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Scattering matrix for asymptotically Euclidean manifolds
(joint work with Richard Melrose).

MACIEJ ZWORSKI

1 Introduction and statement of the result.

The purpose of this expose is to present the result of [8] and to indicate the methods used
there.

We consider scattering in a setting generalizing the Euclidean one and introduced by
Melrose in [4]. The main purpose there was to obtain a systematic framework for the study
of scattering theory without relying on the symmetries of the Euclidean situation. Roughly
speaking, the sphere at infinity was replaced by an arbitrary Riemannian manifold, which
constituted in some sense a 'smooth' deformation of infinity. In the future, one can envision
allowing also 'singular5 infinities such as arise in the A^-body problem or in scattering by
non-compact obstacles.

In the Euclidean case the absolute scattering matrix acts on functions on the sphere at
infinity and is essentially the pull-back by the antipodal map. From the microlocal point of
view it is a Fourier Integral Operator associated to the geodesic flow,on the sphere at time
TT . We show that in the general situation, the scattering matrix has the same property with
the geodesic flow now on the boundary at infinity, proving a statement conjectured in [4] -
see Fig.l ""'
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Figure 1: Geometric structure of the scattering matrix

To make this precise, let X be a compact C°° manifold with boundary. If a: is a boundary
defining function, that is

x\ax = 0, dx\Qx ^ 0, x\xo > 0,

then X° admits a complete metric which near the boundary takes the form

dx2 h
^^-+^ (1.1)

where h is a smooth symmetric 2-cotensor with h\^x positive definite, that is, defining a
non-degenerate metric on 9X. Following [4] we call metrics of the form (1.1) scattering
metrics. We (^enote by A the Laplacian corresponding to g and by Aa the Laplacian on
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OX corresponding to h\Q^. We have the following basic fact analogous to that in classical
scattering theory (see Sect.2 below for an indication of proof, and [4], Sect.15 for a detailed
presentation): if / € C°°{9X) is chosen then for each A -^ 0, A € M, there exists a unique
function u 6 C^^X0) satisfying

(A-A^t^O, n = e'^x^f+e^x^f11, (1.2)

where //,/" € C°°(X) and /'[ax = /• The absolute scattering matrix, S(\) is defined as
the map

S(\) : C°°(9X) 3 / —— f"\Qx € C°°(9X). (1.3)

We then have

Theorem The absolute scattering matrix^ S(X), is a Fourier Integral Operator of order 0
on QX, associated to the canonical diffeomorphism

exp(Tr^): T"9X \ 0 -^ T^9X \ 0

given by the geodesic flow at distance TT for the induced metric on QX, h. More precisely

^(A) = exp^y/A^A), A(A) € ^°(9X), . .. (1.4)

and A is elliptic,
The basic example is ofcourse given by the Euclidean case: under the stereographic projection

sp:Rn^z — ((i + MT^^i + M2)^) e §^

S^= {t = (t^ ..., tn) € M7^1 ; ^o > 0, |t| = 1},

M^ is identified with (§!}-) ° where X = §5. is the compact manifold with boundary. The
Euclidean metric becomes

- ,o . o 2. f i2 dx2 |cM2 , , 1 ^
\dz\2=dr2+r2\d^2=——+{—^, M-^^ ^ - H -A «i/ •i/ i ^ i

where |do;|2 is the standard metric on the sphere S71"1 = ^§!JL. This is precisely a scattering
metric of the form (1.1). To compute the absolute scattering matrix for the Euclidean space
we follow the argument of Appendix to [3]. Thus, let us consider u(x^u) = exp(zAo; • 0 / x ) ^
6 € S^1. Then (A - A2)^ = 0 and in the sense of distributions in u and as x -» 0

e1^ - W^X^x^ [e^e-f^Se^ + e^e^^S^)} (1.5)

which follows from the stationary phase method applied in the variable u after integration
against a function in (^(S71"1). Applying somewhat formally the definitions (1.2) and (1.3)
we conclude that

5(A) : C00^71-1) 9 / —— i^ff C C00^71-1), j : S71"'1 3 a; ̂  -u 6 S71'1.

As in the Euclidean case an addition of a short-range perturbation does not change the
geometric structure of the scattering matrix. In the generalized setting this can be stated
as follows: if V € x^C^^X) then the theorem above remains true for the scattering matrix
for the operatbr A + V . Clearly, any metric perturbation, g , which preserves the scattering
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metric structure (1.1) is also allowed and that corresponds to g — g = 0(x2)^ which is another
short-range condition.

We conclude this section with a brief discussion of complete metrics on compact C°° man-
ifolds with boundary, indicating an alternative, 'non-euclidean9 origin of scattering metrics
(1.1). Thus let X and h be as before. Then X admits three types of 'marginally complete7

metrics:

( dx\2

— ) + h cylindrical end metric (1-6)x /

( » \ 2
— ) + x2h finite volume asymptotically hyperbolic metric (1-7)x /

( — ) + x~2h infinite volume asymptotically hyperbolic metric (1-8)\ x }

For (1.6) the metric on the boundary, h\^x i does not depend on the choice of the defining
function while for (1.7) and (1.8) only the conformal class on h is determined on the boundary.
This geometric fact is reflected in the structure of the scattering matrix - see [5] and [1] for
(1.6) and [9] for a special case of (1.8). For the former, the structure of the scattering matrix
depends on the spectrum^pf A^ and for the latter, the scattering matrix is a<.pseudodifferential
operator acting on denisities constructed using the conformal structure on QX.

Scattering metrics {1.1) arise by multiplying (1.6) by x~2 and they are not very rigid
under changes of the boundary defining function. In fact, for (1.1) to be preserved, the
change of the boudary defining function has to be of the form x = x + 0(x2). Hence once
we demand that the metric is of the form (1.1), the boundary metric h\^x ls uniquely
determined. Analytically, this is reflected in the theorem above, where h\Qx pl^V^ a crucial
role in describing the scattering matrix, and, as opposed to the situation for (1.8), we now
have propagation on the boundary. Heuristically, it can be explained as follows: in the
asymptotically hyperbolic case all geodesies immediately go away from the boundary at
infinity and the scattering matrix is localized (pseudodifferential) while in the asymptotically
euclidean one, the geodesies can 'creep5 along the boundary causing propagation - see Fig.2.

l^^10^^ ^cl^eo^

Figure 2: Geodesies near the boundary at infinity

It is not clear at the moment under what conditions one can expect meromorphic con-
tinuation of S{\) and what would be its analytic structure. It seems natural however to
demand that the manifold is analytic in which case any relation with the complexified flow
would be very\ interesting.
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Finally, we should note that the methods of [8] have many similarities with more classical
work in Euclidean scattering. Perhaps the closest is the Agmon-Hormander approach through
the analysis on the energy shell |^|2 = A2 - see [2], Chapters 14 and 30 and references given
there.

2 Microlocal approach to scattering theory.

We will now outline the microlocal approach to scattering theory viewed as a degenerate
elliptic boundary value problem. Most of the material comes directly from [4] and for a
general introduction to Melrose's appoach we refer to [6].

Let X be as in Sect.l and let V^(X) denote the Lie algebra of C°° vector fields tangent
to 9X. A scattering metric (1.1) is an example of a metric on the structure bundle of the
Lie algebra

VscW = x . Vb(X).
This means that Vsc(X) consists of smooth sections of the structure bundle ^TX. Roughly
speaking, if we think of X as [0,1)^ x (9X)y and the sections of TX as spanned by 9^
and 9y^ then the sections of ^TX are spanned by a;2^ and xQy. The Laplace operator
for a scattering metric J,$ precisely an elliptic polynomial in these vector fields. To study
symbols of operators we need the corresponding 'cotangent5 bundle, ^T^X. sections of which
are spanned by by dual forms x-^dx and x^dy. The usual cotangent bundle, T*X embeds
naturally in ^T^X: (^,^,77) ̂  (x.y^x^xr]). We note that ^T^X = a•-lb^*X where
^X corresponds to VbW (see [2], Sect.18.3 for a slightly different definition; there ^T*X
is denoted by f*X).

The enveloping algebra of Vsc(X) consists of scattering differential operators, DifF^(X),
and the corresponding pseudodifferential operators can be defined using a systematic ap-
proach [6] (see Appendix;B of [4]). However, a naive method is also possible and we will
present it for X = §!j: - the coordinate invariance and local identification of X with §1 gives
then a general definition, see Sect.4 of [4].

We say that
Ae^^s^ni)

if and only if A' = SP" o A o (SP-1)* is of the form

A\u{z)\dz\^) = (2^)- f e^'^a^z + ̂ ')/2, ̂ u^dz'dW

with a\z,Q = SP^a, a € p^p^C00^,^). Here, SP^ = SP X SP : M^ x R? ̂  S^ x §!;.,
pa C C^^ x §!;.) is the defining function of S^ x 9S^ and pQ is the defining function of
9S^xS^.

We think of a as a joint symbol of A meaning that it measures both the behaviour at
the boundary and at the fiber infinity of the cotangent bundle. To define it for any X we
introduce a compactified scattering cotangent bundle ̂ fX - see Fig.3.

In the case of X = §^_, scj^ ^ canonically isomorphic to S^ x §!j. and as we saw above,
it is there that the symbol lives. In general we have by local identification of X and §1 (see
[8])

Proposition 2.1 For any compact manifold with boundary, X, the joint symbol of A C
^^(X,8^) is well defined as an element of

p^p^C^^X) modulo p^p^C^^X) (2.1)
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e- ss 0

Figure 3: The compactified scattering cotangent bundle

We will denote the joint symbol of A by jm^A).
To study commutators we need the scattering Hamilton vector field - one way to obtain

it is by extending the standard definition from the interior - see [8] and Sect.4 below for a
more systematic approach. We have [4]

Proposition 2.2 If a^p^p^C^^T^X^then the Hamilton vector field extends from the
interior to a vectorfield ^ffa € P^P^Vsc^T^X).

If we define also a renormalized Hamilton vector field,

SCff^k ^ ̂ -1^-1 SC^ ^ V^T-X),

then for any b C p^p^ C^^f^X)

{a, 6} == ̂ ^p^H^b e p^-m+i^+fc+i ^(^TX),

where we extend {•, •} by continuity from the interior of ^T^X. As for the usual pseudod-
ifferential operators this is significant since for A e ^^(X^Ol) and B e ̂ '^'{X^^}
we have [A,B] € ̂ ^^^^(^^fti) and

Jm+m'+l^+^+ldA,^]) = -{jm,fc(A),J^^(B)}.
v

For A € ^^(X,8^) we define the characterstic variety

Ssc(A) = {m eTT^X : ̂ (A)(m) = 0}

which immediately leads to the definition of the wave front set: for u € P'(X)

WF^(H) = Q{Esc(A) : Ae^-^8^) andA^e^X,5^)}.

Clearly the index m measures the C°° regularity and the index / the decay at the boundary
9X, that is, at infinity.

For operators with real joint symbols there exists an exact analogue of Hormander's
propagation of singularities theorem (Theorem 26.1.4 in [2]), now giving also information
about decay at 9X - see Proposition 7 of [4]. Here we recall only that for P C ^^(X,sc^),
the wave fron^t set is invariant under the flow of the renormalized Hamilton vector field
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SCHTm,k(P)• No ^formation is of course given at radial points and expectedly these are the
points of interest in scattering theory.

Thus let us consider P = A-A2 e ̂ {X^), A € R\0. Then in using the coordinates
(.E,t/;r,^) in ^T-X near 9X = {x = 0} (T-X 9 (x,y^,rj) ̂  {x,y;x^x^ € ̂ X),

Esc(A-A2)={(a;,y;r,/l) : r2 + h(y^) - A2, a; = 0} C "T^X,

since j2,o(A - A2)^.^ = r2 + /i(y,/i) - A2. Then the scattering Hamilton vector field
e^ T-r2.0 .—. / - , < - » . .
^(A-^^^A-A2)^

sc^(A-A2)ls.c(A-A2) = 2r^ - 2h(y^)9r + Hh, (2.2)

where R^ = ̂  • 9^ is the radial vector field and H^ is the boundary Hamilton vector field in
y and fi. The radial set has two components

R±W = {^ = 0,r = ±|A(} C ̂ t^X (2.3)

and the subsets of the characteristic variety, R±(\), Ssc(A - A2) \ (fi+(A) U A-(A)), are
closed under the scattering bicharacteristic flow. More precisely we have (see Fig.4):

Proposition 2.3 For 0 ̂  A € ffi the integral curves of ̂ H^^^) in Ssc(A - A2) are the
points of A±(A) and the curves of the form

r = |A| cos(5 + so), /x=|A|sin(5+5o)A, (y,A) = exp((5 + so)H^)(y',p!}, (2.4)

where SQ € (0,7r), s € [-So,7r - so], {y'^1) € T*QX, h(y',^) = 1, d5/dt = ̂ (y,/x).

-^

^1

Figure 4: The radial points for the scattering bicharacterstic flow.

Thus the distance on the boundary between radial points on ^characteristics is TT - which
is precisely the reason for its appearance in Theorem in Sect.l. The original motivation for
the conjecture was more geometric: if a sequence of maximally extended geodesies in X°
approaches 9X uniformly then it has a subsequence converging to a geodesic on 9X of
length TT. This can also be seen from Proposition 2.3.

For propagation results at radial points we refer to Sect.9 of [4] and we will present here
only a simple but hopefully explanatory case:

XVII-6



Proposition 2.4 If 0 7^ A € 1R (mri u € 'D'(X) (Aen /or 5 < -1/2

WF^{u) c R+(\) u A-(A), WF^^A - x^u) n A±(A) = 0 =^ IVF;̂ ) n A±W = 0.
(2.5)

and for s ^ —1/2

WFs*c'-5(y)nl^±(A)=0, w%s+ l((A-A2)u)nfi±(A)=0 ==> WF;,3 )̂ n A±(A) = 0.
(2.6)

Thus for slowly decaying solutions of (A — A2)^ = 0 the singularities at infinity cannot
concentrate at radial points and the break-down occurs at s == — ^ :

r 0, s<4
WF^3 (a;V exp(±z-A/a;)) = -{

[ {(0,y;=FM)}, ^-t

Proposition 2.4 is proved using a positive commutator argument and the difference between
s < -1/2 and s >, -1/2 appears very naturally. In fact, for B € ^""'''(X,^?)

[A - A2,^] = -ixC, J-oo,r(C) = "^(A-^a-oo.rW).

Since to obtain (2.5) wa.want a positive commutator behaving like a;""25, that is C ~ a;"25"1,
a simple choice would be B ~ a;"25"1 since by noting that the 9x compontent of ̂ ^fo^-^)
is rxQx

j.oo^-i(C) --r(2^ + l)a:-25-1.

The sign changes at s = —^ and to control the terms coming from the necessary cut-offs we

need s < —^ unless assumptions about WF^c 2{u) at R^(\) are made.
In some sense this is a complicated description, in great generality, of well-known facts

from classical scattering, in particular of Sommerfeld radiation conditions. Their microlocal
version takes the following form. Let C°°{X) denote C°°(X) functions vanishing to infinite
order at 9X.

Proposition 2.5 IfO ̂  X C M and u € V\X) satisfies the microlocal A-outgoing condition:

W^c' i(^)nA+(A)=0

and (A - A2)^ (E C°°{X) then

x-^ exp(-i\/x)u 6 ̂ (X).

Conversely, given g C C°°(9X) there exists w € C°°(X) such that W\QX = 9 ond u =
x(n-l)/2exp(iX/x)w satisfies (A - A2)^ e C°°(X); moreover w is determined by g up to a
term in C°°(X).

This proposition is a key component in the proof of (1.2) which in turn gives the definition
of the absolute scattering matrix (1.3). It is interesting to note here the analogy with the
Neumann operator for elliptic problems: the scattering matrix relates the boundary data for
the solutions qf (A - A2)^ = 0.
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3 An example.

on—IWe will now sketch a direct argument for an oversimplified example: X = IR+ x
g = d x 2 / x 4 + d y ^ l x 2 , which is a model for a cone (which arises when R71"1 is replaced
by a sphere of radius different from 1 - there is no essential difference however except for
complexity of computations) - see Fig.5. y^

^<1
l̂ T >^ \^^ ^

Figure 5: The simple example as a model for the cone.

To understand the microlocal structure of the scattering matrix we need to construct the
Poisson operator, 7^,-which for / and u in (1.2) is the map

PA : C°°{9X) 9 / —— u € C°°(;r) (3.1)

The scattering matrix is the outgoing boundary value of V\ in the sense of (1.3). This is
practically equivalent to constructing 'plane wave solutions' which, somewhat formally, have
^-functions as their boundary values - see (1.5) for the Euclidean case.

For the model X = R-|- x Î 1"1 the Laplacian is

A = (a;2^)2 + ix{n - l)a;2^ + x^D^

For simplicity we put A = 1 and we want to find the plane wave solutions

(A -1)^=0
(3.2)

lim^o x^^e^ f u(x, y)(f>(y)dy = ^(0),

(f> € C^R71"1) supported in a small neighbourhood of 0 - in the boundary condition we only
need a spacial localization due to the geometric simplicity of the example.

The 'ansatz' motivated by the Euclidean case is

^l(a:,y)=et^)/a?a(a:,y)

where $ satisfies the eikonal equation

$2 + \9y^\2 -1=0, $(y) - -1 + c|y|2, y - 0, c ̂  0

(3.3)

(3.4)

where the initial condition guarantees the second part of (3.2) for some amplitude a. The
solution to (3.4) is immediate: $(y) = — cos \y\ - as we will see in Sect.4 this is a special
case of param^trization of scattering Legendrian submanifolds.
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If we put a(x,y) = ao(y) + xa^(y) + • • •, the first transport equation takes the form

(9y^ . 9y - ^{y)x9^ + n^-^ + |^$)ao = 0, (3.5)

which near 0 is solved by ao = 1 + 0(y). However, (3.5) becomes degenerate when 9y^ = 0,
that is when \y\ = TT and we need to try another 'ansatz' in place of (3.3). Its systematic
explanation will be given in Sect.4 and what works near \y\ = TT is

ui{x,y) == x^ J°° e^v^b (^,^) ds, (3.6)

where b e C^°([0, oo) x IT-1 x [0, oo) x [0, oo)) and ^ is given by

^ ^ = 1 - f{y)s + \s\ cos \y\ = 1 - J/(y)2, \y\ ̂  TT, (3.7)

that is /(y) = TT - \y\, which is a smooth function near |y| = TT. We note that $ also solves
an eikonal equation

l^+l^l2-!^, when 9^=0, (3.8)

which now corresponds to a special type of parametrization of a Legendrian submanifold -
see Sect.4.

In writing down the transport equation we will use the 'blow-up9 coordinates s and
X = x / s . Putting ft{X\y,s} = b(X,y,s,Xs) it becomes

f (£o + sXL^X, y, s} = 0 mod (X00)
\ /3(X, y, 5)|^ = /(X, y) mod (X00) ^

where ^.
Lo = s9, - n^2 - J^2^, (3.10)

Z/i is a second order differential operator in Qy^sQs and X9x^ and the initial condition /
comes from matching with the solution for |y| < TT obtained using (3.3). By writing ft and
/ in power series in X with coefficients depending on y and s we can solve (3.10). The
subprincipal term (n — 2)/2 determines the structure of the solution and in fact we obtain
/? = ^-^^/S with

(2/o + ̂ X.Li)^71-2)/2/^ y, s) = 0 mod (^^X^) (3.11)

Thus we have u^ of the form (3.3) for \y\ < TT and (3.6) for \y\ ̂  TT, satisfying the incoming
boundary condition in (3.2) and (A - l)u^ = /i, where \f^ € C°° (that is 0(x°°)), for
\ € C°° supported away from |y| = TT and near \y\ = TT

/i(^,2/) = ^-^ I " e^y^xs^a ( x ^ ^ } ds, (3.12)Jo \ 5 /

where a € Z°°^([0,oo) x ffi"-1 x [0,oo)). This easily shows that

A € a;("+l)/2exp(^A/a;)COO(]R+ x ffi"-1)

and, by the methods referred to in Sect.2, we can find

^ ui € a;("-1)/2 exp(^A/a;)CO<:>(]R+ x R"-1)

XVII-9



such that (A - l)^i == /i.
Hence the solution to (3.2) is given by u = ^i + ^i and to study the singular part of

the outgoing boundary data of u we only need to study the u^ term. Since $ in (3.3) is
non-degenerate for 0 < \y\ < TT, the outgoing boundary value comes from the term of the
form (3.6). Thus for o C ^(IK71"1) supported near \y\ = TT we want to investigate the limit

l i m ^ e ^ x ^ ^ ( u^x,y)(f>(y)dy
r-^O J]R"-l

= ^-^x-^x-./^_J^e^-f^W^ft ^y,s)^y)dy

= W^-Jo^"17^"2^ Q^)^)^
= LJo006"'7^^^^'0)^^
= WoU),

where T 6 ^(K"-1 x E"-1, ̂ ) is a zeroth order Fourier Integral Operator associated to the
canonical transformation

Gv : (y,rj)>—>(y+Trr)/\r]\,rj).
In fact, its kernel is given by

- r-^-y^^^^^^A^
J \r] )

4 Scattering Legendrian distributions.

To extend the construction presented in Sect.3 to arbitrary X we need to develop a calculus
of scattering Legendrian distributions which generalize the distributions given by (3.3) and
(3.6). In some sense this calculus is analogous to the calculus of distributions associated to
cleanly intersecting Lagrangians [7]. Now however one of the Lagrangians will not only have
boundary but can also have conic singularities. These singularities occur when the geodesic
flow on QX has conjugate points - they were not present in the simple case discussed in
Sect.3.

We start with a discussion of geometry. Let ( x ^ y ; r,/z) be the local coordinates on ^T^X
as introduced in Sect.2. The boundary face, ^T^X, of ^T^X, has a natural contact
structure with the canonical form, sc^, given by the pull-back to ^T^X of the form

d r + ^ ' d y (4.1)

We note that if the boundary defining function is changed to x = ax then the corresponding
form, sc^, satisfies sc^ = a5^ and consequently the contact line bundle is completely natural.

We recall that a submanifold is called Legendrian if the canonical form vanishes on it and
if it has a maximal dimension, in this case dim X — 1. A relevant example is given by

^(^{(y'^e^r^x : (4.2)
r2 + h(y^) = A 2 ,^ ^ 0,^m^exp(^^^)(y',r,/z) = (y; |A[,0)}

which is a smooth open Legendrian submanifold. Using Proposition 2.3 we see that

^ GyW = Gy{\) U {Q/; |A|, 0): y e 9X} U ̂ (A), (4.3)
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where
GyW-WMO^e^T^X : ^^7?'(l/'^/)=exp(7^^)(2/^)}.

This closure has at most a conic singularity in ^ at occuring at the last term in (4.3). The
Legendrian Gy(\) was implicit in Sect.3 and the phases ^ ( y ) / x and ^ ( y . ^ / x in (3.3) and
(3.6) respectively parametrized it.

If a Legendrian G is smooth near (y;r,/z) c G then we say that (f>(y,u) defined near
(y,0) € 9X x R^ parametrizes G near (y;r,^) if

(z) < ,̂il) = ~r, dy(f)(y,u), d^(y,u) = 0

( Q / \

(n) ̂  g~ j , J = 1, • • - fc , are independent at (t/,/2) (4.4)

(Hi) C^ = {(y, u) : d^<f> == 0} 3 (y, u) ̂  (y; -<^ d^) = (y; r, /x)

is a diffeomorphism from a neighbourhood of (y, 0) in C^ to a neighbourhood of (y; r, /2) € G.
This definition follows of course the standard definition for conic Lagrangians (see Sect.21.2
of [2]) and the existence of (f)(y,u) is obtained in much the same way as in that case. A
difference occurs when we allow Legendrians with conic singularities at ^ == 0 - as in Gy(X)
above.

Let G be a Legendrian submanifold which is smooth in polar coordinates at GH {^ = 0}.
That means that in a conic neighbourhood of (y;r,0), /x/|/i| ~ fiQ, G is given by

{(r, y, {i\^\) : r = f(y, ̂  |^|), g^y, ̂  |^|) = Q, j = 1,..., n}, |/z| = h(y, u), (4.5)

where dy^gj, j = l , - - - , n are independent at the base point (y,Ao). In polar coordinates
(y;^AJ^I) we will denote the 'blown-up' Legendrian by G. We note that since sc^ given
by (4.1), vanishes on G ̂

r = const on Go = G H {\fi\ = 0}
and that

^{(y^) ; (y;^^o)eGo, t €R}c r*ax \o
is a conic Lagrangian. It is in fact the Lagrangian which appeared in the distributional limit
Um^oe-^^-1)/2^^) in Sect.3.

By a parametrization of G, or rather, G near (y;T,^o,0) we mean a C°° function
(f)(y, s, u) defined near (y;0,0) € 9X x [O.oo) x M^ such that

(i) <f>(y^ s, u)= -r+ s^(y, s, u)

( ^ i \
(ii) dy,s,u^ and dy^u ^— ) J = 1, • • • , k, are independent at (y, 0,0) (4.6)aujj

(m)G^ = {(y,^): < = 0,^ = 0} 3 (y,5^) ̂  (y;-^^/|d^|Jd^|) € G

is a diffeomorphism onto a neighbourhood of (t/;f,^o,0) in G.
Again the existence of such parametrizations follows the method familiar in the setting

of conic Lagrangians, with modifications due to the singularity. Although it may not be at
first apparent, the special form of the phase in (i) comes from the fact that it parametrizes
jointly G and the smooth Legendrian {(2/;r,0)} intersecting G cleanly at Go. We refer to
[8] for the discussion of invariance and equivalence of phases - as presented here it is implicit
in the definitidns below.
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In the discussions of spaces of distributions we start with those associated to smooth
Legendrian submanifolds (see (3.3) for an example). Thus let G C ^T^X be a smooth
Legendrian submanifold which could be open. Near each point p € G there exists a local
parametrization (f> 6 C°°(U x M^) , 7r(p) € U C 9X, in the sense of (4.4). The Legendrian
distributions of order m defined with respect to this local parametrization, are functions of
the form

v(x,y)= ( e^^^a^x.y^x^^du, a € C^([0,6) X U X R^). (4.7)

Definition. For a smooth Legendrian submanifold G C ^T^X, u € I^X.G^^} C
P^X,8^), if for any ^ € C§°(X)

^u = no + ̂  W
N

W
J=l

wAere no € C00 (X^i), Vj € C^X,^) and ̂  ̂  are functions of the form (4.7) for
local parametrizations of G.

The analogy with Lagrangians distributions of Hormander (see [2], Sect.25.1) which is
clear from (4.7) is in fact exact for smooth Legendrians. As in Sect.2 we present it for
X = §!̂ . Thus we define

scj, ; c00^,8^)—<s(r\^)
as T Q (SP'~1)* where T is the Euclidean Fourier transform acting on half densities. We also
define the Legendre diffeomorphism:

L : STS^ —. S^ L{9, r, /x) = (-/i + TO, -0).

We then have

Proposition 4.1 If G is a smooth Legendrian submanifold of ^T^nS^ and A C r^ \ 0
is a homogeneous Lagrangian submanifold such that A H 5"tcRrl = L(G), then the Fourier
transform gives an isomorphism

T : /^(S^^^n^—.J^^^A^^n^lR^^^+^R71,^).sc-r- . Tm^n /^i sc
•/ • ^sc

Invariance properties and Proposition 4.1 allow a definition of the symbol map following
that for Lagrangian distributions. We refer to [8] for the precise and slightly complicated
definition recalling only that the natural symbol bundle is

Em{G) = i^raxr^ ® ̂  ® MG
where MG is a modified Maslov bundle. We have

Proposition 4.2 The symbol map

a^ : I^X.G^^^C^^G.E^G))

gives a short exact sequence

0 -^ I^\X,G^) —. I^(X,G^) -^ C°°{G,E^G)) -^ 0.
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As we saw in Sect.3 smooth Legendrians are not sufficient for the study of propagation
on the boundary at infinity. Let G be a Legendrian submanifold with a conic singularity
at ^ == 0, that is with a local description given by (4.5). Let G denote the 'blown-up'
Legendrian as introduced above. We define a union of intersecting Legendrizrti submanifolds

G=6?U J graph (r'^Y (4.8)
(*;r,0)€G

As we noted already, r is constant on each component of G H {|/z| = 0} so that the second
union is over disjoint smooth Legendrians intersecting G (which may repeat in the union).
Definition For G given by (4.8) and m,p e M satisfying p - m > ^ we define the space
^(X.G,^) as consisting of u^V'^X,^) of the form

N

U = UQ + HI + ̂  Vjl/j

J=l

where
UQ € ^ ̂ (X,graph(r . dx/x2)^), ^ e ̂ (X.GV^i),

(*,r,0)€G"

^ € C00^,8^) and^j 's are of the form

v{x^ = r L^^^ {^^^x) G)771^"^1 ̂ ^d^ (4.9)

where a € C^°([0, oo) x 9.S x [0, oo) x R^ x [0, c)) and <f> parametrizes G locally in the sense
of (W

The condition p - m > 1/2 was imposed to guarantee absolute integrability in (4.9) -
otherwise the integral needs to be interpreted as a distribution. In the case of scattering
Legendrian distributions there is no simple analogue of Proposition 4.1, unless G is smooth
through p, = 0 in which case sc^ maps them into Lagrangian distributions associated to
intersecting Lagrangians [7]. Nevertheless, the symbol map can be defined and the subsequent
calculus allows a generalization of the procedure from Sect.3 yielding Theorem in Sect.l
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