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On complex-valued solutions to a 2D eikonal equation
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1 Introduction. Let n be a nonnegative sufficiently smooth function of two real variables
x and y, and let complex-valued solutions w to the following first-order partial
differential equation

wl+w^+n\x,y)=0 (1.1)

be in demand. Equation (1.1) arises, e.g., in questions about characteristic surfaces of
Laplace's equation, and in the theory of diffraction by J.Keller and D.Ludwig. In the
present paper we outline forthcoming results by R.Magnanini and the author, which
include an existence theorem and a theorem about critical points.

The present section is devoted to formal remarks. Suppose
w == u +iv ; (1.2a)

i.e., suppose
u=?St(w) and v=3?(w) , (L2b)

the real and imaginary parts of w. Equation (1.1) is equivalent to the following first-
order system of partial differential equations

^^+^^+n2=^^+^^, (L3a)
Uj;Vj:+UyVy=0 (1.3b)

— in alternative notations,

\^u\2+n2= |Vi;|2,

Vu - Vv = 0 .

Equation (1.3a) implies that the length of the gradient of v exceeds n, and equals n
exactly at the critical points of u. Equation (1.3b) tells us that the gradients of u and v
are orthogonal — thus the level lines of u are lines of steepest descent of v and the lines
of steepest descent of u are level lines of v.
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System (1.3) can be easily decoupled. In fact, algebraic manipulations show that
(1.3) can be recast either in the following form

(1.4a)
Vx

"y . -^i+ "2
r 9 9ui+uy

-Uy

Ux

or in the form of the following pair

u^

Uy^ ^\1-^vi+v^
Vy

-v^
, vi + v'y > n2 . (1.4b)

Loosely speaking, equations (1.4a) make the gradient of v available if and only if u
obeys the following partial differential equation

j9
^

1 1 re2
1 9 9ui+uy

9rr^i+- n
Ux+Uy

^Uy\=Q; (1.5a)

the equations appearing in (1.4b) make the gradient of u available if and only if v
obeys the constraint involved and the following partial differential equation

Q_ 9n1- 1- 0.^ir^T^lT^^j (1.6a)

Thus, system (1.3) is satisfied if and only if either u satisfies equation (1.5a) and v is
given by (1.4a), or v satisfies v^+v^> n2 and equation (1.6a) and u is given by (1.4b).

Equations (1.5a) and (1.6a) can be recast in the following form

{ | Vu | 4 + n2^}^ - 2n2u^UyU^+{ | Vu | 4 + n^u^Uyy (1.5b)

+ n | Viz | 2 Vn • Vu = 0 ,

and

{|V^;|4-n2^}^+2n^^+{|V^,|4-n2^}^

- n | Vu | 2 Vra • Vu = 0 , (1.6b)

respectively — i.e., in the form of semilinear second-order partial differential equations
with polynomial nonlinearities. If the coefficients of u^.u^y ,Uyy appearing on the left-
hand side of (1.5b) are denoted by a,26,c, then

^ ^v^dv^+^x).
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Hence equation (1.5b) should be qualified elliptic or elliptic-parabolic — notice that
degeneracies occur at the critical points of solutions. If a,26,c denote the coefficients of
vxx ^xy ^yy appearing on the left-hand side of (1.6b), then

a b = iv^dvz;!2-^).b c 1 ' v 1 ' )
Hence solutions v to (1.6b), such that | \7v \ > n\ are elliptic; any real-valued solution
v to the equation

| \7v | 2 = n2

— the standard equation of geometrical optics, which implies equation (1.6c) indeed —
is a parabolic solution to (1.6c).

Observe that a set of terms, appearing on the left-hand side of equations (1.5b) and
(1.6b), has a special geometric meaning. In fact, equations (1.5b) and (1.6b) read

V^ | Aiz + n^h + n Vn • , vu , = 0 ,
' vu

(1.5c)

and

^v\Av-n2k-n\7n'-^-l}-
' \/v

respectively. Here

/,-^,-Vi^.f 2 , 2 ^ - 3 / 2 / 2 -^u u u -Vv^u \a — azv i ^7 i — ^ x ^ ^ y ) ^y^xx ^^y^x ^xy i ^x ^"yy ) •)|V^

k = div -^—— .
\7v

(1.6c)

(1.7a)

(1.8a)

Recall from differential geometry that the absolute value of h at a point (x^y\ where
the gradient of u does not vanish, is the curvature at ( x ^ y ) of the level line of u crossing
(a:,?/); the absolute value of k at a point {x^y) is the curvature at (a*,y) of the level line
of v crossing (a-.y). Equations (1.4) yield

±h=

4. t.—L A- —

— /7/»i ^ —- aw —v^

Vu

Vy

-Vx

-Uy

U^

(v2
^x

5

+«y2
L/a.l/yl V^ »yy)+(vl-v],)vxy^ (1.7b)

(1.8b)

hence the absolute value of h at a point (.r, y) is also the curvature at (.r, y) of the line of
steepest descent of v crossing (x^y\ and the absolute value of k at a point ( x ^ y ) is also
the curvature at (x^y) of the line of steepest descent of u crossing {x^y).
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2 An existence theorem. The existence of solutions to equation (1.5b), that take
prescribed boundary values, can be settled in the following way.

Theorem 1. Let G be an open subset of the euclidean plane, having finite area — the
ground domain; let g be a real-valued function from Sobolev space W ' (G) — the
boundary datum. Suppose n is bounded and belongs to W ' (G). Then a real-valued

i e\

function u exists such that: (i) u is in W ' (G\ u has second-order generalized
derivatives and satisfies

J 21 V^22(^+2^+^)^^< (2-1)
G(6)n + I '

S~2 [ (n2 + | Vu | 2) dxdy + [ | Vn | 2 dxdy
G G

for every positive 6 — here G(6) = {(;r,y)e(?: dist((;r,z/),9G) > 6}; (ii) u satisfies

equation (1.5b) almost everywhere in G, u is a viscosity solution to (1.5b); (iii) u fits g

on8G,i.e^u-geW^\G).

Proof, outlined. Let
P

J{x^p)= ^n2(x,y)+t2dt, (2.2a)
0

and let a functional J^ be defined by

J,(u) = J j(^2/;^2+ {^u^dxdy (2.2b)
G

for every nonnegative 6. Formulas (2.2) guarantee that J\ is strictly convex and
coercive^ i.e., satisfies

Je^}>k\ I Viz | 2^^
G

for every u from IV15 ̂ G). Consequently, the following variational problem

J^{u) = minimum (2-3)
under the condition: u — g £ IVg' (^)

has a unique solution — call it u^.

Observe that equation (1.5a) is exactly the Euler equation of functional Jg*
However, Un need not satisfy such an equation. In fact, the following expansion
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j(x,y,p)=n(x,y)p{l+n \x,y)p2+-'],

which holds for sufficiently small p , shows that Jg is not different! able at any function
having critical points.

The main ingredient of the proof are statements (i)-(iii) below.
(i) If e > 0, J\ is smoothly differentiable; moreover, u^ satisfy the relevant Euler

equation both in the following weak form

^^^^{^j^t}=0 (2..)

and in the following stronger form

£2(n2+2|Vu|2+£2)Au+ (2.4b)

{ivuj^^yi^.^^^^j^ ̂ ^(^Y^
[ \ oy ) J 9x2 ay 9x 9x9y I' & ' \ 9x ) ) Qy2

n( |V^z | 2 +£ 2 )Vn•Vu=0

— in particular, u^ has locally square-integrable second-order partial derivatives.
(ii) If e > 0, u^ satisfies the following inequality

[ |V^|2 IQ2^}2 J^\2 Q2^}2}, ,
—T——-——^){ ^-f +2-a-^ +{-^} {dxdy< (2.5)^n2+\^u,\2\\9x2} \QxQy) \ Qy2 ) J y - ^ '

G^

6~2 f(n2 + | Vue | 2) dxdy + f | Vn | 2 rfa-rfy
G G

for every positive 6 — observe that the constants involved in inequality (2.5) are
independent of e.

(iii) Jg converges uniformly to JQ as e[0, more precisely

0 < Je (u) - JQ (u) < J j{x, y; e) dxdy (2.6)
G

for every u in W^1'2^).
Statements (i)-(iii) allows one to infer that u^ converge to u — in a topology

stronger than the topology of IV1'^Ci*) and the topology of any W^{G) — as e goes to
zero, and that UQ is the sought solution u. D
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3 Critical points. As a rule, the critical points of solutions to second-order 2D partial
differential equations are isolated. The following theorem shows that equation (1.5b) has
the opposite property.

Theorem 2. Suppose
n{x, y) > Constant > 0 . (3.1)

Let w be a smooth solution to equation (1.1), and let u be the real part of w. Then u
cannot have isolated critical points.

Proof. Let

1= 1
Viz

-u,

u,
(3.2a)

a unit vector field whose trajectories are the level lines of u and whose divergence is —
in absolute value — the curvature of the lines of steepest descent of u. Equation (3.2a)
gives

T O 1 L Viz0 1
-1 0 (3.2b)/=

Viz

a unit vector field whose trajectories are the lines of steepest descent of u and whose
divergence is — in absolute value — the curvature of the level lines of u.

Crucially, equations (1.4) and (3.2), and hypothesis (3.1) imply that / is smooth
everywhere^ even across the critical points of u.

As a consequence, the level lines of u are free from singular points, and the lines of
steepest descent have a smooth curvature. Since

V| Viz ^xx ^^xy

U^y Uyy

Viz
Viz

(3.3)

we infer also that [ Viz | is continuously differentiable everywhere, even near the critical
points of iz.

An inspection shows that

9 | Viz | +(divl) | Viz | =0 . (3.4)

In conclusion, if iz has a critical point — the origin, say — then the critical points of
iz must spread along the level line of iz which crosses the origin. D
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