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Regularity properties of semilinear boundary
problems in Besov and Triebel-Lizorkin spaces

Jon Johnsen

1. Summary

For simplicity's sake the following two model problems are considered
on a bounded open set 0 C 1R71, where n >_ 2 and F :== 9^1 is C°°-smooth:
first there is the Dirichlet problem

—/\u+u9x^u=f in f^,
JQU = y on r. v /

Here 70 n = u\r and — A H = —(^i + • • • + 9^}u. Secondly there is the
corresponding Neumann problem

—/\u+u9x^u=f in n,
j^u = y on r, v /

where 71^ = 7o(7?*grad^) with n denoting the unit outward normal vector-
field near F. For the stationary Navier-Stokes equations and other problems,
see Theorem 1.3 and Section 6.

The regularity of the solution u(x) is studied here together with the
question of carrying over weak solutions to other spaces. To obtain a uni-
fied treatment of various well-known scales of function spaces, the Besov
spaces B8 y are considered together with the Triebel-Lizorkin spaces F3 ;
hereby s G R and p and q €]0,oo] in general, although p < oo is required
throughout for the F3 spaces.

Among the various identifications, recall eg that B^ ̂  = C^ for s > 0
(the Holder-Zygmund spaces); B^p = W^ for s G K+\ N, 1 < p < oo
(Sobolev-SlobodetskiY); F^ == H^ for s € R, 1 < p < oo (Bessel-potentials)
so in particular this encompasses the W^ and Lp\ F°<^ = hp for 0 < p < oo
(local Hardy space). The scales coincide when p = g, so Bj 3 == F^ = H8

is the usual Sobolev space for s G R.
On R72 the spaces are defined by means of Littlewood-Paley decompo-

sitions, B8 (Q) == r^jB5 (R71) etc denotes the restriction to 0; on F local
coordinates are used. A concise review of the definition and the properties of
the Besov and Triebel-Lizorkin spaces is given in [8], so details are omitted
here; for a proper exposition the reader is referred to the books of H. Triebel
[14, 15] and to Theorems 3.6 and 3.7 in M. Yamazaki's article [16].
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For the Dirichlet problem above there is the following result:

THEOREM 1.1. Let u(x) in F8 (Q) be a solution of (1.1) for data f(x)

in F^2^) and y(x) in Br,^ (F), and suppose that

5>max(^- l+^2) , (1.3)

t > m a x ( j , ^ - l + ^ 2 ) . (1.4)

Then u[x} is also an element of F^(fl).

Analogously, if u <E B^(fl), f € B^2^) and y e B^7(r), then
(1.3)-(1.4) imply that u € 5^(0).

The conditions (1.3)-(1.4) in the theorem are natural, for both 70 and
B(v) :== vQ^v make sense on B8 (fl) and F3 (^) when (1.3) holds. Actually
B(.) is even 'better behaved5 on these spaces than —A then; this is made
precise below by taking a specific S = S ( s ^ p ) such that 6 > 0.

If one denotes AD = ("y^ ) and B(u) = ( B^ ) , problem (1.1) becomes
ADU+B^U) = ( ^ ) . Then, if 6{s, p) > 0 and 8{t,r) > 0, ie if B { ' ) respects
the direct regularity properties of AD at ( s ^ p ^ q ) and (t.r.o), the theorem
asserts that /?(•) also respects the inverse regularity properties of AD at
these two parameters. Moreover, this holds for both of the B^q and F^q
scales.

For the Neumann problem ANU + B(u} = ( ^ ) , where AN = ("7? ) ^
there is

THEOREM 1.2. Let u(x) in F^q(fl.) be a solution of (1.2) for data f G
— t-i-1-

J^^2^) and y € Br,r r (r), and suppose that

s > max(^ + 1, ^ - 1 + ^n2), t > max(^ + 1^ - 1 + ^M- (1-5)

r^e/z ^(a?) belongs to F^(Q). TAe analogous result holds in the B^(f?)
5pace5.

It turns out that Theorem 1.2 is rather more complicated to prove than
Theorem 1.1. The reason for this is that the requirement s > ^ is replaced
by s > 1 + 1 (because of 71), which is 'bad^ in its p-dependence. Roughly
speaking, this means that if F^(fl) + F^(H) C F^^), then (^i.^i.gi)
need not satisfy (1.5) even if both (5,p, q) and (^, r, o) do so. As outlined in
Section 5 below the fine theory of pointwise multiplication provides estimates
of -B('), that may be used to overcome the difficulties.

Instead of the model problems above, the methods may be applied to
eg the stationary Navier-Stokes equations. For each of the five boundary
conditions considered in [7] one finds regularity results for the solutions that
correspond to either Theorem 1.1 or Theorem 1.2. See [11, Thm. 5.5.5] or
[10] for this.

In addition the existence of weak solutions of the Dirichlet problem may
be carried over to the B^q and F^ spaces in this way. In more details the
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problem is: ^
-Au+ ̂ ^uQjU+gTSLdp = f in Q,

J=l d i v ^ = 5 r in ^, (1.6)
70^ = y? on r.

Here the solution (n,p) and the data (/ ,<7,y) are sought such that

u^B^)^ peB^n)
f1 7^

/ ^ %W- ^ ^ ̂ (H), y e B;,7(r)̂
for s > max(|t, ^ - 1+ ^^2); observe that the problem in (1.1) may serve as
a model problem for (1.6). For the F^y spaces the requirement is the same,

5--1- ' 5_J-

but again Bp^ (F) should be replaced by Bp^ (F).
Concerning the existence of solutions when g = 0 there is:

THEOREM 1.3. Let Q C R71, where n = 2 or 3, be a C°°-smooth open
bounded set, and let fl be connected with finitely many components of F, ie
r = Fi U — U F T V .

Suppose that the data (/, 0, y) belong to the spaces indicated in (1.7) for
a parameter (s, p, q) satisfying one of the following conditions:

(1) 5 > m a x ( l ^ + l - ^ ) ;
(2) s > 1, s = ̂  + 1 - i and q <, 2;
(3) s= 1 and p> 2 > g.

Assume in addition that Jp n ' y? = 0 /or J = 1, ... ,N.
Then there exists a solution (n,p) of (1.6) as in (1.7) above.
For the F^q spaces the analogous result holds (for any q C ]0, oo] in (2)).

The special case with (5,p,g) = (1,2,2) is identical to the classical
result on weak solutions, cf [13]. As a particular case the theorem gives a
solvability theory in the Holder-Zygmund spaces C^(^) for s > 1.

In addition solutions may be constructed by successive approximations
for any s > max(^, ^ - 1 + ^&n2) in (1.7) provided only that J^ g = L n • y
and that the norms of the data are small enough; for the present spaces, this
is elaborated in [11]. In comparison Theorem 1.3 asserts that when g = 0
and s is sufficiently large (plus some stricter conditions on Q and y?), then
solutions exist for arbitrarily large data.

In view of this even the C^ result should be new.

The purpose of this paper is only to indicate the proofs of the theorems;
a detailed exposition is in preparation [10]. The results are based on [8, 9].

2. The pseudo-differential boundary operators

For an efficient treatment of the problems in (1.1), (1.2) and (1.6) one can
utilise the calculus of pseudo-differential boundary operators of L. Boutet
de Monvel [1] for the linear parts. An extension of this calculus to the
B^y and F^ scales may be found in [8, 11] (with the results of J. Franke
(partially contained) in [2] and the H8 and B8 versions of G. Grubb [4]
as forerunners).

XIV.3



JON JOHNSEN

Introductions to the calculus may be found in [5, Sect. 2] and [3, Sect. 1.1
ft], or [4, Sect. 4], so here it is recalled that the generic object to study is a
Green operator

/P^+G K\ C^^ ^(^
A= [ : © -^ © , (2.1)

\ T s ) C^O^ C00^)^
whereby P^ = r^Pe^ denotes the truncation to Q of a pseudo-differential
operator on R77'; T is a trace operator, K a Poisson operator and S is a
pseudo-differential operator on F; finally G is a singular Green operator.

To assure that P^C00^)^) C C00^)7^ the so-called transmission con-
dition at r is imposed on P (cf the elementary exposition in [5, Sect. 1]).
More precisely, the results in [8] have been established for the space-uni-
formly estimated calculus, for which the Hormander class 5^o0^71 x ^n)
is the basic symbol class on E71; this version of the calculus has been in-
troduced systematically in [6]. Hence P is required to satisfy the uniform
two-sided transmission condition at F, and for A of the described kind the
main result in [8] is:

THEOREM 2.1. Suppose all entries in A have order d € Z and that both
T and PQ, + G are of class r G Z. Then there is continuity of

B^W B^^'
A: ® -^ T ' (2-2^

^,7(0^ B^'^ (r)^
Vs /D^-^ TT'5—^?^-^^p^1) ^p.q W

A: © -> © , (2.3)
D5- ? /p\M R5"^"l? rn^£>p,p H ) Dp,p H;

for s > r + max(^ — 1, ̂  — n). Jn &o^ cases, boundedness can only hold for
s < r + max(...) if both class(T) and class(Pn + G) are < r.

When all symbols are poly-homogeneous and A is elliptic, the theorem
applies also to any parametrix ^4, and it was shown in [4, Thm. 5.4] that A
can be taken of class r — d. In general this result is best possible because
A is a parametrix of A. (An exception is when A itself only contains a
negligible part of class r.)

With obvious modifications the theorem also holds for multi-order and
multi-class operators (of the Douglis-Nirenberg type) or when either M
or M' == 0; see [8, Thm. 5.2]. As examples there are then AD ^d AN'->
throughout

AD:=(RD KD)=A-^ (2.4)

will serve as a special choice of parametrix of AD '
For convenience D^, with k G Z, will denote the admissible parameters

(5,p,g) for which the inequality

s > k + max(^ - 1, ^ - n) (2.5)

holds. Equivalently this means that s > k — 1 + ^- + (n — 1 ) ( -^— 1)^-.
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3. Product estimates

The bilinear operator B{v^w) = vQ^w^ that has been used above with
B{v) :== B(t?,z?), is analysed as the composite

(v, w) ̂  (v, 9^w) ̂  7r(v, <9iw), (3.1)

where T r ( f ^ g ) denotes f{x) ' g{x). More precisely, 7 r ( - , - ) is the following
generalisation, that eg allows s > ^ (instead of s > 1) in (1.3):

DEFINITION 3.1. For u and v € 5(1 )̂ let, with ^(^) = ^(2-^),

TT(^ v) = lim J-1^) • J^-l(^^)), (3.2)
k -> oo

whenever the limit, calculated in P'^): (i) exists for each ^ e ^(R71)
equal to 1 near 0, and (ii) is independent of such ^s.

This product has been studied in [9], where it is shown that it fills a part
of the gap between two immediate meanings of 'pointwise multiplication7:
7r(/, u) = fu for / G OM and u G S ' , and 7r(/o, /i) = /o • fi when the fj lie
in L\°^ H S ' such that 0 <_ -^ + ̂ - ^ 1 (so that /o • /i € L^).

Moreover, for an open set Q C R71 there is a restriction to 0 defined as

TT^V)= lim rn^-1^!)^-1^!)), (3.3)
/>:—>• 00

when the limit exists in P7^) and satisfies (i) and (ii) for some u^ and v\ in
S ' such that r^^i = IA and r^i;i = v. (The existence of such a pair (^i, t?i)
implies that the limit exists, equals 7r^(u^v) and fulfils (i) and (ii) for any
other pair restricting to (?z, v).)

Perhaps more importantly, the continuity properties of 7r(-, •) may be
obtained by para-multiplication. For spaces over Q. the definition in (3.3)
allows one to carry boundedness over from 7r(-, •) to 7r^(*, • ) , cf [9, Thm. 7.2].

For simplicity's sake only the needed F8 results will be recalled. For the
Besov spaces it is necessary with a stricter control over the sum-exponents
g, but in the end this does not affect the results in Theorems 1.1-1.3; hence
these technicalities are omitted here.

THEOREM 3.2. The product in (3.3) is defined on F^^{^t) x F^\^(Q)
when

5o+5i >max(0,^+^--7z), (3.4)

and then there is boundedness

^ (.,.): F;̂  (Q) © F^, (Q) ̂  F^ (Q) (3.5)

if all of the following conditions are fulfilled:

52 < min(5o,5i); (3.6)
82 - ̂  ^ min(5o - ̂ 5i - ̂ ,5o + 5i - ̂  - ̂ ); (3.7)
S2 - ̂  = so - ̂  and s^ = ̂  hold only if pi ^ 1; (3.8)
52 - ̂  == 5i - ̂  and so = ̂  hold only if po < 1. (3.9)

Here it suffices with s^ < min(5o,5i) in (3.6) provided q^ > qj if s^ == sj.
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For this result the reader is referred to the theorems in [9, Sect.s 6 and
7]. Since 7r^(.,.) is commutative, it may be assumed that SQ ^ 5i, and then
the value, p^, of p^ for which there can be equality in both (3.6) and (3.7)
is given by the formula

t = T. + (^o - ̂ )- + (^i - ̂  - (^o - ̂ )+)+. (3.10)

REMARK 3.3. In Theorem 3.2 the receiving spaces F^^ are determined
implicitly by (3.6)-(3.9). But, since 0 is bounded, F^ (h) <-^ F^ (^\

' Pi^ ) P2,q2^ !
holds in any case, if q = q^ for SQ > s^ and if q = max(go, qi) for SQ = 5i.
Thus the receiving space with {s^p^q^) = (s^p^q) may be considered as
optimal.

4. The Dirichlet model problem

This section concerns the proof of Theorem 1.1. Preference will be given
to the Triebel-Lizorkin spaces for simplicity, however, everything holds mu-
tatis mutandem for the Besov spaces as well.

Firstly, for the linear parts of (1.1), there is boundedness of

/-A\ - F^^AD := ( ) : F^) -. ® (4.1)
<7(F)

for each parameter {s,p, q) with s > 1 + max(^ - 1, ^ - n), ie in Di.
For AD, the calculus asserts that the parametrix AD is bounded in the

opposite direction in (4.1) for each parameter (s,p, q) C E>i.
Secondly, when the non-linear term u9^u is taken into consideration

too, it is found from (1.1) that

u = Rof + KD^P - RD{u9^u). (4.2)

This turns out to be meaningful when s > max(^-, ^, ^ - j) for n = 2 and
for s > max(^-, j, ^ - 1) when n > 3, so in general the condition is

5>max(j ,^- l+j^2). (4.3)
To obtain this one can derive from Theorem 3.2 that u ̂  [u, 9^u) ̂  uQ^^u
is bounded, for some 5(<5,p),

FW -^ F^) © F^W -. F^2^), (4.4)

in general when s > max(j,^ - ?^]-), cf (3.4). Here the deficit 6{s,p)
measures how much the order of B(-) deviates from the order of -A.

It is essential that the non-linear term is more regular than ADU when
(4.3) holds. In fact 8(s,p) equals l+min(0,5- ^) —an increasing function
°f s - ^—except that 6{^,p) = 1 - € for some arbitrary e > 0. Hence
S{s, p) > 0 as long as s > max(j, ^ - 1 + ̂ 2).

Thirdly, after these preparations, an iteration yields that u 6 ̂ (^
observe that in (4.2) one has, by (4.4) and Theorem 2.1 applied to AD, for
the summands on the right hand side that

Rnf + KDV € F^(n), RD(UO^U) e F;̂ (̂n). (4.5)
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By determination of F^^ D F^ + F^8^, it follows that u C F^^.
Application of (4.4) then gives Ro(u9^u) € F^^81^ etc.

In the case r = p one may take pi = p, and, because 5(5, p) > 0, the
process ends with the conclusion that u e F8 in approximately \t-s\/8{s,p)
steps (as is well known).

For r ^ p the conclusion follows by consideration of four different cases,
namely those with the combinations of s + 6 ( s ^ p ) ^ t and t — ^ ^ s — 7-.
The procedure is far easier to sketch with a diagram than with words, so
the reader is referred to Figure 1.

(t,r) x M

/
/

x /

(s+8,p) x

5=max( j , ^ - 1)

0\———————————————————————————————————————^

FIGURE 1. The p-dependent iteration (for n = 3).

The figure displays the location of F^q v ? p } and four examples of F^
corresponding to the subdivision mentioned above. However, the sum-
exponents q and o are not represented. The sector where 8(s^ p) > 0, ie
s > max(- r- — 1 + i^n2)? is indicated in dashed line; note that the ' x ^
representing F^8 and F^ all lie inside the sector.

The arrows in full line indicates embeddings F^q ' '^ <-^ F^^ etc: there
are Sobolev embeddings down the lines of slope 1, and to the right along
horizontal lines because Q has finite measure. The dotted line indicates the
improved knowledge of the non-linear term, ie the spaces ^i\gi p etc.

Note that one of the four cases is trivial since F8^8 <—)- F^^ while another
in finitely many steps (indicated by 'o^) reduces to this or to one of the cases
with either the "sawtooth59 or the "staircase55 manoeuvres.

Altogether this leads to the proof of Theorem 1.1.

REMARK 4.1. The procedure followed above has been used by S. I. Poho-
zaev, at least in the case with s = t and r > p, cf [12].
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5. The Neumann problem

For the Neumann problem in (1.2) the arguments in Section 4 turn out
to require more detailed estimates of the non-linear term. The reasons for
this will be described in the following.

For the problem in (1.2), one should take (s,p, q) 6 D2, for then

7i ''FW-^F^-^r)^ (5.1)

is bounded. It is important here that 71 can not be continuous from F3 (Q)
unless s > 2+max(^ - 1, ^ - n) holds, so the restriction for (s,p, q) can not
be essentially improved. For the Green operator AN = ("^ ) this means
that the class is 2.

Since AN is elliptic, the Boutet de Monvel calculus asserts that there
exists a parametrix AN = (RN KN) of class 0—but not lower—that is
bounded

F8'2^)

^: M^ -^%(") (5.2)
^"'(r)

when (5,p, q) e D^. Hence the class of RN is 0, so RN can not be extended
to an operator that is continuous from F5"2^) when s — 2 < max(1 —
1, ^ - n). Again the restriction on (s,p,q) can not be essentially improved.

Contrary to the Dirichlet case above, AN is not an inverse, but

ANAN = 1 - U (5.3)

for an operator 7Z of order -oo and class ^ 2. In fact, this regularising
operator may be taken as Tin = |Q[-1 J^ u by a specific choice of A N '

Hence (4.2) is replaced by u = R^f + KN^ +Uu- RN(u9^u), where
the first three terms belong to F^(^).

The conditions that make uQ^^u defined remain the same, of course, so
the assumption for (s,p,q) in (4.3) is here replaced by

5 >max(^+1 ,^ -1+^2) (5.4)

and similarly for (^,r ,o). Cf (1.5).
Now the cases with t < s + 8(s, p) and t - ̂  > s + S - n- are rather more

complicated than the corresponding cases for the Dirichlet problem. The
reason for this is that the space F^ D F^8 + F^ 3 u seemingly may be
much too large for an application of the non-linear operator v ̂  RN^^X^)
to it.

Indeed, whilst t = si the integral-exponent pi is smaller than r, and in
many cases 5i < 1+ ̂  holds, although t > 1+ 1. An example is sketched in
Figure 2 below, where the sector determined by (5.4) is indicated by dashes.
When 5i is close to ^- - 1, then the deficit ^i.pi) is close to 0, and so
eventually

5 i -2+^(5 i ,p i ) < ^-1. (5.5)
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In such cases, since class(jR^) = 0, the solution operator R^ simply does
not make sense on Fp^'g24' v l ' p l ) (0 ) , as recalled after (5.2). By comparison
with the Dirichlet problem, the iteration is seemingly unable to begin.

(^)
x

^ = i -1
(5+5,?) / /

^+1
^pl)

n

FIGURE 2. The integral-exponent p*.

At this place the fine theory of pointwise multiplication offers a remedy.
In fact, one can do better than regarding the non-linear operator v 1-4- vO^^v
as one of order 2 - 8{s^p)^ as in (4.4) above.

The problem only arises when S ( s ^ p ) is close to 0, hence only for s < -
and then v9\v may be seen to factor through a space with smoothness index
s — 1 . More exactly, with -^r == r- + (^ - s)+, Theorem 3.2 gives that

5(.):F^(n)^F;^(n) (5.6)

is a bounded non-linear operator for s > max(^, ̂ - l+j^)- With { s ^ p ^ q )
in the subsector given by s > max(l, ^ - 1 + ̂ 2), in which the (<5i,pi, gi)
above lies, it may be checked that the receiving space F5,"1 in (5.6) lies above
the critical broken line s == max(1 - 1, r- — n), so that {s — l,p*, q) C Db.
See [10] or [11] for this.

According to (5.2) this assures that Rj^ may be applied to F5*"1^), so,
because s — 1 — -^ = s + S ( s ^ p ) — - there is (after all) boundedness of

FW -^ F;^ (Q) R^ F;^ W ̂  F;^(^) (Q) (5.7)

for all s > max(l, ' - - 1 + j^)- Evidently this last sector is stable under
the forming of the intermediate parameters (^i.pi, gi), (52,^2^2)? • • • •

In principle also the cases with t > s+6 and t— R < s+6— n- need a spe-
cial argument, but also here (5.7) may be applied. Altogether the iteration
used for the Dirichlet problem applies also to the Neumann problem.
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6. Final remarks

(1) To prove Theorem 1.3, notice that each of the conditions (1)-(3)
there implies that the data belong to the spaces considered in Theorem 2.1
of [13, App. 1]. Hence there is a weak solution to which the regularity results
apply. For details, see [11, Thm. 5.5.5] or [10].

(2) The iteration methods apply also to the von Karman equations for
a plate in Q C IR2, or to problems with a suitable semi-linear perturbation
of an injectively elliptic Green operator (p^0 K ) in the calculus.
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