−1+εζ .

The Neumann boundary condition of (17) at the interface can also be stated as
∂nΦ2 |z=−1+εζ = ∂nΦ1 |z=−1+εζ .
Remark 8. Of course, the solvability of (17) requires the condition

∫
Γ ∂nΦ2dΓ = 0

(where dΓ =
√

1 + ε2|∇ζ|2dX is the Lebesgue measure on the surface Γ = {z =
−1+εζ}). This is automatically satisfied thanks to the definition ofGµ[εζ]ψ1. Indeed,
applying Green’s identity to (15), one obtains∫

Γ
∂nΦ2dΓ =

∫
Γ
∂nΦ1dΓ = −

∫
Ω1

(µ∆Φ1 + ∂2
zΦ1) = 0.

The boundary-value problem (17) plays a key role in the analysis of the operator
Hµ,δ[εζ]·. The analysis of this problem is easier if we first transform it into a variable-
coefficient, boundary-value problem on the flat strip S := Rd × (−1, 0) using the
diffeomorphism

σ : S → Ω2
(X, z) 7→ σ(X, z) := (X, (1 + εδ) z

δ
+ (−1 + εζ)).
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As shown in Proposition 2.7 of [14] (see also §2.2 of [1]), Φ2 solves (17) if and only
if Φ2 := Φ2 ◦ σ solves{

∇µ2
X,z ·Qµ2 [ε2ζ]∇µ2

X,zΦ2 = 0 in S,
∂nΦ2 |z=0 = 1

δ
Gµ[εζ]ψ1, ∂nΦ2 |z=−1 = 0,

(18)

with

Qµ2 [ε2ζ] =
( (1 + ε2ζ)Id×d −√µ2ε2(z + 1)∇ζ
−√µ2ε2(z + 1)∇ζT 1+µ2ε22(z+1)2|∇ζ|2

1+ε2ζ

)
,

and where, as before, ε2 = εδ, µ2 = µ
δ2

, and ∇µ2
X,z = (√µ2∇, ∂z)T .

Remark 9. As always in the present exposition, ∂nΦ2 stands for the upward conormal
derivative associated to the elliptic operator involved in the boundary-value problem,

∂nΦ2 |z=0 or z=−1 = ez ·Qµ2 [ε2ζ]∇µ2
X,zΦ2 |z=0 or z=−1 ,

where ez is the upward-pointing unit vector along the vertical axis.

An asymptotic expansion of
Hµ,δ[εζ]ψ1 = ∇(Φ2 |z=0), (19)

is obtained by finding an approximation Φapp to the solution of (18) and then using
the formal relationship Hµ,δ[εζ]ψ1 ∼ ∇(Φapp |z=0). This procedure is justified in the
following proposition. To state the result, it is useful to have in place the spaces

Hs,k(S) = {f ∈ D′(S) : ‖f‖Hs,k <∞}
for s ∈ R and k ∈ N, where ‖f‖Hs,k = ∑k

j=0 ‖Λs−j∂jzf‖.

Proposition 3. Let s0 > d/2, s ≥ s0 + 1/2, and ζ ∈ Hs+3/2(Rd) be such that (14)
and (16) are satisfied (the interface does not touch the horizontal boundaries). If
h ∈ Hs+1/2,1(S)d+1 and V ∈ Hs+1(Rd)d are given, then the boundary-value problem{

∇µ2
X,z ·Qµ2 [ε2ζ]∇µ2

X,zu = ∇µ2
X,z · h in S,

∂nu|z=0 = √µ2∇ · V + ez · h|z=0 , ∂nu|z=−1 = ez · h|z=−1

(20)

admits (up to a constant) a unique solution u. Moreover, the solution u obeys the
inequality∣∣∣∇u|z=0

∣∣∣
Hs
≤ 1
√
µ2
C( 1
H2

, εmax2 , µmax2 , |ζ|Hs+3/2)
(
‖h‖Hs+1/2,1 + |V |Hs+1

)
,

uniformly with respect to ε2 ∈ [0, εmax2 ] and µ2 ∈ (0, µmax2 ).

Remark 10. Suppose we take h = 0 and V = V µ[εζ]ψ in Proposition 3. By Lemma
1, one has ∇u|z=0 = Hµ,δ[εζ]ψ. and the Proposition thus provides an estimate of the
operator norm of Hµ,δ[εζ].

Proof. The main lines of the proof are:

1. Check the coercivity of Qµ2 [ε2ζ]

2. Derive estimates on ∇µ2
X,zu in Hr,1 (r ≥ 0) by elliptic estimates

3. Use the trace theorem to control |∇u|z=0 |Hs . ‖u‖Hs+1/2,1 . 1
µ2
‖∇µ2
X,zu‖Hs+1/2,1

and use Step 2
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The remaining task is therefore to find an approximation Φapp to the solution of
(18) in all the different asymptotic regimes considered here. As for the Dirichlet-
Neumann operator, different techniques must be used in the shallow-water and small
amplitude regimes. The situation is made more complicated here because the in-
terface operator couples both fluid domains and that the dichotomy small ampli-
tude/shallow water must be investigated for each fluid. These configurations are
addressed in the following subsections.

3.2.1. The Small-Amplitude/Small-Amplitude Regime: ε� 1, ε2 � 1

In this regime, it is assumed that the interface deformations are of small amplitude
for both the upper and lower fluids. The asymptotic expansion of the operator
Hµ,δ[εζ] is thus made in terms of ε and ε2 = εδ. We construct an approximate
solution Φapp to (18) under the form

Φapp = Φ(0) + ε2Φ(1)

(this form exploits the “small amplitude” assumption for the lower fluid). We may
write from the expression for Qµ2 [ε2ζ],

∇µ2
X,z ·Qµ2 [ε2ζ]∇µ2

X,z = ∆µ2
X,z + ε2∇µ2

X,z ·Q1∇µ2
X,z + ε2

2∇
µ2
X,z ·Q2∇µ2

X,z,

where ∆µ2
X,z = √µ2∆+∂2

z and explicit formulas can be easily derived for Q1 and Q2.
At leading order, the elliptic operator of (18) thus reduces to ∆µ2

X,z, which correspond
to the case of a flat domain. In particular, since µ2 is not assumed to be small here,
this leading operator keeps the full nonlocal effects of the usual Laplace operator in a
domain of Rd+1 and Φ(0) depends nonlocally on ψ1. After some tedious computations,
one finds

Φ(0)(X, z) = −
cosh(√µ2(z + 1)|D|)

cosh(√µ2|D|)
tanh(√µ|D|)
tanh(√µ2|D|)

ψ1

(the “small amplitude assumption” for the upper fluid has been implicitly used here
through the use of Prop. 1 to approximate the Neumann condition at the interface
of (18)). At leading order, one has therefore

Hµ,δ[εζ]ψ1 ∼ ∇Φ(0)
|z=0
∼ −

tanh(√µ|D|)
tanh(√µ2|D|)

∇ψ1.

The next order term of the expansion is needed to take into account the interface
deformation. The computations are performed in [5] and a precise meaning to the
symbol ∼ is also given (see §2.2.1) but we do not give the details here. We just note
that the formula can be simplified under additional smallness assumptions on µ and
µ2, namely, in the

Boussinesq/Boussinesq regime: µ ∼ ε and µ2 ∼ ε2. (21)
Indeed, one then obtains

Hµ,δ[εζ]ψ1 ∼ −δ∇ψ1 −
δ

3µ(1− 1
δ2 )∆∇ψ1 + ε2(1 + δ)Π(ζ∇ψ1),

where Π = −∇∇T|D|2 .
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3.2.2. The Shallow-Water/Shallow-Water Regime: µ� 1, µ2 � 1

In this regime, large amplitude waves are allowed for the upper fluid (ε = O(1))
and for the lower fluid (ε2 = O(1)). Assuming that µ � 1 and µ2 � 1 raises the
prospect of making asymptotic expansions of shallow-water type, in terms of µ and
µ2. As before, the plan is to formally construct an approximate solution Φapp to (18)
having the form

Φapp = Φ(0) + µ2Φ(1).

(such a form exploits the assumption that µ2 is small). From the expression for
Qµ2 [ε2ζ], we may write

∇µ2
X,z ·Qµ2 [ε2ζ]∇µ2

X,z = 1
h2
∂2
z + µ2∇X,z ·Q1∇X,z,

with h2 = 1 + ε2ζ and where an explicit formula can be derived for Q1. At leading
order, the elliptic operator of (18) thus reduces to 1

h2
∂2
z , which amounts to discard

the horizontal derivatives of the original Laplace operator. Consequently, the non-
local effects of the Laplace operators disappear in this regime (but new, unexpected
enough, nonlocal effects appear, as shown below).
Using Proposition 2 (and thus the assumption that µ is small) to approximate the
Neumann condition at the interface of (18), one readily checks that Φ(0) and Φ(1)

must solve {
∂2
zΦ(0) = 0,
∂zΦ(0)

|z=0 = 0, ∂zΦ(0)
|z=−1 = 0,

which is obviously solved by any Φ(0)(X, z) = Φ(0)(X) independent of z, and{
∂2
zΦ(1) = −h2

2∆Φ(0),

∂zΦ(1)
|z=0 = h2

(
ε2∇ζ · ∇Φ(0) + δ∇ · (h1∇ψ1)

)
, ∂zΦ(1)

|z=−1 = 0,

where we have used the fact that Φ(0) does not depend on z. Solving this second
order ordinary differential equation in the variable z with the boundary condition
at z = 0 yields (up to a function independent of z which we take equal to 0 for the
sake of simplicity),

Φ(1) = −z
2

2 h
2
2∆Φ(0) + z(∂zΦ1 |z=0).

Matching the boundary condition at z = −1 leads to the restriction
∇ · (h2∇Φ(0)) = −δ∇ · (h1∇ψ1),

and we thus deduce the following asymptotic expansion of the interface operator:

Hµ,δ[εζ]ψ1 ∼ ∇(Φ(0)
|z=0

) ∼ −δ(I + Π(ε2ζΠ·))−1Π(h1∇ψ1), (22)

where Π = −∇∇T|D|2 is the orthogonal projector onto the gradient vector fields of
L2(Rd)d defined earlier (and h1 = 1− εζ, h2 = 1 + εδζ).

3.2.3. The Shallow-Water/Small-Amplitude Regime: µ�1, ε2�1

It is now presumed that both µ and ε2 are small, but no such restriction is laid upon
ε nor µ2. So, this regime is not a subcase of the regimes investigated in Sections 3.2.1
and 3.2.2. We construct an approximate solution Φapp to (18) by using two kinds of
expansions. The small amplitude assumption for the lower fluid is taken into account
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by looking for Φapp under the form (3.2.1). The shallow water assumption for the
upper fluid is taken into account by approximating the Neumann condition at the
interface of (18) using Proposition 1. We do not give the details of the computations
here (see §2.2.3 of [5]).

4. Asymptotic models for internal waves

4.1. The general procedure
It is established that the internal-wave equations (12) are consistent with the as-
ymptotic models for (ζ,v) derived in this paper in the following precise sense.

Definition 3. The internal wave equations (12) are consistent with a system S of
d+1 equations for ζ and v if for all sufficiently smooth solutions (ζ, ψ1) of (12) such
that (14) and (16) are satisfied, the pair (ζ,v), with

v = Hµ,δ[εζ]ψ1 − γ∇ψ1), (23)

solves S up to a small residual called the precision of the asymptotic model.

Remark 11. It is worth emphasis that above definition does not require the well-
posedness of the internal wave equations (12). Indeed, these can be subject to Kelvin-
Helmholtz type instabilities (see for instance [13]), although one might expect a
“stability of the instability" result even in the face of such instabilities (see [8]).
Consistency is only concerned with the properties of smooth solutions to the system
(which do exist in the classical configuration of the Kelvin-Helmholtz problem, even
when instabilities manifest themselves; see e.g. [18, 17]). In fact, the two-layer water-
wave system is known to be well-posed in Sobolev spaces in the presence of surface
tension [13]. In consequence, one could simply add a small amount of surface tension
at the interface between the two homogeneous layers to put oneself in a well-posed
situation. The resulting analysis would be exactly the same and would, in fact, lead
to the same asymptotic models. (Such an approach is used in [16] for the Benjamin-
Ono equation). As the resulting model systems do not change, such a regularization
has been eschewed here.

In the present paper, we have refrained from pursuing the analysis to the point of
obtaining convergence results for the asymptotic systems to the full internal waves
system. Such a program has been fully achieved in the case of surface waves in
[1]. What is needed to complete the circle of ideas in the internal wave case is a
stability analysis of the asymptotic models derived here (that is, an estimation of
the remainders which comprise the difference between the Euler system and the
models). Together with consistency, a straightforward analysis would then provide
a convergence result to the full Euler system, assuming that the large time existence
results obtained by Alvarez-Samaniego and Lannes in [1] for the surface wave system
are valid for the internal waves system. The latter point is far from obvious; indeed,
it is even false in absence of surface tension (see Remark 11 above) and even in
presence of surface tension, it is still an open problem to prove that the solution
exists on a time interval that is physically relevant (cf [16] for the rigorous derivation
of the Benjamin-Ono equation for the two-fluid system in the presence of surface
tension, but on a time interval very small if the surface tension is small).
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4.2. The Boussinesq-Boussinesq model
In this regime, the nonlinear and dispersive effects are of the same size for both fluids;
the systems of equations that are derived from the internal waves equations (12)
in this situation are the following three-parameter family of Boussinesq/Boussinesq
systems, viz.

(
1− µb∆

)
∂tζ + 1

γ + δ
∇ · vβ + ε

δ2 − γ
(γ + δ)2∇ · (ζvβ) + µa∇ ·∆vβ = 0(

1− µd∆
)
∂tvβ + (1− γ)∇ζ + ε

2
δ2 − γ

(δ + γ)2∇|vβ|
2 + µc∆∇ζ = 0,

(24)

where vβ = (1 − µβ∆)−1v, and where the coefficients a, b, c, d are provided in the
statement of the next theorem.

Theorem 1. Let 0 < cmin < cmax, 0 < δmin < δmax, and set

a = (1− α1)(1 + γδ)− 3δβ(γ + δ)
3δ(γ + δ)2 , b = α1

1+γδ
3δ(γ+δ) ,

c = βα2, d = β(1− α2),
with α1 ≥ 0, β ≥ 0 and α2 ≤ 1. With this specification of the parameters, The in-
ternal wave equations (12) are consistent with the Boussinesq/Boussinesq equations
(24) in the sense of Definition 3, with a precision O(ε2), and uniformly with respect
to ε ∈ [0, 1], µ ∈ (0, 1) and δ ∈ [δmin, δmax] such that cmin < ε

µ
< cmax.

Remark 12. Taking γ = 0 and δ = 1 in the Boussinesq/Boussinesq equations (24),
reduces them to the system

(
1− µα1

3 ∆
)
∂tζ +∇ · ((1 + εζ)v) + µ

1− α1 − 3β
3 ∇ ·∆v = 0(

1− µβ(1− α2)∆
)
∂tv +∇ζ + ε

2∇|v|
2 + µβα2∆∇ζ = 0,

which is exactly the family of formally equivalent Boussinesq systems derived in
[4, 3].

Remark 13. The dispersion relation associated to (24) is

ω2 = |k|2
( 1
γ+δ − µa|k|

2)(1− γ − µc|k|2)
(1 + µb|k|2)(1 + µd|k|2) .

It follows that (24) is linearly well-posed when a, c ≤ 0 and b, d ≥ 0. The system
corresponding to α1 = α2 = β = 0 is ill-posed (one can check that a = 1+γδ

3δ(γ+δ)2 > 0).
This system corresponds to a Hamiltonian system derived in [9] (see their formula
(5.10)). The present, three-parameter family of systems allows one to circumvent
the problem of ill-posedness without the need of taking into account higher-order
terms in the expansion, as in [9]).

Proof. The proof is again made based on various possibilities for the parameters in
the problem. For this regime, we have that ε ∼ µ ∼ ε2 ∼ µ2 as ε→ 0.
Step 1. The case α1 = 0, β = 0, α2 = 0. Using Remark 6 and (21) one checks
immediately that

∇ψ1 = − 1
γ + δ

[
1 + µ

1
3δ

1− δ2

γ + δ
∆ + ε2

1 + δ

γ + δ
Π(ζ·)

]
v +O(ε2)
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(the nonlocal operator Π does not appear in the final equations because of the
identity ∇ · ΠV = ∇ · V for all V ∈ H1(Rd)d).
Step 2. The case α1 ≥ 0, β = 0, α2 = 0. To use the BBM-trick, remark that for all
α1 ≥ 0,

∇ · v = (1− α1)∇ · v− α1(γ + δ)∂tζ +O(ε).
Substitute this relation into the third-derivative term of the first equation of the
system derived in Step 1.
Step 3. The case α1 ≥ 0, β ≥ 0, α2 = 0. It suffices to replace v by (1− µβ∆)vβ in
the system of equations derived in Step 2.
Step 4. The case α1 ≥ 0, β ≥ 0, α2 ≤ 1. We use once again the BBM trick. From
the second equation in the system derived in Step 3, one obtains that for all α2 ≤ 1,

∂tvβ = (1− α2)∂tvβ − α2(1− γ)∇ζ +O(ε).
If this relationship is substituted into the system derived in Step 3, the result follows.

�

4.3. The Shallow water/Shallow water model
Contrary to the regimes investigated above, large amplitude interfacial deforma-
tions are allowed for both fluids, as ε ∼ ε2 = O(1). As in the previous section, an
asymptotic model can be derived from (12) by replacing the operators Gµ[εζ] and
Hµ,δ[εζ] by their asymptotic expansions, provided by Proposition 2 and (22) in the
present regime. The following theorem shows that the internal wave equations are
consistent in this regime with the Shallow water/Shallow water system,

∂tζ +∇ ·
(
h1R[εζ]v

)
= 0,

∂tv + (1− γ)∇ζ + ε

2∇
(∣∣∣v− γR[εζ]v

∣∣∣2 − γ∣∣∣R[εζ]v
∣∣∣2) = 0,

(25)

where h1 = 1 − εζ, h2 = 1 + εδζ, and the operator R is defined by (recalling that
Π = −∇∇T|D|2 )

R[εζ]v = 1
γ + δ

(
1− Π(1− γ

γ + δ
εδζΠ·)

)−1
Π(h2v).

Theorem 2. Let 0 < δmin < δmax ≤ (1−δ(1−H1))−1. The internal waves equations
(12) are consistent with the SW/SW equations (25) in the sense of Definition 3,
with a precision O(µ), and uniformly with respect to ε ∈ [0, 1], µ ∈ (0, 1) and
δ ∈ [δmin, δmax].

Remark 14. Taking γ = 0 and δ = 1 in the SW/SW equations (25) yields the usual
shallow water equations for surface water waves.

Remark 15. In the one-dimensional case d = 1, one has

R[εζ]v = h2

δh1 + γh2
v

and the equations (25) take the simpler form ∂tζ + ∂x
(
h1h2
δh1+γh2

v
)

= 0,

∂tv + (1− γ)∂xζ + ε
2∂x

( (δh1)2−γh2
2

(δh1+γh2)2 |v|2
)

= 0,
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which coincides of course with the system (5.26) of [9]. The presence of the nonlocal
operator R, which does not seem to have been noticed before, appears to be a purely
two dimensional effect.

Proof. First remark that with the range of parameters considered in the theorem,
one has µ ∼ µ2 as µ→ 0 while ε ∼ ε2 = O(1).
By the definition (23) of v and using Proposition 2 and (22), one deduces from (12)
that {

∂tζ −∇ · ((1− εζ)∇ψ1) = O(µ),
∂tv + (1− γ)∇ζ + ε

2∇(|Hµ,δ[εζ]ψ1|2 − γ|∇ψ1|2) = O(µ). (26)

Recall now that Hµ,δ[εζ]ψ1 = v + γ∇ψ1; using this relation together with (22), one
can get

∇ψ1 = −R[εζ]v +O(µ)
and consequently,

Hµ,δ[εζ]ψ1 = v + γ∇ψ1

= v− γR[εζ]v +O(µ).
Replacing ∇ψ1 and Hµ,δ[εζ]ψ1 by these two expressions in (26) yields the result. �
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