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1 Introduction

Surface waves were discovered by Rayleigh at the end of the last century [1]. He considered
a homogeneous and isotropic elastic halfspace R'^ = {(^',0, x > 0, <$ e R2}, whose
boundary surface x = 0 is free of traction. He found that there are two types of solutions
of the respective boundary value problem:

(i) Solutions which are oscillating and nondecaying at infinity in all variables. They
are called the volume (bulk) waves.

(ii) Solutions which are the plane waves in the longitudinal variables ^ and which are
exponentially decaying (localized) in the transverse variable x.

These solutions are called the surface (grazing) waves. They propagate only in the
longitudinal directions, with the velocity slightly smaller than the velocity of the volume
waves.

The similar solutions exist if the plane x =- 0 is the interface between the two halfspaces
with different elastic constants (see [1,2] for references and discussion).

This should be compared to the case when a homogeneous elastic body occupies the
whole R3 and when all the solutions are the plane waves in all variables.

The Rayleigh result is perhaps the first demonstration of a rather general property of
solutions of differential and finite-difference equations which can be summarized as follows.
If the coefficients of an equations are strongly inhornogeneous (spatially dependent), then
the equations may have solutions which are localized near the inhoinogeneities, i.e. decay
exponentially with the increase of the distance from the inhomogeneity.
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Returning to the surface waves, we remark that after Rayleigh the similar solutions for
the Maxwell equations were found, at the turn of the century, by the Sommerfeld school in
the study of the propagation properties of the radio waves around the earth surface. These
are the electromagnetic waves that propagate along the surface of a dielectric subspace or
the interface between the two halfspaces with different dielectric constants and localized
near the surface (intersurface). Tliese solutions are now known as the surface polaritons
or the surface plasmons (the latter correspond to the limiting case c = oo, where c is the
velocity of light) [3].

The natural analogue of the R,ayleigh problem, in the case of inhomogeneous (and
in particular, randomly inhomogeneous) media, is a model of an inhomogeneous elastic
halfspace. The common wisdom of spectral theory of the PDE^s with random coefficients
suggests that in the case of a randomly inhomogeneous elastic medium occupying the
whole space R^, d >: 3, nondecaying at infinity (delocalized or extended ) solutions exist
for low and high frequencies, and exponentially decaying at infinity (localized) solutions
exist for an interval ("window") of intermediate frequencies if the disorder is large enough.
If so, then it is natural to expect that in the case of half-infinite random inhomogeneous
media the above picture should be complemented by the surface solutions which are
delocalized (propagating) with respect to the transverse coordinates, if the inhomogeneity
is weak enough or if their frequency is low enough.

The above picture assumes the positive solution of a hard problem, the proof of the
existence of delocalized solutions in a randomly inhomogeneous media. We will consider
here a class of simpler problems where similar phenomena is expected to emerge. A typical
example is tlie boundary value problem for the Laplace equation:

- ^xu = Eu, X = (.7;, 0 € R4. - [x > 0, ^ € R^-1} (1.1)

with the boundary condition

^1^0=^(^(0,0, ^R"-1. (1.2)
ox

If V{^) is a constant, V{^) ^ a, then the eigenvalue problem can be solved by separa-
tion of the variables. Its solutions can be explicitly identified as follows.

(i) If a > 0, then the solutions are

u{XJ<) = (2^-V(A;2 + a^Y^^e^^kcoskx + asmkx} (1.3)

where K = (A;, y) € R^, E = P + ̂  >_ 0.
(ii) If a < 0 then we have two classes of solutions:

u, (X, K) = (2(I-27rd{k<2 + a2)) -1/2 c^{k cos kx + a sin kx) (1.4)
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where K = (fc, (/?) e R^, £ = A:2 + ̂  > 0, and

n,(A^) = (2V-lH)-l/2^-n;r (1.5)

where ^ € R^-1, ^ - <p1 - a2 ^ -a2.
Thus for a < 0 we have analogues of the volume and the surface waves; the only

difference between (1.1)-(1.2) and the Rayleigh problem is that for the former one the
spectral parameter can be negative.

In this note we discuss the structure of the solutions of the eigenvalue problem (1.1)-
(1.2) in which V is a quasi-periodic or random function and some related problems. In
the next section we give a more precise description of problems; the explicitly solvable
model V^(0 ^ const will serve us as a guide. In the Section 3 we present some results
concerning the discrete analog of the boundary value problem (1.1)-(1.2).

2 Generalities

We begin by reformulating the boundary value problem (1.1)-(1.2) in terms of spectral
theory.

Let us recall that the spectrum of an abstract selfadjoint operator H consists of
the absolutely continuous , singular continuous and pure point components: (j{H) =
(Tac(H) \J(7sc{H) [j(7pp{H). In our case H is a differential or finite difference operator and
it is widely accepted that the generalized eigenfunctions corresponding to (T(^(H) describe
the propagating waves and particles. A typical example is the Schrodinger operator in
I? ( R J , whose potential decays at infinity. If the decay is fast enough, then the ab-
solutely continuous spectrum of this operator is R-^-; the respective eigenfunctions are
superpositions of the incident plane waves and scattered spherical waves (the Sornmerfeld
solutions).

The boundary value problem (1.1)-(1.2) defines the selfadjoint operator Hy acting
in the space L12 (R^). Thus, we can reformulate the results (1.3)-(1.5) for V{^) = a as
follows:

(i) a > 0. The spectrum of Hy is R_(- and is purely absolutely continuous. The
respective eigenfunctions are given by (1.3); they are the plane waves with respect to the
longitudinal coordinates ^ € R^"1 and the standing waves with respect to the transverse
coordinate x > 0. This system of eigenfunctions is orthonormal and complete, i.e.

/ n(X, K,)u(X^ K^dX - /)(A\ - J^)
R^
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and
j u{X^K)u{X^ K)dK = 6{X, - X^).

W
(ii) a < 0. The spectrum of Hy is the interval [—a^oo) D R+, and is again purely

absolutely continuous. The generalized eigenfunctions are given by (1.4) and (1.5); we call
them respectively the volume (bulk) and the surface (grazing) solutions (waves). These
eigenfunctions satisfy the relations:

f u,{X^KMX^K,)dX = Wi-J^),

^

y u-2(X^i)u'2(X,y-2)dX =- 5(^i-^2),
R^

I'u,{XJ<)u,{X^)dX = 0
R^

J u^X^K)u,(X^K)dK+ I' u^X,^)u^X^^dy=6{X,-X^.
RJ R;/-l

Thus, the volume waves {ni(X, ^O/veR^ a11^ ^le surface waves [u'z{Xy ^)}^eRrf-l gener-
ate two orthogonal subspaces. In oilier words, the spectrum of Hy^ for V(^) = a < 0,
consists of two "layers" (channels) [0,oc) and [—a^oo) corresponding to volume waves
(1.4) and surface waves (1.5). There is no scattering between the volume channel and the
surface channel.

We now mention a few other problems that have similar structure of spectrum.
The Schrodinger operator in R^ with a surface potential.
We consider the Schrodinger equation

Hu = -^xu + 26(.r)V(0^ = En (2.6)

on R^ = [X = (.T^) | x G R , ^ € R^~1}, wliere /)(:r) is the Dirac 6 - function. We
assume for the simplicity that the surface potential V(^), ^ € R^"^ is bounded. Then by
using the Green formulae it easy to show that (2.6) is equivalent to (1.!)-(!.2).

Discrete boundary value problem. On the half-space

Z'[ = {X = (.r,0, x e [0,oo) = Z+, ^ € Z6-1}

we consider the spectral problem

u{x - 1,0 + -«,(:/: +1 ,0 -I- (A,<_ r«,) (.r, ̂  = Eu, x ̂  0 (2.7)

•"(-1,0 -m"(0,0, (2.8)
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where
(A^_m)(0 = ^ /a(r?) (2.9)

r/(EZ^-l,|e-^|=l

is the discrete Laplacian in Z^. This boundary value problem is the natural discrete
analogue of (1.1)-(1.2).

Discrete Schrodinger operator with the "subspace" potential. We decompose Z'2 as

z'1 = z'11 x v1'2 = [x = (.r,o, x e z^, ^ e z^2},

and consider the finite-difference equation

A,/n + 6(x)V^)u = Eu (2.10)

where

^)=iW.)
.7=1

The potential is now concentrated on the subspace Z^2. If d = 3, di =- 1, ^2 = 2 this
model can be regarded as a model of the thin film; for d = 3, dy = 2, d'z = 1 it can
be regarded as a model of the line inhomogeneity. We call the latter case the polymer
problem. The case d == 3, d[ = 1 , ^ = 2 and V depending only on ^i reduces to d = 2,
d\ = d^ = 1 and can be regarded as a model of the grating (the linear interferometer).

It is easy to show that all these problems with V = const have the surface (subspace)
solutions which decay exponentially as |.z'| —> oc and which are the plane waves in (in-
variable , i.e. propagate along the subspace Z^2.

Similar results are also known for the case when V^) is periodic (see [5-7]).
For the rest of this note we will discuss mainly the discrete boundary value problem

(2.7) - (2.9). To give the reader the taste of the results we are aiming to, we finish this
section with the following simple result. Recalling the property of polynomial boundedness
of generalized eigenfunctions of finite-difference operators we define the set 5' of the surface
solutions for the problem (2.7)-(2.9) as

^ = ^^(:.^o, sup (i + kTr1 E h^ai2 < o4 (2-11)
[ ^(i-1 :r:ez+ J

where a > d — 1/2 is fixed. We also introduce

as= { E : UE €5}.

Proposition 2.1 Let H() = A,/ and let Hy be the selfad-jomt operator defined by (2.10).

Let a{Hv) and a{Ho) = (7ac{Ho) = [-2d/2d} be their spectra. Then (T{Hy}\(j[Ho) C as

and the corresponding (jeneralized. eigerifunctions decay exponentially as \x\ —> oo.
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The proof of this proposition follows from:
(i) the Green formula

^(^O- E flE{x^-ri)V(ii)uE{0^l)^
•r/ez^-1

(ii) the polynomial bound

\UE(X)\^ 0(1 +M^), ^>0 ,

which is valid for almost all E with respect to the spectral measure of Hy [17];
(iii) the exponential decay of the "free" Green function (JE^X)^ E ^ ^(J9o).

3 Discrete boundary value problem

In this section we present some results concerning the structure of solutions of the discrete
boundary value problem (2.7)-(2.9) . We would like to emphasize in advance that our
understanding of the problem is limited; we have only a few results to announce here.
More complete analysis of the problem will be given in [4].

Set V^(0 = ff^(0 where ^(0, <$ € Z^~1, are independent, identically distributed
random variables with continuous and bounded probability density p{v). The parameter g
measures the strength of the coupling between waves (quantum particles) and the random
corrugated surface of the medium. We denote respective operator H y .

In the case when the random variables 7;(^) are degenerate, v{^) = a > 0, the spectrum
of the operator Hy is absolutely continuous and fills the union of two intervals

a(Hy) - [-2f!,2r;] U [-2{d - 1) + E^(ja)/2{d - 1) + ^oM];

where Eo{ga) = (ja + [(j(i}~1 > 2 is the only eigenvalue of the one-dimensional boundary
value problem u{x — 1) + u(x + 1) = £n(.z'), u{—i) = yrm(O). This eigenvalue exists if
ga > 1. As in the continuous case, these intervals correspond to two "channels", volume
waves and surface waves. If the surface channel exists {(ja > 1), then it has a "tail" lying
outside ofa(J^o). Tlie generalized eigenfunction associated to the "volume channel" do not
decay in any direction; the ones associated to the the "surface channel" are exponentially
decaying in .r-variable.

Our goal is to understand how is the structure of spectrum affected after the replace-
ment of the constant potential along the boundary with the random one.

The standard ergodicity argument (see e.g. [9], or [10]), yields that there are closed
sets E^,,E^,S^, C R so that for a.e. V, a^,{Hy) --^ S,/,,., (T^.{Hy) ^ E,,,., a^{Hy) = Epp.
In particular, for a.e. V

(7{Hy) - E,,, U E,, U E^ EE E.
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In fact, it is not too difficult to find the set E. If V is the support of the probability
density p{v)^ then

E = [-2d/2d] U {[-2(^ - 1), 2{d - 1)] + ^oQ/V)}

where X + V = {.r + ;y, x e X,;// e Y}.
It is a characteristic feature of the problem that the spectrum of the operator Hy

always has massive enough absolutely continuous component, due to the free propagation
along the ^-variables.

Theorem 3.1 [4] If j'^ \y\p{v)dv < oo Uum E ,̂ D [-2(1/2(1}.

The basic idea of the proof is to show that there is a dense set of vectors V C ^(Z^.) so
that the limit

s — lim ex\){itPIy) exp(—z/;^/o)n, u e V,
t—»00

exists, see e.g. [16]. By the Cook criterion, it suffices to show that

I ' 0 0 \\(Hy - H^exy{-ztJ^)u\\dt < oo (3.12)

for each u e V. Clearly, (3.12) will follow if

^ |7;(0||(/),,exp(-z^o)^)| <oo, (3.13)
^Z'1-1

for almost all V and all u G V. One establishes (3.13) by passing first to the Fourier
variables in the ^-variables (see the discussion below), and then using integration by parts,
judicious choice of the set P, and Borel-Cantelli lemma. Tlie details will be presented in

[4].
Further discussion of the spectral properties of Hy is based on the Fourier transformed

form of the Hy. The operator Hy is unitarily equivalent to operator Hy which acts on
^{Z^) ̂ L'2^1-1). We denote the variables on that space by (.7;, 0) =- (x, (^i, ^2, • . . 0^-i),
and its elements by A(.T,C/)). Let

d-\

<I>(0)-2^C()S(0J.
1=1

The operator Hy is given by

Hyu{x, ({)} = U{X + 1, 0) + U{X - 1, 0) + <I>(0)n(.T, 0) , X ̂  1,

ffyn(0,0) = n(l,0)+y[7^](0,0).
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Square integrable solutions of the equation

Hyu{x, (/)) - Eu{:^ (f)) (3.14)

have the form
u{x, ( / ) ) =A(0^)A^;

A^E + 7—— + ^W = E and 0 < A^ < 1.
A^£'

In particular, if E € [—2r^2rf], we may assume that the function n(0,0) is supported on
the set

{0 G r7-1 : |<I>(r/.) - £| > 2}.

It follows from (3.14) that function T/,(O,^) satisfies the equation

^("^)A^--yM(^). (3.15)

This equation will play the central role in the subsequent discussion. We recall that the
set V is the support of the probability density p{v). Our first application of (3.15) is:

Proposition 3.2 [4] a) Suppose that V C [—a, a] for some a > 0. // \(j\ < I/a then Hy

has no eigenvalues in [—2d/2d].

b) Suppose that V C [a^b] for some constants 0 < a < b. If (j > 2(2rf — l)/a then Hy has

no eigenvalues on [—2d,2d}.

Remark. Tlie above results are in fact deterministic.
Remark. Suppose that V = [—a, a]. Then the part a) yields that there are no eigenvalues
on [—2^, 2rZ] as long as there is no spectrum outside the spectrum of Laplacian. The part
b) yields that as long as the spectrum outside [—{2d,(2d] is separated from the one in
[—2d/2d] by a sufficiently large gap, then are no embedded eigenvalues in [—2d^2d].
Proof: The equation (3.14) yields that

^ ^ \u{o^/^\Wd4^ H f^ |M(o^)|2^.

Assume that u is normalized as

1= [ \u{(}^^d(t^ ^ |n(CU)|2.
JT<- ^^-i

Since
1 < A ^ < 2(2^-1),
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we get from (3.14) that

l ^ y 2 E ^(^^^^[^^(-J^-l)]2.
^-ez^-1

The result is immediate. D
We now turn to the analysis of the structure of the "tail" part of the spectrum of H y ,

given by E \ [-2d,2d]. Let Ry{X,X'\ E + u) he the matrix elements of the resolvent
{Hy - z)~1 for z = E + u-. Let A'() = (0,<^) be fixed point on the boundary 9Z^ and let
\E\ > 2d. Then

Rv(X^ (.r, r/Q; E + ze:) = Ry(X^ (0,0); £ + z€)[A<^+zef. (3.16)

Here A^-^,- is the analytic continuation of the function A<^ from the part of the real
axis \E\ > 2d to the upper half-plane {w | Irn(w) > 0}. For ^ e Z^"1 let

D^E+-u-)=[\^}

Obviously, for each \E\ > 2d tliere is CE > 0 and ^(E) > 0 so that

sup \DE{^ E + ze) | < CEexp(-7(£;)|^|). (3.17)
fr>0

The resolvent equation restricted to the boundary OZ^ becomes

[D^ - ^o, E + ze) + A,_i + ̂ (0] J?v((0^o), (0,0; E + ze:) =

= ^(^ - ^0) + £; + ze)Av((0^o), (0,0; E + z.).

On this way we have obtained (d, — l)-dimensional eigenvalue problem which, however,
depends non-linearly on the spectral parameter E (see also section 2). Nevertheless, the
techniques developed in the spectral theory of random operators can be properly adapted
to handle this non-linear spectral problem in the strong localization regime and we have:

Theorem 3.3 Suppose that density p{v) satisfies sup^Rjp(^)| < oo. Then for \/6 > 0

there is g{8) > 0 so tluit Die estimate

sup |/M((Un), (0, 0; E + u)| < CE^V exp(-7(^)|^ - ̂ |), (3.18)
fr>0

holds for \(j\ > (j(f)), each fixed \E\ > 2d + 6 and for a.e. V. The same estimate holds for

each fixed g if \E\ is taken la/rye enou^i,, \E\ > E( } { ( ] ) .
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Remark. The result holds under more general condition on density p{v).
Remark. Naturally, the constant ^{E) in (3.17) may differ from one in Theorem 3.3.
For notational simplicity, we will always use the letter ^y(E) for the E-dependent constant
figuring in the exponential decay of the quantity in question.
From the estimate(3.18) and relation (3.16) it follows that under the conditions of the
Theorem 3.3, the resolvent

sup|JMXo,X;E+u)| ^ CV,^^exp(-7(£;)|Xo-X|4-),
e>0

in the large coupling/high energy regime described in the Theorem 3.3. Tlie Simon-WolfTs
theorem ( see [9] and [10]) yields the following result:

Theorem 3.4 [ 1 1 , 1 2 ] Under tb.e conditions of Ttieorem S. ^ we fiave:

a)For each 6 > 0 there is g{6) > 0 so tfuit for \(j\ > y(^),

En{£;| \E\ >. (2d+h} C E ,̂

The correspondinf/ eif] en functions decay exponentially.

b) For each (j ~=^ 0 th.ere is E { ( ] ) so th.at

^ r } { E \ \E\ ̂ E { g ) } c ^ .

The corre.spondiny eif]enfunctions decay exponentially.

Consider now the quasiperiodic potential

l/(0---ytan7r[(o,0+^] (3.19)

where c\ = {a\, ..o^-i) is a Diophantine vector, i.e.

\^^)-\-m\^C\^

for all ^ € Z^V {0}, m € Z and some positive C and /3; uj 6 [0,1] is the "randomness"
parameter.

The potential (3.19) can model the quasiperiodically (strongly) corrugated surface.
The case of the Schrodinger operator with the similar potential is analyzed in [10]. This
operator has pure point spectrum coinciding with R for all (j -=/=- 0 and almost all uj € [0,1]
with respect to the Lebesgue measure.

Similarly, for the surface potential (3.19) we have :

Theorem 3.5 [13] Let Hy be the operator defined by (2.7}-(2.9) and ( 3 . 1 9 ) . Then the

spectrum of Hy is R and its part lyinf/ outside of O'(H()) = [—2d/2d] is pure point for

almost G.UUJ 6 [0,1] with respect to th,e Lebesf/ue measure. Th.e eigenvalues are simple and

dense on R\[—2^,2^] and tfie correspo'fidi'ruj eif/enfunctions decay expo'fie'n.tmlly in ^.
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Combining Proposition 2.1 (which also holds for the model (2.7)-(2.9)) and Theorems
3.4 and 3.5 we conclude that in the strong localization regime the eigenfnnctions are the
surface solutions of respective equation and that they decay exponentially not only in the
transverse coordinates x but also in the longitudinal coordinates <$. In other words,

In the cases treated in Theorems 3.4 and 3.5 the surface waves are localized by strong
fluctuations of the random potential.

On the oilier hand, according to Theorem 3.1, the absolutely continuous spectrum fills
the interval [—2rf,2^] for all strengths of the coupling. Thus we are naturally lead to the
following questions:
(I) Is the spectrum of Hy purely absolutely continuous for (j small?
(II) What is the nature of the spectrum on the interval [—2d,2d] for the intermidate and
large values of (j7 Do we have embedded eigenvalues in a.c. spectrum?
(Ill) Do surface solutions exist on the interval [2r<,2^j? Are they propagating? What are
the respective conditions?

Concerning (I), if d ^ 3 and the random potential is placed only along a line (the
polymer case), then the conjecture can be established using a version of Kate's smooth
perturbation theory [4]. Concerning (111) the answer is affirmative if d = 3 and i.i.d.
random variables ^($1,^2) oo ^t depend on ^. Indeed, in this case the dependence
of solutions on <^ is harmonic and the corresponding energies belong to the absolutely
continuous spectrum of Hy. On the oilier hand, since the analogue of the respective
non-linear spectral problem (3.15) is one-dimensional, one might liope to obtain some
information modifying the existing techniques of 1-d random Sclirodinger operator theory.
In [4] we modify and extend the technique developed in [14], [15], to prove that if d = 2,
then for all (j E n {E \ \E\ > 4} C E^,. This allows us to prove that ( J s n [-6, 6] ^ 0. The
corresponding solutions propagate along (^-<ixis and exponentially decay in <^i and x.

Acknowledgments. I am grateful to V.Jaksic, B.Khoruzhenko and S.Molchanov,
who are the coauthors of a number of results mentioned above.
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