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THE SYMBOL OF A LAGRANGIAN DISTRIBUTION

D. VASSILIEV

1. Main result

Let M be a smooth n-dimensional manifold without boundary, and let T* M be
the cotangent bundle. Local coordinates (and points) on M will be denoted by

z=(21,22,... ,&n) Or Yy = (Y1,Y2,.-. ,Yn), and the dual coordinates on the fibres
Ty M and Ty M will be denoted by & = (£1,82,---,&n) and 7 = (n1,72,... ,7n)
respectively. By T'M we shall denote the cotangent bundle T*M with the zero

section (£ = 0 or n = 0) excluded.
By

(1.1) (*(t;y,m), € (t9,m)),  tE€(—o00,400), (y,m)€T'M,

we shall denote a smooth time-dependent homogeneous canonical transformation
in T'M . We assume that

(1.2) (2*(0;9,7),6*(0;y,m)) = (v,n)-

For example, the canonical transformation (1.1) can be generated by some Hamil-
tonian h(z,{) positively homogeneous in n of degree 1. In this case (1.1) is the
solution of the Hamiltonian system of equations

(1.3) B* = he(a*,€"), € = —hy(a",")

with initial condition (1.2).

The phase functions in this paper are assumed to be positively homogeneous in
n of degree 1 and with non-negative imaginary part. The fact that we allow our
phase functions to be complex-valued is crucial, because otherwise we would not
be able to use a global construction, see [1].

Throughout the paper we shall often denote partial derivatives by respective
subscripts.

DEFINITION 1.1. We say that the phase function
o(t, z;y,m) € C®((—00,+00) x M x T'M)
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is a phase function associated with the canonical transformation (1.1) if it satisfies
the following conditions:

o(t,z*(t;y,n);y,m) = 0,

w(t, 2%t y,m)9,m) = E(ty,m),
dethn(t7x*(t;yan);y,n) 7é 0.

By § we denote the set of all phase functions associated with the canonical trans-
formation (1.1).

The above conditions imply, in particular, that ¢,(¢,z*(¢;v,1);y,n7) =0.
Properties of phase functions of the type described above were studied in [1].
Let us mention briefly some of these properties:

(1) the class § is non-empty;

(2) the class § is contractible as a topological space;

(3) any phase function which is defined locally and satisfies locally the condi-
tions of Definition 1.1 can be extended up to a phase function of the class
S5

(4) it is possible to choose a phase function of the class § which is locally linear
with respect to z in some local coordinates.

Set for brevity

¢ = {(ta;y,m) + z=2"(ty,n)} C (—00,+00) x M x T'M.

For each phase function ¢ € § there exists a (open) connected simply connected
conic neighbourhood O C (—o00,+00) x M x T'M of the set € such that

(1) ¢n#0 on O\€,

(2) detwen #0 on O.
Let ¢(t,z;y,n) € C®((—00,+00) x M x T'M) be a cut-off function satisfying the
following four conditions:

(1) suppc C O;

(2) <(t,z;9,m) = 0 on the set {(t,;y,n) : h(y,n) < 1};

(3) <(t,z;y,m) = 1 on the intersection of a small conic neighbourhood of €

with the set {(t,z;y,n) : h(y,n) > 2};

(4) s(t,z5y,An) = As(t,z;y,n) for h(y,n) 22, A>1.
Here for h we can take an arbitrary positive smooth function on T'M positively
homogeneous in 7 of degree 1, for example, the Hamiltonian introduced in the
beginning of this section. The choice of a particular cut-off ¢ changes the resulting
Lagrangian distribution (see below) only by a C'*®°((—o0,4+00) x M x M) term.

Consider now the expression det’p,,. It is easy to see that it is a a 2-density
with respect to z and a (—2)-density with respect to y. Consequently the argument
of this expression (which is well-defined on O) does not change under changes of
local coordinates. Let us choose a particular continuous branch argy(det®¢,,) of
the argument arg(det’y,,), specified by the condition argo(det%oz,,)]t:mzzy =0.
Set

de(t,z;y,m) = (detz‘rorn)l/4 = |det9°zn|l/2 ¢! ergo(detoen)/4
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Obviously, d, is a (1/2)-density with respect to z and a (—1/2)-density with respect
to y.

We denote by S' the class of complex-valued functions a € C'*((—oo, +00) X
M x T'M) which admit an asymptotic expansion

o0

a(t,z;y,m) ~ > ak(t,z;y,m),  |nl — oo,
k=0

with a;—x(t,z;y,n) positively homogeneous in n of degree | — k. We also use the
notation dn = (2m) " dnidnz ... dn,.

DEFINITION 1.2. Let ¢ € § and a € S'. We say that

(1.4) Toa(t,z,y) = /ew“’“”’") a(t,z;y,m)s(t, 25 y,m) do (t, 23 y,m) dn

is an oscillatory integral associated with the canonical transformation (1.1). A
distribution Z(¢,z,y) which can be written modulo C*°((—o00,+00) x M x M) as
an oscillatory integral (1.4) associated with the canonical transformation (1.1) is
called a Lagrangian distribution of order ! associated with this transformation.

Note that our oscillatory integrals and Lagrangian distributions are half-densities
both with respect to =z and y.

As shown in [1] (see also Theorem 3.3 below), any oscillatory integral (1.4) can
be rewritten (modulo C'*°) with an amplitude a(t;y,n) independent of . This
amplitude a is called the (full) symbol of our Lagrangian distribution. For a given
Lagrangian distribution and a given phase function ¢ the (full) symbol is defined
uniquely modulo S ~%°. The leading homogeneous term a; (of degree [) of the
symbol a is called the principal symbol. The principal symbol does not depend
on the choice of a particular phase function, and is determined by the Lagrangian
distribution itself.

It will be convenient for us to introduce the linear operator & mapping the orig-
inal amplitude a(t,z;y,n) of an oscillatory integral into the corresponding symbol
a(t;y,n). The operator & depends, of course, on the phase function ¢. This
operator admits an asymptotic expansion into a series of positively homogeneous

in 7 terms:
(e ]
s~ Yo
r=0

where the operators &_, are positively homogeneous in 7n of degree —r.
The main result of this paper is



THEOREM 1.3. The ezplicit formulae for the operators S_, are

(15) S0 = ()se
and

(16) &_, =

r

i o d, (S Y L (o0 | (e 0| ()

|
.
k=1 |a|=k-1

for r >1.
The proof of Theorem 1.3 is given in sections 2, 3.

REMARK 1.4. For any phase function ¢ € § in a neighbourhood of the diagonal
{z =y} we have

(1.7) e(0,z;9,m) = (z—y,n) + O]z —y|*),

assuming that the local z- and y-coordinates are the same. Formula (1.7) implies
that the restriction of a time-dependent Lagrangian distribution Z(¢,z,y) to t =0
is the Schwartz kernel of a pseudodifferential operator. If we choose the phase
function in such a way that locally (0, z;y,n) = (z —y,n) then the symbol of the
Lagrangian distribution Z(0,z,y) defined as described above coincides with the
dual symbol of the pseudodifferential operator [,, Z(0,z,y)(-)dy, and formulae
(1.5), (1.6) at t = 0 coincide with the standard formulae expressing the dual symbol
of a pseudodifferential operator through its amplitude.

2. Special version of the Malgrange preparation theorem

In this section we describe one technical construction which allows us to factorize
in a certain way a smooth function. This construction is a necessary prerequisite
for the proof of Theorem 1.3.

The construction described below is in fact a simplified version of the well-
known Malgrange preparation theorem [2, Theorem 7.5.7]. This simplified version
will be sufficient for our purposes due to the special properties of our class of phase
functions §.

The construction given in this section has its own advantages, which are not
always evident in the traditional versions of the Malgrange preparation theorem.

(1) Our construction gives explicit formulae which can be used in the compu-
tation of the symbol.

(2) Our construction possesses certain invariancy properties, see subsection 2.4
below. This is important when we apply our formulae to amplitudes of
oscillatory integrals (section 3) because we require a result which is invariant
with respect to changes of local coordinates on the manifold.

V-4



2.1. Basic problem. Consider the Euclidean space R™ equipped with Carte-
sian coordinates z = (z1,...,2,). Let W C R"™ be a neighbourhood of the ori-
gin, and let a(z) € C*°(W) be a complex-valued scalar function. Our first ob-
jective will be to find an n-component complex-valued column-function ¢(z) =

(91(2),...,9n(2)) € C°(W) such that
(2.1) a(z) = a(0) + (z,9(2)) .

def &
Here (2,9(2)) = Y 2jgi(2).
J=1
Let us introduce the differential operators

def 4 def 2% na -
(2.2) Z0 =1, Z =Y 0, k=12,
laf=k
where a = (a1,...,ay) are multiindices. The following formula easily follows from

(2.2):
(2.3) (k+1)Zk+1 =717y —kZy = Z Zj Iy, 6zj R k=0,1,2,...
j=1

Let a4(z) be a smooth function positively homogeneous in z of degree ¢ € R.
Then for £k =1,2,... we have

o) Dy = MDD k4D

(when k = 1 this is the classical Euler identity). Formula (2.4) is established by
induction in k with the help of the left equality (2.3). In the special case ¢ € N
formula (2.4) can be rewritten as

S L .
(2.5) Zya, = K (g—Fk)! % if k<gq,
Let us introduce the sequence of real numbers ¢y, ¢z, ... , defined as the solution

of the following recursive system of linear algebraic equations:

(2.6) Zk,(q_ k=1, ¢=12,...

Solving (2.6) we get cx = (—1)F1.
Set

e o z¢
ay(z) € Y (90a)l,mg
ll=¢

According to Taylor’s formula we have

(2.7) a(z) ~ a(0) + ) ay(2),
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where the sign ~ stands for the equality of formal Taylor expansions in powers of

z. The a4(z) are polynomials homogeneous in z of degree ¢, so from (2.5), (2.6)
we obtain

o0

(2.8) aq(z) = Z ck Zy aq , ¢g=1,2,...
k=1

Substituting (2.8) into (2.7) we get

(2.9) a(z) ~ a(0) + i ck Zraq ~ a(0) + f: ck Zra.

k,g=1 k=1

Here the interchange of order of summation is justified because the double sum
contains only a finite number of nonzero terms of given degree ¢ (degree in powers
of z). Using (2.3) we can rewrite formula (2.9) as

n (e ]
(2.10) a(z) ~ a(0) + Y _ z (Z ek k™! Zy—1 0, a) .
1=1 k=1
Let xx(z) € CP(R™), 0 < xx(2) <1, k=1,2,..., be cut-off functions which
are identically equal to 1 in some neighbourhoods of the origin. Set

(2.11) g = (Z ek Xk Zk—l) d.a,

k=1

where 0, is the column-operator of first order partial differentiationsin z. We shall
assume that the sequence of cut-offs x1(z), x2(2), ..., is chosen in such a way that
the series (2.11) converge uniformly over W, as well as all their partial derivatives
with respect to z. This can always be achieved by setting, for example, xx(z) =
x(dk|z|), where x is an arbitrary function from C§°(R) which is identically equal

to 1 in some neighbourhood of zero, and d;, d2, ..., is a sequence of positive
numbers tending to oo ; the necessary convergence properties hold if the sequence
dy, dy, ..., tends to oo sufficiently quickly.

Formulae (2.10), (2.11) imply
(2.12) a(z) = a(0) + (z,9'(2)) + O(|2|*),
where O(|z|*°) denotes a function which has an infinite order zero at z = 0. Set
(2.13) g=4g+g",

n o _ @ - a|z=0 — <Zagl>

(2.14) g" = THS Bz,
where z = (z1,...,2,) is understood as a column, and B = B(z) € C*®°(W) is an

arbitrary positive Hermitian n x n matrix-function. Formulae (2.14), (2.12) imply
that the column-function ¢" = ¢"(2) is infinitely smooth, and moreover,

(2.15) g" = 0(|z[*).
Combining (2.12)—-(2.14) we obtain (2.1).
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2.2. Generalization of the basic problem. Now let us generalize our orig-
inal problem (2.1). Let f(z) = {f1(2),...,fa(2)} € C®(W) be a given smooth

complex-valued n-component column-function such that

(2.16) f=0 if and only if z2=0,
(2.17) det J|,_, #0,

where

(2.18) J=J(z) € o, fT.

We want to find a column-function ¢(z) = (g1(2),...,gn(2)) € C°(W) such that

(2.19) a(z) = a(0) + (f(2),9(2)) .

Obviously, this problem coincides with (2.1) in the special case f(z) = z.
Set

(2.20) o, € JTJ e,  j=12,..n

J

where e; is the j-th basis column (column with 1 in the j-th row and zeros

elsewhere). By Of 4 7-10, we shall denote the column of operators (2.20).

Let us prove that the operators (2.20) commute. In view of (2.20) we have
0y, 05, — 05,05, = b0, where b= b(z) is a row-function defined by the formula

b(z) = (e] J7'0.ef —ef J710.el) T

Let z be an arbitrary fixed point from W and let J = (z) (constant matrix).
Using the formula for the derivative of the inverse matrix and formula (2.18) we
get

b(z) = {(e{J_laze;r—e;FJ_lﬁze{) N A

Z=Z

= {(eg.]_l 0, e;‘r — e;‘r.]_l 0, e{) J190, fT}|z=zJ_1
= {((eF 37! 32)(e;r J714,) - (e;FJ_1 9:)(eF 371 9,)) fT}’z:z J-t.

But e{ J-10, and e? J~=19, are scalar differential operators with constant coef-
ficients, so they commute. This implies b(z) = 0.

The fact that the operators dy; and 95, commute is not really surprising because
formally they can be interpreted as derivatives with respect to new independent
variables f; and fr. However in the general case when f(z) is complex-valued
and non-analytic we cannot make rigorously the change of variables z — f, and
for this reason we have given the detailed arguments above.

As a generalization of (2.2), (2.11), (2.14) set

def def Y
(2.21) FpbE1, FRZ D) oF, k=12,
lal=k
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(2.22) g/ = (Z Ck k! Xk Fk_1> afa,

k=1

" a — a'z: _ <f,g,> 7
(2.23) g" = fTOB? Bf.

Here we have the right to use the notation 0% because we know that the operators
(2.20) commute.

The g¢(z) constructed in accordance with formulae (2.13), (2.18), (2.20)-(2.23)
satisfies the required equality (2.19). Let us substantiate this claim. As in subsec-
tion 2.1, it is sufficient to establish that

(2.24) a(z) = a(0) + (f(2),9'(2)) + O(|2]*),

cf. (2.12). Moreover, it is sufficient to establish (2.24) under the assumption that
a(z) and f(z) are polynomials, because any a(z), f(z) € C°°(W) can be approx-
imated with arbitrary accuracy in powers of z by polynomials. But in the case
when a(z), f(z) are polynomials the construction (2.18), (2.20)-(2.22) is reduced
to (2.2), (2.11) by change of independent variables z — f.

Note that in the above argument the change z — f leads, generally speaking, to
complex independent variables f. The necessity of dealing with complex variables
forced us to consider polynomials as an intermediate step.

2.3. Further generalization with “trivial” parameters u. Let us gen-
eralize the problem (2.19) further by introducing additional real parameters u =
(u1,...,um). Thus, we study the function a(z;u), where z € R®, u € R™. The
function a is defined in some neighbourhood of the set {z = 0} . Here as well as in
the next subsection we do not specify more precisely the domain of definition of the
function a in all its variables because in our applications (section 3) it is clear from
the context. We also have a given complex-valued n-component column-function
f(z;u) = {fi(z;u), ..., fa(z;u)} with the same domain of definition as a(z;u), and
such that (2.16), (2.17) hold. We want to find a g(z;u) = (g1(2;u),...,gn(2z;u))
such that

(2.25) a(z;u) = a(0;u) + (f(z;u), g(z;u)) .

It is easy to see that our previous construction (2.13), (2.18), (2.20)—-(2.23) gives
the required g(z;u). The only difference is that now we have everywhere depen-
dence on the additional parameters u. In particular, the cut-offs xr = xk(z;u)
appearing in (2.22) depend on the additional parameters u; as usual, 0 < xx <1
and hr = 1 in some neighbourhoods of the set {z = 0}. These cut-offs should
(and can) be chosen in such a way that the series (2.22) converge uniformly over
any compact set in the (n 4+ m)-dimensional domain of definition of the function
a(z;u), as well as all their partial derivatives with respect to z and u.
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2.4. Invariancy properties. The operators Z; are invariant under linear
changes of coordinates z, that is under changes of the type Z = Az where A is
a constant non-degenerate n x n matrix. This fact is easily checked for k = 0,1,
and for k > 2 it is established by induction in £ with the help of the left equality
(2.3).

An immediate consequence is that the operators F} are invariant under linear
changes of the column-function f, namely, under changes of the type f =Af
where A is a non-degenerate n xn matrix-function independent of z. This implies
(see formula (2.22)) that under a linear change f = A f the column-function ¢'
also changes linearly: g’ = (471)T¢'.

Suppose now that the matrix-function B appearing in the definition of ¢" (see
(2.14) or (2.23)) changes according to the law B = (A"H)T . B . A~'. Then the
whole column-function g = ¢' + ¢" changes according to the law g = (471)Tg.

In particular, let m > n and let (uy,...,un) C u be local coordinates on some
manifold. If with respect to these local coordinates f is a vector, a and the yj
are functions, and B is a covariant tensor, then our ¢ will be a covector.

Moreover, suppose that z are also local coordinates on some manifold, and that
with respect to these local coordinates f, a, xx, B behave as functions. Then our
g behaves as a function with respect to z. This fact follows from the invariancy of
the operator 9y under changes of coordinates z.

2.5. Non-uniqueness of g. The n-component column-function ¢ in formulae
(2.1), (2.19), (2.25) is defined non-uniquely. One reason for this is that in the right-
hand side of (2.3) we could have performed the factorization with respect to z
in other ways, and another reason is that we can always add to ¢ a nontrivial
column-function which is orthogonal to f and has an infinite order zero at z = 0.
However g|,_, is uniquely defined.

3. Proof of the main result

In this section we give the proof of Theorem 1.3.
An immediate consequence of the results of the previous section is

LEMMA 3.1. Let a(t,z;y,n) € C®((—00,400) x M x T'M) be a function pos-
itively homogeneous in n of degree 1, and let ¢ € §. Then there exists a covector

field
gt zy,n) ={a1(t,z;9,m), .., gult, z59,m)} € C°((—00,+00) x M x T'M)
positively homogeneous in 1 of degree | such that

(3.1) a(t,z;y,m) = alt,z*(ty,n);9,m) + (en(t,z59,m),5 (¢, 259,7m)) -

Moreover, the covector field § can be constructed effectively in the form (2.13),
(2.18), (2.20)-(2.28) with

(3.2) z=zxz—z*, f=¢,, u=(ty,n),
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some cut-off functions xr = xix(t,z;y,m) € C®((—o0,+00) x M x T'M) pos-
itively homogeneous wn n of degree 0 which are identically equal to 1 in some
neighbourhoods of the set €, and an arbitrary positive Hermatian covariant ten-

sor B = B(y) € C*(M).

The crucial point of Lemma 3.1 is the fact that the first term in the right-hand
side of (3.1) is independent of z. Note also that in the formulation of this lemma
the words “covector” and “covariant tensor” are used in relation to the coordinates
Y.

The expression for § given by (2.13), (2.18), (2.20)—(2.23), (3.2) possesses im-
portant invariancy properties: it behaves as a function (i.e., does not change) under
changes of local coordinates z , and as a covector under changes of local coordinates
y . (Here we assume that the cut-offs x are functions in the full sense of the word,
that is they are independent of the choice of local coordinates = and y.) These
invariancy properties follow from the results of subsection 2.4. In Lemma 3.1 we
placed an arrow over ¢ to stress the fact that it is a covector field in the full sense
of the word.

Obviously, ¢, behaves as a function under changes of local coordinates =, and
as a vector under changes of local coordinates y. Consequently the expression
(¢n,d) appearing in (3.1) is independent of the choice of local coordinates = and
y, i.e. it is a function in the full sense of the word.

COROLLARY 3.2. Suppose that the amplitude a(t,z;y,n) in the oscillatory inte-
gral (1.4) is positively homogeneous in n of degree 1. Then the oscillatory integral
(1.4) coincides modulo C*° with an oscillatory integral with the same phase func-
tion and amplitude

(3.3) a © o+ id; divy(dp§) = a* +id;" Y Oy(degy),
J=1
where a* = a(t,z*(t;y,1);y,1), and g s the covector field from Lemma 3.1.

PROOF OF COROLLARY 3.2. Let us substitute (3.1) into the oscillatory integral
(1.4), replace ¢, e*? by —i V,(e'?) and integrate by parts with respect to n. This
transforms (1.4) into

(3.4) Z,.(t,z,y)

= / ei(P(t’I;y’n) a(ta Y, 77) §(t’ T5Y,s 77) d‘P (t’ Y, 77) dn

_l_ / ei‘P(t,I;ym) b(t,;p;y’n) d¢(t)x;y7 77) dn )

where a is given by formula (3.3), and b def (¢, Vips) . Since for sufficiently large
In| we have ¢ =1 in a neighbourhood of the set €, the function b is identically
zero in a neighbourhood of €, consequently the second term in the right-hand side
of (3.4) is a C'*°-half-density. O

It is easy to see that the expression id;l div,(dy, §) appearing in (3.3) is
invariant under changes of local coordinates z and y. Note also that the two
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terms in the right-hand side of (3.3) have different degrees of homogeneity: a* is
positively homogeneous in n of degree [ (as the original amplitude a), whereas
id," divy(d, §) is positively homogeneous in 7 of degree I —1.

Corollary 3.2 allows us to eliminate the variable z from the leading homogeneous
term of the amplitude because a* depends only on (¢;y,n). This opens the way
to the complete elimination of the variable « from the amplitude of an oscillatory
integral.

THEOREM 3.3. Any Lagrangian distribution (1.4) of order | associated with the
canonical transformation (1.1) can be written modulo C* in the form

(3.5) Tpa(t,z,y) = /ei"(”’”;y’”) a(t;y,n)s(t, x5 y,m) do(t, z;y,m) dn

with an amplitude a € S' independent of .

PrROOF OF THEOREM 3.3. Applying Corollary 3.2 to the leading (of degree 1)
homogeneous term of the amplitude a we represent (modulo C'*) our original
oscillatory integral as a sum of two — one with amplitude independent of =z and
positively homogeneous in 1 of degree [, and the other with amplitude dependent
on z and of the class S!~!. Treating the latter in a similar way and repeating
this procedure infinitely many times we obtain a full expansion for the required
amplitude a(¢;y,n) into homogeneous in n terms. O

It remains to note that combining formulae (2.13), (2.15), (2.18), (2.20)—(2.22),
(3.2), (3.3) and recalling that cx = (—1)¥~! we get the required formulae (1.5),
(1.6). Theorem 1.3 is proved.

4. Case of a manifold with a boundary

The results of this paper admit a natural extension to the case when M is a
manifold with a boundary under the additional assumptions that the canonical
transformation (1.1) is generated by a Hamiltonian h(z,€) and that this Hamil-
tonian is analytic with respect to £. In this situation one has to consider the
Lagrangian distributions associated with all the real and complex reflected trajec-
tories.

The relevant results for the case of a manifold with a boundary were sketched in
[3], and are described in greater detail in Chapter 2 of [4].
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