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ON LOCAL AND GLOBAL
ANALYTIC AND GEVREY HYPOELLIPTICITY

MICHAEL CHRIST

UCLA

Introduction.
This article summarizes recent progress in the investigation of analytic hypoellipticity of linear

partial differential operators having analytic1 coefficients. Results and examples previously known
will first be recalled. The notion of global analytic hypoellipticity will be introduced in §2. Our
first main result is then a counterexample to global analytic hypoellipticity in dimension three.

The simpler case of partial differential operators with multiple characteristics in R2 will be
discussed in detail in §3. For sums of squares of vector fields, a conjectured necessary and sufficient
condition for analytic hypoellipticity will be stated. A geometric invariant q will be introduced,
in terms of which a more refined conjecture on the optimal exponent for hypoellipticity in Gevrey
classes will be formulated. A number of partial results supporting the conjecture will be adduced.

The analysis depends on certain nonlinear eigenvalue problems. These are the subject of §4,
where a third conjecture will be put forward. No indications of proofs will be given.

1. Background.
Suppose that L = ̂  • Xlj is a sum of squares of n real, C^ vector fields Xj on some real analytic

manifold M of dimension ^V, which locally will be regarded as an open subset of R^. We assume
always the bracket hypothesis of Hormander, which asserts that the Lie algebra generated by the
vector fields spans the tangent space to the ambient manifold at every point. L is said to be
analytic hypoelliptic (in an open set V) if for every open V C V and every u € ^'(V) such that
Lu e C^V), necessarily u € C^V). The bracket hypothesis ensures C°° hypoellipticity [H2].

Denote by S C T*M\{(a*,$) : ̂  = 0} the characteristic variety of £, that is, the set where the
principal symbol of L vanishes. Denoting by TT : T*Af ^ M the natural projection, L is said to be
symplectic at a point p 6 M is said to be a symplectic point if for some small neighborhood U of
p, S D ir^^U) is a symplectic submanifold ofT*U.

Consider the special case where the vector fields Xj are linearly independent at p and N = n+1.
Fix a nonzero cotangent vector a; C T*M that annihilates the span V of the Xj at p. Define the
skew symmetric quadratic form Qp on V by Qp(Y,Y') = (a;, [V.y7]^)), where the bracket denotes
the pairing between cotangent and tangent vectors. Then p is a symplectic point if and only if Qp
is a nondegenerate quadratic form.

Research supported by the National Science Foundation.
lThe terms "analytic" and "real analytic75 are synonymous in this paper.

Typeset by A^S-T^

IX. 1



The fundamental theorem concerning analytic hypoellipticity for these operators, due indepen-
dently to Treves [Tri] and Tartakoff [Tal][Ta2], states simply that L is analytic hypoelliptic in a
neighborhood of any point where it is symplectic.2

At the opposite extreme is a theorem of Metivier [Ml] asserting under certain auxiliary hypothe-
ses that if no point of an open set U is symplectic, then L is not analytic hypoelliptic in U. A
simple example is [BG] 9^ + x29] + 9^ in R3.

Our motivation comes from complex analysis in several variables, where one encounters operators
similar to sums of squares, especially in the simplest case of C2 [K].3 If 0 C C2 is a bounded
pseudoconvex domain with C^ boundary, then 9^1 is a CR manifold on which is defined a Cauchy-
Riemann operator 9b. 9^ o 9^ may be expressed in local coordinates as (X + iY) o {—X + z'V),
modulo insignificant lower-order terms, and the bracket hypothesis holds. The set of nonsymplectic
(that is, weakly pseudoconvex) points is either empty, in which case the theorem of Treves applies,4
or is a real analytic subvariety of positive codimension in 9fl. The everywhere degenerate situation
of [Ml] does not arise.

Another very interesting example [M2] is L = 9^ + (x2 +t2)9] in R2. This is a sum of squares of
three vector fields, modulo an unimportant lower order term. It is elliptic except at a single point,
namely the origin, where it still satisfies the bracket hypothesis, yet is not analytic hypoelliptic.
Consider now V = 9^ + x29^ V is essentially weaker than £, for instance in the sense that
(—£/, /) > (—£'/, /) for all / / 0 supported sufficiently near 0. Yet V is symplectic and hence
analytic hypoelliptic.

Concerning the intermediate situation, only one result of even a mild degree of generality5 has
been obtained. Given a two-dimensional subbundle T of TR3, a curve 7 : (-<s,^) i-̂  R3 is said to
be subordinate to T if 7(6) belongs to T for each <s; we assume always that 7 7^ O.

Theorem 1. [C2] Let X^Y be linearly independent C^ real vector fields in an open subset U C
R3, satisfying the bracket hypothesis^ and let L == X2 + Y2. A necessary condition for analytic
hypoellipticity of L is that there exist no curve 7 in U subordinate to the subbundle of TR3 spanned
by X^Y with the additional property that 7(<s) is a nonsymplectic point for every s.

This is a special case of a much more general conjecture of Treves [Tri]. The two-dimensional
example above suggests that this necessary condition is not sufficient, but to date no example in
R3 having only an isolated nonsymplectic point has been proved to lack analytic hypoellipticity.6

The hypothesis of subordinary cannot be omitted. In R3 set X = Ox-, Y = 9y + a(x^y)9t with
a{x^y) = a*1'4"^1 + xy^ where kj are strictly positive, even integers, and take L = X2 + Y2. Then
s ^ (0,0, s) parametrizes a curve consisting entirely of nonsymplectic points, yet L is analytic
hypoelliptic [GS].

Another class of examples is X = c^, Y = 9y + xm~19tl in R3 with coordinates (a*,?/ ,^), where
m > 2 is a positive integer. The case m = 2 is symplectic, but Theorem 1 asserts that analytic

2 The results cited are actually formulated much more generally.
^n order to avoid complicating the exposition with inessential technicalities, we restrict attention in this article

for the most part to sums of squares.
actually it applies only microlocally, in one half of the characteristic variety of S^^b^'i analytic hypoellipticity

always fails to hold in the other half, but that region turns out not to be relevant for the questions arising in complex
analysis.

5 The case of linear partial differential operators of principal type, in contrast to those having multiple character-
istics, is completely understood through work of Trepreau [Tp] and of Treves [Tr2].

6 It is this author's firm belief that such examples do exist, and work in this direction is underway.
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hypoellipticity does not hold for m > 3.7

2. Global Regularity.
Suppose L to be defined on a compact manifold M without boundary. L is said to be globally

analytic hypoelliptic if Lu 6 C^(M) implies u G C^(M). Analytic hypoellipticity in the local
sense implies it in the global sense, but not conversely. For example, consider any C°° hypoelliptic
operator L with constant coefficients, regarded as acting on functions defined on the torus T71 rather
than on M^. Then L is globally analytic hypoelliptic, but is so in the local sense only if it is elliptic.

Modify the example two paragraphs above by replacing x171'1 by sin777'"1^), so that L = X2 +V2

is defined on the torus T3. Then Theorem 1 still guarantees that L is not analytic hypoelliptic in
the local sense, yet it is so in the global sense [CH],[C3j. Since these examples are prototypical
for the situation of Theorem 1, and since global hypoellipticity is a far weaker property than local
hypoellipticity, it was hoped that global analytic hypoellipticity might always hold (for sums of
squares, under the bracket hypothesis).

Consider L = X2 + Y2 on T2, with periodic coordinates ( x ^ t ) (so that functions on T2 are
identified with periodic functions on R2). Assume that X = 9^ and Y = 0(x^t)9t for some C^ real
coefficient 0, and that the bracket hypothesis is satisfied.

Theorem 2. [C6] Suppose that the Taylor expansion offf(x^t) at 0 is of the form 0(x^t) = Cla<m-l+
C2^ plus higher order terms, where k > 0, m > 3, and Ci,C2 / 0. Suppose also that the range of L
contains ^(T2). Then L is not globally analytic hypoelliptic.

By higher order terms we mean all monomials x^t^ satisfying a/(m — 1) + / 3 / k > 1. The
assumption m > 3 means that 0 is not a symplectic point.

Thus certain behavior of a finite part of the Taylor expansion of a coefficient at a single point
is enough to preclude global regularity. The term f^ acts as a perturbation of the situation where
6 depends on x alone. There is then a rotational symmetry with respect to t, and global analytic
hypoellipticity holds quite generally in the presence of such a symmetry [C3]. Much work has been
done on symmetric special cases, which Theorem 2 now reveals to be atypical.

Three-dimensional counterexamples are constructed directly from the two-dimensional situation
by replacing 0(x^t)9t by 9y + 0^, and considering functions on T3 independent of the y variable.
Analogous analysis then leads to the following counterexample.

Theorem 3. [C4] There exist a bounded, pseudoconvex domain 0 C C2 with C^ boundary and a
function f C C^(9^l), whose Szego projection does not belong to C^{Q^l}.

3. The Two-Dimensional Case.
The simplest case of all is that of a sum of squares L = X2 + Y2 of two vector fields in an open

subset of R2. The bracket hypothesis implies that at every point, at least one of X,V is nonzero.
In general there will be some points at which L is elliptic, others at which it is nonelliptic but
symplectic (that is, X^Y are dependent at p but X,V,[X,y] span the tangent space at p), and
yet others at which it is neither. Define m to be the smallest integer such that the vector space
spanned by X, Y and all of their iterated Lie brackets with m or fewer factors equals the whole
tangent space at p8 Then p is said to be a point of type m = m(p). Type 1 means elliptic, type 2
symplectic.

^hese examples were treated earlier in a series of papers [He],[PR],[HH],[C5].
8 For this purpose X, Y themselves are considered to be Lie brackets with 1 factor.
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In this section we discuss only hypoellipticity in the local sense. Fixing a local coordinate
system, X,Y may be regarded as the two columns of a square matrix, and we define Q(p) to be
the determinant of that matrix, evaluated at p. Changing the coordinates has the effect only of
multiplying 0 by a nowhere vanishing factor; the same goes if the pair Z, Y is replaced by a second
pair represented as an invertible linear combination, with analytic coefficients, ofZ.V.9

The invariant m alone does not govern analytic hypoellipticity. Shortly we will introduce a
second geometric invariant, q G (O.oo]. Like m, q is determined by the Taylor expansion of the
coefficients of X , Y at p. For our immediate purpose it suffices to know that if p is a point of type
m > 2, then q = q{p) equals oo if and only if there exist coordinates {x,t} with respect to which
p = 0 and the span of Z, Y equals the span of ^, ^m-1^ in a neighborhood of 0.

Conjecture 1. L = X2 + Y2 in R2 is analytic hypoelliptic in some neighborhood of a point p if
and only either m^p) = 1 or g(jp) = oo.

When m(p) = 2 then q is always oo. An example where q < oo is X = 9^ and Y = [a;771-1 +1^9,
for any m > 3 and k > 1.

In general, q is defined as follows. Where m = 1, q is simply defined to be oo. Assume
henceforth that m{p) ^ 2. It is possible to choose coordinates {x,t) in which p = 0, together with
vector fields X,Y having everywhere the same span as X,V, such that X = <9^, Y == e(x,t)9t,
0{x,t) = x171-1 + E^=o3 Pj(t)x3, and each coefficient ftj vanishes where t = 0. q is defined to be oo
if and only if each /3y vanishes identically. Otherwise define rj to be the order of vanishing of ? • at
t = 0 and set J

q = mm Tj/(m - 1 - j).

This quantity can be shown to be independent of all choices made.10

The basic example is 6{x, t) = x^^t^x^ where 1 < k < m-2 and t > 0. Then q = £/(m-k).
Thus q is rational, and (m - 1)~1 < q < oo.

In those situations where q is finite, define the exponent SQ by the relation 1 - so~1 = (mq)~1.
Then 1 < SQ <, m, since q > (m - I)-1. Given m ̂  3, the set of possible values for SQ is a certain
infinite set of rational numbers in the interval (l,m].

Denote by 0s the Gevrey class of order s C [l,oo). Recall that 0s C Gi whenever s < t, and
that G1 = C^. A partial differential operator L is said to be G8 hypoelliptic if each distribution
u belongs to G8 in any open set in which Lu € G8. Under a mild hypothesis always satisfied
by sums of squares of vector fields satisfying the bracket condition, G8 hypoellipticity implies Gt

hypoellipticity for any t > s [Ml].
Let X^Y be as in Conjecture 1.

Conjecture 2. Assume that m{p) > 3 and q{p) < oo. Then in every sufficiently small neighbor-
hood o f p , L = X 2 + Y2 is G3 hypoelliptic if and only if s > SQ.

Here SQ = <so(p). Any sum of squares operator is G8 hypoelliptic for all s > m [GS], but SQ < m
unless q = (m — 1)~1, the minimum possible value for q.

Recall [RS],[H2] that if p is a point of type m and Lu belongs to some Sobolev space I I s (s > 0) in
a neighborhood of p, then u C H^2^ in some neighborhood of p, and that the exponent s+2m~1

1̂1 our results depend only on the span of X, V, rather than on the vector fields themselves.
^It is essential in the definition that the coefficient of a^-2 vanish identically. When m = 2, there are no terms

i3j{t)x3 at all, so that q •==. oo.
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is best possible in all cases. Thus m alone suffices to determine the regularity properties of L in
the Sobolev scale.

Theorem 4. [C6] Ifq == oo then L is analytic hypoelliptic. Ifq < oo then L is G3 hypoelliptic for
all s ^ SQ.

Typical examples where q = oo are 9^ + [a^,^771-1^]2, where a / 0. In the next theorem we
assume that m > _ 3 ^ 1 < ^ k < ^ m — 2, and i > 0.

Theorem 5. [C6] L = ̂  + [(x771-1 + ̂ -1)^]2 /aifo to be 0s hypoelliptic for all s < SQ, except
possibly when all of the following conditions hold: m/{m - k) is an integer, m is even, k is odd,
k > 1, and m/(m — k) is not divisible by 4.

We believe this restriction on (m, k) to be merely an artifact of an ad hoc method of proof.
These examples suffice to demonstrate that the optimal Gevrey exponent need not be an integer,

in contrast to all cases previously known to this author.
In R2 the pair X^Y is said to define a pseudoconvex structure if 0 does not change sign. The

characteristic variety S of L = (X + iY) o (-X + iY) is then a trivial line bundle over the variety
of nonelliptic points in the base space. As in the three-dimensional case, it splits as the union of
two half-line bundles ̂ ± (depending on the sign of the variable dual to t in the special coordinates
( x ^ t ) described above). The natural question for L is whether it is analytic microhypoelliptic, or
G3 microhypoelliptic, in some conic neighborhood of S4'.11

Theorem 6. [C6] Assume pseudoconvexity and the bracket hypothesis. Then the analogues of
Conjectures 1 and 2 hold for L = (X + iY) o (-X + iY), in a conic neighborhood of S~^ in full
generality.

In §4 we will introduce, for each operator X2 + Y2 or (X + iY) o (—X + iV), an associated
nonlinear eigenvalue problem, and will conjecture that this problem has an affirmative solution
whenever q is finite.

Theorem 7. [C6] If Conjecture 3, concerning nonlinear eigenvalue problems, is correct, then Con-
jectures 1 and 2 hold in full generality.

More precisely, Conjectures 1 and 2 hold in any particular case for which the unique associated
nonlinear eigenvalue problem satisfies Conjecture 3.

It is interesting to contrast these results with the following example in R5, analyzed by Ching-
Chau Yu [Y]. For m > 3 set L^ = 92^ + (Oy, + x^Qf)2 + 92^ + (9y^ + x^t)2. Then the quadratic
form Q has rank one where x\ = 0, and full rank elsewhere.

Theorem 8. (Yu) For any even m > 4, Lm fails to be analytic hypoelliptic. More precisely, Lm
is G8 hypoelliptic if and only ifs > 2.

The fact that G2 hypoellipticity holds for all s > 2 is implied by the theorem of Derridj and
Zuily [DZ]. This is the first example known to this author in dimension greater than three for which
analytic hypoellipticity is shown to fail, yet Q is not everywhere degenerate. Although Lm becomes
more degenerate as m increases, the optimal Gevrey exponent does not change so long as m > 3.

l l<9fe* is never microlocally Gevrey, analytic, or C°° hypoelliptic in any conic neighborhood ofE~ in this situation,
hence neither is 0^ o <9&*.

IX. 5



4. Nonlinear Eigenvalue Problems.
Suppose that $ is a homogeneous polynomial of the form

m-2

<S>(x,z) = a;771-1 + ̂  ajZ771-1-^3

j=0

with Oj G K. Suppose further that P is a homogeneous quadratic polynomial in two noncommuting
e\ c\

variables wi ,W2 of the form P(w) = [cnWi + Ci2W2] + [^12^1 + ^22^2] , where the coefficients
Cij are real and the matrix (c^-) is nonsingular. Define the ordinary differential operator Cz =
P(d/cb, z<l>(a*,^)), acting on functions of x G R and depending on the parameter z C C.

Given a family {Cz : z € C} of ordinary differential operators, we say that z 6 C is a nonlinear
eigenvalue if there exists 0 ^ / 6 2y°°(R) such that Czf = 0. In the situation of the preceding
paragraph, it is equivalent to ask for / 6 £2, or / 6 5, rather than / e L°°.

Conjecture 3. Assume Cz to be a family of ordinary differential operators of the class described.
Then either there exists at least one nonlinear eigenvalue^ or $(.r,^) = c\x + c^)771"1 for some
constants c, c'.

Various problems of this type have been analyzed in [PR],[K],[FS],[C5],[C1]. Yu [Y] has deter-
mined the asymptotic distribution of the nonlinear eigenvalues for —9^ + (.r771"1 + z)2-

To an operator L = X2 + Y2 on R2 and a point p at which L is not elliptic we assign a
family Cz of the above type by the following procedure. Choose coordinates ( x ^ t ) with origin
at p as in the definition of q, and determine the function 0{x^t\ Then define a polynomial P
by P ( x ^ z ) = x171'1 + ̂ .ajZm~3x3 where aj = 0 if ftj vanishes to order rj > (m — 1 — j)q at
t = 0, and aj is the leading-order coefficient in the Taylor expansion /3j(t) = ajt^ + O^^'1'1) if
TJ = (m — 1 — j)g. Unlike Q and 0, P is independent of all choices made in its construction, modulo
multiplication by constants.

There exist analytic real-valued functions Cij such that X = c\\9^ + c^OQf, Y == c^9^ + c^OQf-,
and the matrix (c^-) is invertible at p. Set Cij = c^-(p). The family of ordinary differential operators
associated to L at p is then

^ = [Cn^ + ZCi2P(^^)]2 + [C2l^ + ZC22P(^^)]2 .

When q < oo the polynomial P is never of the exceptional form c^x+cz)771'1, because the coefficient
of a*771"2 for 0 vanishes.

Let p be a polynomial satisfying 9^p == P. If A is any real constant, then defining Lz =
exp(-zAp) o Cz o exp(zAp), z G C is a nonlinear eigenvalue for {Cz} if and only if it is one for {Cz}.
Therefore the nonlinear eigenvalue problem for L = X2 + Y2 depends only on the span of X^ V,
rather than on the vector fields themselves.

Theorems 5 and 6 are obtained by showing that nonlinear eigenvalues exist for —9^ -)- (a;771"1 +
^m-k^k-1^2 ^^ f^ ̂  _^_ p^^^ Q (-^ -|- P(a:^)), respectively. In the latter case there is the
pseudoconvexity hypothesis that 9 P / 9 x >_ 0 for all x ^ z C R.

For partial differential operators with sufficiently many geometric symmetries, such as 9^ + {9y +
^m-ig^2^ the associated nonlinear eigenvalue problems arise directly via separation of variables.
One looks for solutions of Lu = 0 of the form u = exp{irt+ir]y)f^^{^)- A dilation symmetry allows
reduction to the case r = l . If z = T} is a nonlinear eigenvalue for the resulting family of ordinary
differential operators, then u ^ ^ x ^ y ^ t ) == exp^'r^+^r1^777'^)/^1/771^) defines a one-parameter family
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of functions annihilated by L. These may be used to contradict certain a priori estimates implied
by analytic hypoellipticity [He],[HI]. In the absence of symmetry, however, no direct reduction to
ordinary differential operators is possible, and the proofs are at present substantially more involved.
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