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GDR 2434 (CNRS)

Resonances for Schrödinger operators with
compactly supported potentials

T. J. Christiansen P. D. Hislop

Abstract
We describe the generic behavior of the resonance counting function for a

Schrödinger operator with a bounded, compactly-supported real or complex
valued potential in d ≥ 1 dimensions. This note contains a sketch of the proof
of our main results [5, 6] that generically the order of growth of the resonance
counting function is the maximal value d in the odd dimensional case, and
that it is the maximal value d on each nonphysical sheet of the logarithmic
Riemann surface in the even dimensional case. We include a review of previous
results concerning the resonance counting functions for Schrödinger operators
with compactly-supported potentials.

1. Introduction and Survey of Results

We are interested in the resonance counting function for Schrödinger operators
HV = −∆ + V , acting on L2(Rd), with compactly supported real- or complex-
valued potentials V ∈ L∞0 (Rd). We give a survey of results and discuss on our recent
results on the generic behavior of the resonance counting function [5] and [6]. We
refer the reader to [3, 5, 6] for complete proofs of Theorems 1 and 2.

Resonances are the poles of the meromorphic continuation of the cut-off resolvent
of HV as we now explain. For any V ∈ L∞0 (Rd), we denote by χV ∈ C∞0 (Rd) any
smooth, compactly supported function such that χV V = V . The cut-off resolvent
for the Laplacian H0 = −∆ is defined to be R0(λ) ≡ χV (H0 − λ2)−1χV . This is
a holomorphic, bounded operator-valued function on L2(Rd) for λ ∈ C for d ≥ 1
odd, and for λ ∈ Λ, for d ≥ 4 even. For d = 2 it is holomorphic on Λ\{0}, with a
logarithmic singularity at λ = 0. The unperturbed cut-off resolvent R0(λ) has the
representation

R0(λ) = E1(λ) + (λd−2 log λ) E2(λ), (1)

where E1(λ) and E2(λ) are entire operator-valued functions with E2(λ) = 0 for
d ≥ 1 odd, and for d = 2, the operator E2(λ = 0) is a finite-rank operator This
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follows, for example, from the formula for the Green’s function for the Laplacian

R0(λ) = i

4

(
λ

2π|x− y|

)(d−2)/2

H
(1)
(d−2)/2(λ|x− y|), (2)

where the Hankel function of the first kind is defined by H(1)
ν (z) = Jν(z) + iNν(z),

and the expansion of the Neumann Bessel function Nν(z), when ν ∈ N.
An application of the second resolvent formula allows us to write the perturbed,

cut-off resolvent RV (λ) for HV as

RV (λ)(1 + VR0(λ)) = R0(λ). (3)

The resolvent RV (λ) is analytic for Im λ >> 0, and it is meromorphic for Im λ >
0 with at most finitely-many poles with finite multiplicities corresponding to the
eigenvalues of HV . Thanks to (3), the perturbed, cut-off resolvent RV (λ) extends
as a meromorphic, bounded operator-valued function on C if d ≥ 1 is odd, and onto
the Riemannn surface Λ if d ≥ 4 is even, with an additional logarithmic singularity
at λ = 0 when d = 2. The poles of these continuations are the resonances of HV .
They are independent of the choice of χV satisfying the above conditions. It is seen
that they correspond to the values of λ for which 1 + VR0(λ) is not boundedly
invertible. We will use this fact in section 2.1.

We will always assume V ∈ L∞0 (Rd). The resonance counting function nV (r)
for d ≥ 1 and odd is defined to be the number of poles λj of RV (λ), including
multiplicities, with |λj| ≤ r and Im λj < 0. For d ≥ 2 even, the resonance counting
function nV,m(r) for the mth-sheet Λm, m 6= 0, is defined as the number of poles λj
of RV (λ) with |λj| ≤ r and mπ < arg λj < (m+ 1)π.

The best results on the asymptotic behavior of nV (r) is due to Zworski [42] for
d = 1. He proved that

nV (r) = 2
π
| suppV |r + o(r). (4)

He obtained a similar asymptotic expansion in Rd, d ≥ 3 odd, for a family of spher-
ically symmetric potentials V (r) with compact support [0, a] and a discontinuity at
r = a [43]. The exact form of the constant of the leading term in this expansion was
identified by Stefanov [33]. An asymptotic expansion of the form (4) for a class of
super-exponentially decaying potentials in one-dimension was proved by Froese [7]
and Simon [28]. In what follows, we consider dimensions d ≥ 2.

We mention that many results are known for the resonance counting function for
Schrödinger operators HV (h) = −h2∆+V in the semiclassical regime of small h > 0,
but we will not discuss these here. We refer to the extensive papers of Sjöstrand [31]
and of Sjöstrand and Zworski [32] for the details and references. We also refer the
reader to two review articles [45, 38]. Many aspects of resonances for Schrödinger
operators were explored by physicists. Regge [21] studied the Jost function and
proved that there are infinitely many resonances for compactly supported, real-
valued potentials. This and other aspects of resonances are discussed by Newton
[15]. Nussenzveig [16] studied analytically and numerically the poles of the S-matrix
for square well and square barrier potentials of the type described in section 6.
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1.1. Upper Bounds
In analogy with the celebrated Weyl upper bound for the eigenvalue counting func-
tion for elliptic operators on compact manifolds, upper bounds for the resonance
counting function were proven in the eighties and nineties. Because the meromor-
phic continuation of the cut-off resolvent depends on the parity of the dimension,
the results are different for odd and even dimensions. The upper bounds hold for
both complex and real-valued potentials.

1.1.1. Upper bounds - odd dimensions d ≥ 3

Polynomial upper bounds on the resonance counting function nV (r) were first proved
by Melrose [13]. He showed that nV (r) ≤ Cd〈r〉d+1. This upper bound was improved
by Zworski [41] who obtained the optimal upper bound nV (r) ≤ Cd〈r〉d. Another
proof was given by Vodev [35] and by Sjöstrand and Zworski [32]. The optimal
constant Cd was computed by Stefanov [33].

1.1.2. Upper bounds - even dimensions d ≥ 2

The first upper bounds were proven by Intissar [9]. Intissar defined, for any ε > 0 and
r > 1, a resonance counting function NIn(ε, r) ≡ {λj | r−ε < |λj| < rε, | arg λj| <
ε log r}. For even dimensions d ≥ 4, and for any ε ∈ (0,

√
2/2), he proved the poly-

nomial upper bound NIn(ε, r) ≤ Cε〈r〉d+1. Vodev considered the resonance counting
function NV o(r, a) defined as the number of resonances λj satisfying 0 < |λj| < r
and | arg λj| < a, for r, a > 1. This function counts the number of resonances in a
fixed sector of opening angle a. Vodev proved the upper bound for even dimensions
d ≥ 2 [36, 37]:

NV o(r, a) ≤ Cda(rd + (log a)d). (5)
Note the explicit dependance of the coefficient on a. Since the Green’s function has
a logarithmic singularity at zero energy in the two-dimensional case, this required
a separate argument. However, this upper bound does not distinguish between the
resonances that might occur on each sheet Λm,m ∈ Z∗ ≡ Z\{0}.

1.2. Lower bounds
There are few lower bounds in dimensions d ≥ 2. As above, there are different bounds
depending upon whether the dimension is even or odd. Because of the existence of
complex potentials with no resonances [4], these results hold only for nontrivial
real-valued potentials.

1.2.1. Lower bounds - odd dimensions d ≥ 3

The best known lower bounds for odd dimensions, other than the asymptotic results
for certain radial potentials [43], hold for potentials V ∈ L∞0 (Rd) of fixed sign. In the
odd dimensional case, Lax and Phillips [10] proved that if V ≥ 0 is bounded below
by a characteristic function on a ball of radius R > 0, then that the number of purely
imaginary poles in the lower half complex plane of modulus less or equal to r > 0
is bounded from below by cdr

d−1, with cd > 0. Menzala and Schonbek [12] allow
potentials with a small negative component so that −∆ + V > 0 in the quadratic
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form sense. Vasy [34] proved the existence of an infinite number of purely imaginary
poles when ±V ≥ 0, extending [10] to the case of a strictly negative potential.
These results imply that nV (r) is similarly bounded from below. The idea of these
proofs is to note that the scattering amplitude is a monotone function of V at purely
imaginary energies. This reduces the problem to an explicit calculation of the number
of purely imaginary poles for the symmetric step potential V (x) = V0χBR(0)(|x|), for
any V0 > 0, where BR(x) is the ball of radius R > 0 centered at x.

In the general case of nontrivial, smooth, real-valued V ∈ C∞0 (Rd), Melrose [14]
observed from the Poisson formula that there must be infinitely-many resonances
if any of the coefficients in the expansion of the heat kernel for k > d − 2 are
nonvanishing. In particular, for d = 3, there are an infinite number of resonances
since a1 =

∫
V 2 6= 2. This was extended to a class of super-exponentially decaying,

smooth, real-valued potentials in [1, 25, 26]. The first quantitative lower bounds for
the resonance counting function for nontrivial, smooth, real-valued V ∈ C∞0 (Rd),
not of fixed sign, were proved in [2]. In particular, it was proved there that

lim sup
r→∞

nV (r)
r(log r)−p =∞, (6)

for all p > 1. For the same family of potentials, Sá Barreto [22] improved this to

lim sup
r→∞

nV (r)
r

> 0. (7)

We mention that, in particular, all these lower bounds require the potential to be
smooth.

1.2.2. Lower bounds - even dimensions d ≥ 2

There are only two results on lower bounds in the even dimensional case for d ≥ 4.
Sá Barreto and Tang [24] proved the existence of at least one resonance for a real-
valued, compactly-supported, smooth nontrivial potential. Sá Barreto [23] studied
the resonance counting function NSaB(r) defined to be the number of resonances λj
with 1/r < |λj| < r and | arg λj| < log r. As r → ∞, this region in the Riemann
surface Λ opens like log r. Sá Barreto proved that for even d ≥ 4,

lim sup
r→∞

NSaB(r)
(log r)(log log r)−p =∞, (8)

for all p > 1.

1.3. Generic behavior
The order of growth of a positive, real-valued, monotone increasing function n(r) is
defined by

ρ ≡ lim sup
r→∞

log n(r)
log r , (9)

when it is finite. Roughly speaking, we prove that the order of growth of the res-
onance counting function is maximal for most real-valued or complex-valued po-
tentials in L∞0 (Rd) in the even and odd dimensional cases. Here, the term “most
potentials” is meant in the Borel sense. Let X be a metric space. A subset is said
to be Baire typical or generic if it is a dense Gδ subset of X.
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We refer to the beginning of section 1 for the definition of the resonance counting
function nV (r) in odd dimensions, and of nV,m(r) for even dimensions. The order of
growth of the resonance counting function nV (r) or nV,m(r) is defined by

ρV ≡ lim sup
r→∞

log nV (r)
log r , d odd, (10)

or, by
ρV,m ≡ lim sup

r→∞

log nV,m(r)
log r , d even. (11)

As discussed above, it is known that both ρV and ρV,m are bounded above by d. We
are interested in the values of these order of growth exponents for generic potentials.
The notion of generic used here was employed by Simon [28] in his study of singular
continuous spectrum for Schrödinger operators. We proved the following theorem in
[5, 6].

Theorem 1. Let K ⊂ Rd be a fixed, compact set with nonempty interior. There is
a dense Gδ set VF (K) ⊂ L∞0 (K;F ), for F = R or F = C, such that if V ∈ VF (K),
and if d ≥ 2 is even, then ρV,m = d for all m ∈ Z\{0}, or, if d ≥ 3 is odd, then
ρV = d.

For odd dimensions, a similar result holds with C∞0 (K;F ) in place of L∞0 (K;F )
[3, 5]. For the proof of Theorem 1, it is essential to have an explicit example of
a potential for which the order of growth of the resonance counting function is d.
For odd dimensions, Zworski [43] proved the asymptotic form of nV (r) for a class
of positive, nontrivial, spherically symmetric potentials. This result is, of course,
stronger than the lower bound stated in Theorem 2. Since, for our purposes, only a
lower bound is required, this gives an alternate, and perhaps simpler, proof. For the
even dimensional case, we proved a lower bound on the resonance counting function
for spherically symmetric, constant, positive potentials on each nonphysical sheet.
Let BR(x) be the ball of radius R > 0 centered at x ∈ Rd.

Theorem 2. Let V (x) = V0χBR(0)(x) for V0 > 0. Then, for d even, there is a
constant cm > 0 so that nV,m(r) ≥ cmrm, for m ∈ Z∗. For d odd, there is a constant
c0 > 0 so that nV (r) > c0r

d.

In the remainder of this article, we sketch the main ideas behind the proofs of
Theorems 1 and 2. Section 2 presents the reduction to a problem of counting zeros
of a function holomorphic on a half-plane. We prove Theorem 1 in section 3 modulo
results concerning plurisubharmonic functions that are presented in sections 4 and
5. The proof of Theorem 2 is sketched in section 6.

2. Reduction to a zero counting problem
As is typical for these problems, we reduce the estimate on the resonance counting
function to one on the number of zeros of a function holomorphic in the half plane
Im λ > 0. In our papers, we took different approaches depending upon whether the
dimension is even or odd. Here, we unify the approaches and show how to use the
method of [6] for either parity of the dimension. For odd dimensions, in [5] and
[3], resonances were treated by considering the S-matrix and its scattering phase.
Crucial for the argument is the fact that the S-matrix admits a Weierstrass product
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representation in the complex plane. For the even dimensional case, we work directly
with the second resolvent formula and we do that here for any dimension.

2.1. Resolvent approach: any dimension
Let V ∈ L∞0 (Rd) and let χV be any compactly-supported, smooth function χV ∈
C∞0 (Rd) so that χV V = V . The cut-off free resolvent R0(λ) ≡ χVR0(λ)χV has a
meromorphic continuation to Λ, the logarithmic cover of the plane, for d ≥ 4 even,
or to C, for d ≥ 1, odd (see, for example, [14, 27]). For d = 2 there is a logarithmic
singularity at λ = 0. For d odd, there are two distinct sheets, the physical sheet
Λ0, and Λ−1. For d even, there is the physical sheet and infinitely-many distinct
nonphysical sheets Λm, m ∈ Z∗. In order to unify notation, we define m(d) to be
equal to m ∈ Z when d is even, and, when d is odd, we take m = −1 to be the
lower-half complex plane, so m(d) is mmod 2. In this way, the sheets Λ2k are all
identified with Λ0 and the sheets Λ2k+1 are all identified with Λ−1.

We use the following key identity, that follows from (2) and the formulas for the
meromorphic continuation of Hankel functions (see [6, section 6] or [17, chapter 7]),
relating the free resolvent on Λm to that on Λ0, for any m ∈ Z,

R0(eimπλ) = R0(λ)−m(d)T (λ), where m(d) =
{
m mod 2 d odd
m d even. (12)

The operator T (λ) on L2(Rd) has a Schwartz kernel

T (λ, x, y) = iπ(2π)−dλd−2
∫

Sd−1
eiλ(x−y)·ωdω, (13)

see [14, Section 1.6]. We note that for any χ ∈ C∞0 (Rd), χT (λ)χ is a holomorphic
trace-class operator for λ ∈ C. The operator T has a kernel proportional to |x −
y|(−d+2)/2J(d−2)/2(λ|x − y|) when d is odd, and to |x − y|(−d+2)/2N(d−2)/2(λ|x − y|)
when d is even. The different behavior of the free resolvent for d odd or even is
encoded in (12).

By the second resolvent formula (3), the poles of RV (λ) with multiplicity, corre-
spond to the zeros of I + V R0(λ)χV . We can reduce the analysis of the zeros of the
continuation of I + V R0(λ)χV to Λm to the analysis of zeros of a related operator
on Λ0 using (12). If 0 < arg λ < π and m ∈ Z, then eimπλ ∈ Λm, and

I + V R0(eimπλ)χ = I + V (R0(λ)−mT (λ))χV
= (I + V R0(λ)χV )(I −m(I + V R0(λ)χV )−1V T (λ)χV ).

For any fixed V ∈ L∞0 (Rd), there are only finitely many poles of (I + V R0(λ)χV )−1

with 0 < arg λ < π. Thus
fV,m(λ) = det(I −m(I + V R0(λ)χV )−1V T (λ)χV ) (14)

is a holomorphic function of λ when 0 < arg λ < π and |λ| > c0〈‖V ‖L∞〉. Moreover,
with at most a finite number of exceptions, the zeros of fV,m(λ), with 0 < arg λ < π
correspond, with multiplicity, to the poles of RV (λ) with mπ < arg λ < (m + 1)π.
Henceforth, we will consider the function fV,m(λ), for m ∈ Z∗ ≡ Z\{0}, on Λ0. For
d odd, we are only interested in m = −1. In this case, the zeros of fV,−1(λ), for
λ ∈ Λ0, correspond to the resonances. A similar approach in the d odd case was
employed by Froese [7].
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2.2. The S-matrix approach in odd dimensions
We comment on the case of odd dimensions used in [3, 5]. We denote the scattering
matrix for the pair H0 = −∆ and HV = H0 + V by SV (λ), acting on L2(Sd−1). In
the case that V is real-valued, this is a unitary operator for λ ∈ R. The S-matrix is
given explicitly by

SV (λ) = I + cdλ
d−2πλ(V − V RV (λ)V )πt−λ ≡ I + Tλ, (15)

where πλ : L2(Rd)→ L2(Sd−1) is defined by (πλf)(ω) =
∫
e−iλx·ωf(x) dx [40]. Under

the assumption that supp V is compact, the operator Tλ : L2(Sd−1) → L2(Sd−1) is
trace class. The S-matrix has a meromorphic continuation to the entire complex
plane with finitely many poles for Im λ > 0 corresponding to eigenvalues of HV , and
resonance poles in Im λ < 0. We recall that if Im λ0 ≥ c0〈‖V ‖L∞〉, the multiplicities
of λ0, as a zero of detSV (λ), and of −λ0, as a pole of the cut-off resolvent RV (λ),
coincide. Consequently, the function

fV (λ) ≡ detSV (λ), (16)
is holomorphic for Im λ > c0〈‖V ‖L∞〉, and well-defined for Im λ ≥ 0 with finitely
many poles. Hence, the problem of estimating the number of zeros of fV (λ) in the
upper half plane is the same as estimating the number of resonances in the lower
half plane.

This is facilitated in the odd dimensional case by the well-known representation
of fV (λ) in terms of canonical products. Let G(λ; p) be defined for integer p ≥ 1, by

G(λ; p) = (1− λ)eλ+λ2/2+···+λp/p, (17)
and define

P (λ) = Πλj∈RV ,λj 6=0G(λ/λj; d− 1). (18)
Then the function fV (λ) may be written as

fV (λ) = αeig(λ)
P (−λ)
P (λ) , (19)

where g(λ) is a polynomial of order at most d. Careful study of the scattering matrix
and the upper bound of section 1.1.1 may be used to show that fV (λ) is of order
at most d in the half-plane Im λ > c0〈‖V ‖∞〉, see [44]. It is the representation (19)
that is not available in the even dimensional case. This facilitates the construction
of a plurisubharmonic function (see sections 4–5) in the odd dimensional case as
done in [3, 5].

3. Proof of Generic Behavior
The proof of Theorem 1 consists of two components. The first is the Gδ-property of
the set of all potentials in L∞0 (K;F ), for F = R or F = C separately, and K ⊂ Rd
a compact set with nonempty interior, with the correct order of growth. This is
fairly easy to prove. The second is the proof that this Gδ-set is dense. The density
argument is the difficult part.

Many of the statements in the proof of the Gδ-property do not depend on whether
d is even or odd. We write fV,m(λ) with the understanding that m ∈ Z∗ for d even,
and m = −1 for d odd. We use the same convention for the counting function
nV,m(r), so that nV,−1(r) = nV (r).
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We first need a Jensen-type theorem that relates the order of growth of the zero
counting function nV,m(r) to the asymptotic behavior of fV,m(λ). In general, we
consider a function h holomorphic in the set {λ ∈ C : |λ| ≥ R ≥ 0, Im λ ≥ 0}.
For r > R, we define n+,R(h, r) to be the number of zeros of h, counted with
multiplicities, in the closed upper half plane with norm between R and r, inclusive.

Lemma 1. Let R > 0, let h be holomorphic in {λ ∈ C | |λ| ≥ R > 0, Im λ ≥ 0}.
Suppose, in addition, that h has only finitely many zeros on the real axis. Suppose
that for some p > 0, and for some ε > 0, we have∫ r

R

∣∣∣∣∣h′(s)h(s)

∣∣∣∣∣ ds = O(rp−ε) and
∫ −R
−r

∣∣∣∣∣h′(s)h(s)

∣∣∣∣∣ ds = O(rp−ε).

Then n+,R(h, r) has order p if and only if

lim sup
r→∞

log
∫ π

0 log |h(reiθ)|dθ
log r = p.

We will apply this lemma with h taken to be fV,m. For positive constantsN,M, q >
0 and j > 2N , we define subsets of L∞0 (K;F ) by

Am(N,M, q, j) ≡ {V ∈ L∞0 (K;F ) : 〈‖V ‖L∞〉 ≤ N,∫ π
0

log |fV,m(reiθ)| dθ ≤Mrq,

for 2N ≤ r ≤ j} . (20)

Lemma 2. The set Am(N,M, q, j) ⊂ L∞0 (K;F ) is closed.

The proof is a continuity argument in the potential V . Suppose Vk ∈
Am(N,M, q, j) converges to V in the L∞-norm. We show that the corresponding
functions fm(z) converge using the basic bound [29]

| det(1 + A)− det(1 +B)| ≤ ‖A−B‖1e‖A‖1+‖B‖1+1, (21)
with A = (I + VjR0(λ)χ)−1VjT (λ)χ and B = (I + V R0(λ)χ)−1V T (λ)χ.

In the next step, we characterize those V ∈ L∞0 (K;F ) for which the resonance
counting function exponent is strictly less than the dimension d. For N, M, q > 0,
let

Bm(N,M, q) =
⋂
j≥2N

Am(N,M, q, j). (22)

Note that Bm(N,M, q) is closed by Lemma 2.

Lemma 3. Let V ∈ L∞0 (K;F ), with

lim sup
r→∞

log nV,m(r)
log r < d. (23)

Then there exist N, M ∈ N, l ∈ N, such that V ∈ Bm(N,M, d− 1/l).

The proof of this lemma uses Lemma 1 with h = fV,m. Condition (23) implies
that

lim sup
r→∞

log
∫ π

0 log |fV,m(reiθ)| dθ
log r = p < d. (24)

From this it follows that there are constants p′,M > 0, with p ≤ p′ < d, so that∫ π
0

log |fV,m(reiθ)| dθ ≤Mrp
′
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when r ≥ c0〈‖V ‖L∞〉. The lemma then follows by choosing ` ∈ N so that p′ ≤ d−1/`.
Lemma 4. For d ≥ 2 even and m ∈ Z∗ or d ≥ 1 odd and m = −1, the sets

Mm =
{
V ∈ L∞0 (K;F ) : lim sup

r→∞

log nV,m(r)
log r = d

}
,

are Gδ-sets. Furthermore, for d ≥ 2 even, the set
M =

⋂
m∈Z∗
Mm

is also a Gδ-set.

Proof. Lemma 3 shows that the complement ofMm is contained in⋃
(N,M,l)∈N3

Bm(N,M, d− 1/l),

which is an Fσ set since it is a countable union of closed sets. By Lemma 1, if
V ∈ Mm, then V 6∈ Bm(N,M, d − 1/l) for any N, M, l ∈ N. Thus Mm is the
complement of an Fσ set. �

Theorem 1 follows from Lemmas 1 - 4 and the density argument presented here that
relies on sections 4–6.

Proof of Theorem 1. Since Lemma 4 shows thatMm is a Gδ set, we need only show
that each is dense in L∞0 (K;F ). To do this, we follow the proof of [3, Corollary 1.3]
with appropriate modifications. Let V0 ∈ L∞0 (K;F ) and let ε > 0. By Theorem 2,
proved in section 6, we may choose a nonzero, real-valued, spherically symmetric
V1 ∈ L∞0 (K; R) so that V1 ∈ Mm, for m ∈ Z∗. We consider the holomorphic
function V (z) = V (z, x) = zV1(x) + (1− z)V0(x), for z ∈ C. This function satisfies
Assumptions (V) of section 5, with V (1) = V1 and V (0) = V0. Thus, by [3, Theorem
1.1], for d odd, and by [6, Theorem 3.8], for d even, there exists a pluripolar set
Em ⊂ C (see Definition 4.2), so that for z ∈ C \ Em, we have

lim sup
r→∞

log nV (z),m(r)
log r = d.

If we set E = ∪m∈Z∗Em, the set E ⊂ C is also pluripolar [11, Proposition 1.37].
Since E ∩ R ⊂ R has Lebesgue measure 0 (e.g. [20, Section 12.2]), we may find
z0 ∈ R, z0 6∈ E, with |z0| < ε/(1 + ‖V0‖L∞ + ‖V1‖L∞). Then V (z0) ∈ Mm for all
m ∈ Z∗, and ‖V (z0)− V0‖L∞ < ε. Moreover, if V0 is real-valued, so is V (z0). �

4. Plurisubharmonic functions and pluripolar sets
A key role is played in the density part of the proof of Theorem 1 by the theory of
plurisubharmonic functions. Plurisubharmonic functions were first used in the study
of the resonance counting function in [3]. A basic reference is the book by Lelong
and Gruman [11]. We refer to an open connected set Ω ⊂ Ck as a domain. For two
domains Ω′ and Ω, we use the notation Ω′ b Ω if Ω′ is compact and Ω′ ⊂ Ω.
Definition 4.1. A real-valued function φ(z) taking values in [−∞,∞) is plurisub-
harmonic in a domain Ω ⊂ Ck, and we write φ ∈ PSH(Ω), if:

• φ is upper semicontinuous and φ 6≡ −∞;
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• for every z ∈ Ω, for every w ∈ Ck, and every r > 0 such that {z + uw : |u| ≤
r, u ∈ C} ⊂ Ω we have

φ(z) ≤ 1
2π

∫ 2π

0
φ(z + reiθw) dθ. (25)

If the dimension k = 1, then this is just the definition of a subharmonic function.
A basic example of a PSH function is φf (z) = log |f(z)| where f is holomorphic in a
domain Ω. If f(z0) = 0, for some z0 ∈ Ω, then φ(z0) = −∞. This shows that there is
a connection between the behavior of this PSH function φf (z) on Ω and the zeros of
f on Ω. The points where a nontrivial PSH function takes the value −∞ are special
and rare.

Definition 4.2. A set E ⊂ Ck is pluripolar if for each a ∈ E there is a neighborhood
Va containing a and a function φa ∈ PSH(Va) such that E∩Va ⊂ {z ∈ Va : φa(z) =
−∞}.

Pluripolar sets have many properties. Of course, if E ⊂ C is pluripolar, then
the two-dimensional Lebesgue measure of E is zero. Moreover, the one-dimensional
Lebesgue measure of E ∩ R is also zero.

The order of growth ρ of a PSH function φ on the complex plane C is defined to
be

ρ ≡ lim sup
r→∞

log sup0≤θ≤2π |φ(reiθ)|
log r , (26)

when it exists and is finite. We consider PSH functions on domains of the form
Ω × C, with Ω ⊂ Ck, k ≥ 1. For fixed z′ ∈ Ω, let ρ(z′) be the order of growth of
u ∈ C→ φ(z′, u), where z = (z′, u) ∈ Ω× C.

We use two main results in the theory of PSH functions in order to analyze PSH
functions on domains of the form Ω × C and their parameterized order of growth
ρ(z′). These are presented in the textbook by Lelong and Gruman [11]. The first
result ([11, Proposition 1.40]) is that for Ω′ b Ω, there is a sequence of negative
PSH functions ψn on Ω′ so that [ρ(z′)]−1 = − lim supn→∞ ψn(z′), where z′ ∈ Ω′.
The second result ([11, Proposition 1.39]) concerns a sequence ψn of PSH functions
uniformly bounded above on Ω ⊂ Ck with lim supn→∞ ψn ≤ 0. If there is one z0 ∈ Ω
such that lim supn→∞ ψn(z0) = 0, then the set {z ∈ Ω | lim supn→∞ ψn(z) < 0} is
pluripolar in Ω.

In our application of these results, we will show that the order of growth of a
certain PSH function is at most d so that, applying the first result sketched above,
lim supn→∞(ψn(z′)+1/d) ≤ 0. We will find a z0 for which the limit superior is exactly
zero, so that the second result mentioned above implies that the limit superior is
zero for all z ∈ Ω′ except for a pluripolar set. This is the essence of the density
argument. We next turn to the construction of the appropriate PSH functions.

5. Parameterized potentials and the order of growth
The theory of plurisubharmonic functions is applied to the resonance counting prob-
lem through the introduction of families of holomorphic potentials V (x; z) with
z ∈ Ω ⊂ Ck. The main result is roughly the following: If there is a point z0 ∈ Ω
for which the order of growth ρV (z0) for the resonance counting function for the
potential V (z0) is maximal (so upper and lower bounds on the resonance counting
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function of the same order d are required), then there is a pluripolar set E ⊂ Ω
so that the order of growth is maximal for all potentials V (z) with z ∈ Ω\E. This
provides the proof of density as in section 3.

In order to achieve this result, one has to construct a plurisubharmonic function
(PSH) that reflects the order of growth of the resonance counting function for the
family of potentials V (z;x). Let Ω ⊂ Ck be an open connected set. Let V (z) ≡
V (z;x) be a family of potentials satisfying

• For z ∈ Ω, V (z, ·) ∈ L∞0 (Rd).

• The function V (z, x) is holomorphic in z ∈ Ω.

• There is a compact set K1 ⊂ Rd so that for z ∈ Ω, V (z, x) = 0 if x ∈ Rd \K1.

We will refer to these properties as Assumptions (V). We are interested in the
resonance counting functions for potentials satisfying Assumptions (V). For such a
potential V (z), we define, in analogy to (14), the function

fm(z, λ) = det(I −m(I + V (z)R0(λ)χ)−1V (z)T (λ)χ), (27)
for λ ∈ Λ0.

In order to apply the theory of [11], we construct a plurisubharmonic function
M(z, u) on Ω′ × C, for any Ω′ b Ω, from (27). This function has the property that
M(z, |u|) is a positive, monotone increasing, function of |u|, for any z ∈ Ω. Recalling
the holomorphicity of fm, we define, for any ε > 0, a function gm,ε(z, u) by

gm,ε(z, u) =
∫ π

0
log |fm(z, ueiθ)|dθ + log |eud−ε |. (28)

For Ω′ b Ω, we define the constant VM,Ω′ = maxz∈Ω′ ‖V (z, ·)‖L∞ . The function
gm,ε(z, u) is PSH on the strip-like domain of the form Ω′ × UΩ′ , where Ω′ b Ω and
UΩ′ ⊂ C is given by

UΩ′ = {u ∈ C | | Im u| < 2,Reu > c0VM,Ω′ , | arg u| < π/4}. (29)
The second term in (28) allows us to control the location of the maximum of gm,ε
on the intersection of the domain Ω′ × UΩ′ with the arcs |u| = r.

Starting with gm,ε defined in (28), we construct a PSH function on Ω′ × C, for
any Ω′ b Ω, through a series of extensions that we briefly summarize here. First,
one proves that there exists rm > 0 so that for r > rm〈VM,Ω′〉1/(1−ε) > 0,

max
| Imu|≤1, Reu>0
|u|=r, u∈UΩ′

gm,ε(z, u) > max
Imu=±1, Reu>0
|u|=r, u∈UΩ′

gm,ε(z, u), (30)

for z ∈ Ω′. Second, we note that by using inequality (30) we have
M̃m,ε,Ω′(z, w) = max

| Imu|≤1, | arg u|≤π/4
rm(〈VM,Ω′ 〉1/(1−ε)+1)≤|u|≤|w|

gm,ε(z, u), (31)

is plurisubharmonic on Ω′ × {w ∈ C : r̃m,ε(Ω′, V ) < |w|}, for a suitable constant
r̃m,ε(Ω′, V ) > 0. Finally, we extend this to a PSH function on Ω′×C. We prove that
the function

Mm,ε,Ω′(z, w) =
{

max(1, M̃m,ε,Ω′(z, r̃m(Ω′, V ) + 1), if |w| ≤ r̃m(Ω′, V ) + 1
max(1, M̃m,ε,Ω′(z, w)), if |w| ≥ r̃m(Ω′, V ), (32)

is plurisubharmonic on Ω′ × C.
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Note that the dependence of Mm,ε,Ω′(z, w) on w is only through the norm |w| and
is a monotone increasing function of |w|. The following lemma demonstrates the
relationship between the order of nV (z)(r) and the order of r 7→Mm,ε,Ω′(z, r) for any
z ∈ Ω′ fixed.

Lemma 5. Let Ω′ b Ω and let ρm,ε,Ω′(z) be the order of r →Mm,ε,Ω′(z, r). We then
have

ρm,ε,Ω′(z) = max(d− ε, order of nV (z),m(r)) (33)
for z ∈ Ω′, where, as above, nV (z),m(r) is the number of resonances of HV (z) on Λm,
m ∈ Z∗ of norm at most r > 0.

The main result of this construction, and the general results for PSH functions
presented in section 4, is the following theorem. The theorem assets that except for
a small set of z ∈ Ω, the order of growth of nV (z),m(r) is d provided it is bounded
by d for z ∈ Ω and provided that it obtains this value for at least one point in Ω.

Theorem 3. Let Ω ⊂ Cd′ be an open connected set, let m ∈ Z, and let V (z, x) satisfy
the assumptions (V). If for some zm ∈ Ω, the function nV (zm),m(r) has order d, then
there is a pluripolar set Em ⊂ Ω such that nV (z),m(r) has order d for z ∈ Ω \ Em.
Moreover, if for each m ∈ Z∗, there is a zm such that nV (zm),m(r) has order d, then
there is a pluripolar set E such that for every m ∈ Z∗, the function nV (z),m(r) has
order d for z ∈ Ω \ E.

6. Lower bounds for some spherically symmetric potentials

We compute a lower bound on the number of resonances for HV when V (x) =
V0χBR(0)(x), with V0 > 0, using separation of variables and uniform asymptotics of
Bessel and Hankel functions due to Olver [17, 18, 19]. This method works for d even
or odd, thus providing an alternate to using the more precise asymptotic result of
Zworski [43] for d odd, as was done in [3, 5]. Because of the spherical symmetry
of V , we can reduce the Hamiltonian HV to a direct sum of Hamiltonians H`, for
` = 0, 1, 2, . . . acting on L2(R+). An important parameter is ν ≡ `+ (d− 2)/2 that
is an integer for d even and half an odd integer for d ≥ 3 odd. We construct the
Green’s function on the physical sheet Λ0 for the reduced Hamiltonian H`. We let
V (r) = V0χ[0,1](r), with V0 > 0, and we let Σ(λ) ≡ (λ2−V0)1/2, where the square root
is defined so that this function has branch cuts (−∞,−V 1/2

0 ]∪ [V 1/2
0 ,∞). Because of

the simple nature of the potential V (r), the reduced ordinary differential equation
for 0 < r < 1 is

− ψ′′ν −
(d− 1)
r

ψ′ν + `(`+ d− 2)
r2 ψν = Σ(λ)2ψν , (34)

and for r > 1, the solution ψν satisfies the free equation

− ψ′′ν −
(d− 1)
r

ψ′ν + `(`+ d− 2)
r2 ψν = λ2ψν . (35)

We use the ordinary Bessel and Hankel functions of the first kind, denoted by Jν
and H(1)

ν , and their spherical counterparts jν and h(1)
ν . We refer to [17] for complete

definitions and properties. We choose two linearly independent solutions, φν and ψν
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of (34)–(35) so that φν(r = 0;λ) = 0 and ψν(r;λ) = hν(λr) for r > 1. The Green’s
function has the form

Gν(r, r′;λ) = 1
Wν(λ)

{
φν(r;λ)ψν(r′;λ), r < r′

φν(r′;λ)ψν(r;λ), r > r′
, (36)

where the Wronskian Wν(λ), evaluated at r = 1, is given by

Wν(λ) = Σ(λ)j′ν(Σ(λ))h(1)
ν (λ)− λjν(Σ(λ))h(1)′

ν (λ). (37)
It follows that λ0 ∈ Λm, m 6= 0, for d even, or λ0 ∈ Λ−1 ≡ C−, if d is odd, is a

resonance if it satisfies the following condition:
Σ(λ0)J ′ν(Σ(λ0))H(1)

ν (λ0)− λ0Jν(Σ(λ0))H(1)′
ν (λ0) = 0, ν = `+ (d− 2)/2, (38)

where we used the definitions of the spherical functions in terms of the standard
functions.

In order to study the defining equation (38) on Λm, we define a function F (ν)
m (λ)

on Λ0 by
F (ν)
m (λ) = Σ(λ)J ′ν(Σ(λ))H(1)

ν (eimπλ)− eimπλJν(Σ(λ))H(1)′
ν (eimπλ), (39)

using the fact that Σ(eimπλ) = Σ(λ), for m ∈ Z. It follows from the fundamental
equation (38) that the zeros of F (ν)

m (λ) on Λ0 correspond to the resonances of the
one-dimensional Schrödinger operator H` on the sheet Λm, for |m| ≥ 1. For d odd,
there are only two independent functions corresponding to m = 0 and m = −1.
As m = 0 corresponds to the physical sheet, there are no resonances, and because
V0 > 0, there are no eigenvalues. For m = −1, the resonances are the zeros of F (ν)

1 (λ)
for 0 < arg λ < π and ν a half-odd integer. We prove that this number is bounded
below by C−1r

d, with C−1 > 0. For d even, we will prove that the number of zeros
is bounded below by Cmrd on each nonphysical m 6= 0, for some constant Cm > 0.

The zeros of F (ν)
m (λ), λ ∈ Λ0, are studied using the uniform asymptotic expansions

of the Bessel and Hankel functions proved by Olver [18, 19]. A similar method
was used by Stefanov [33]. It is convenient to define new variables z = λ/ν and
z̃(z) = (z2 − ν−2V0)1/2. The formulas for the analytic continuation of Bessel and
Hankel functions [17, chapter 7] allow one to reduce the question of the zeros of
F (ν)
m (λ), λ ∈ Λ0, to considering those λ ∈ Λ0 for which

F
(ν)
0 (νz) = 2mG(ν)

0 (νz), (40)
where, from (39),

F
(ν)
0 (νz) = νz̃J ′ν(νz̃)H(1)

ν (νz)− νzJν(νz̃)H(1)′
ν (νz), (41)

and we define
G

(ν)
0 (νz) ≡ νz̃J ′ν(νz̃)Jν(νz)− νzJν(νz̃)J ′ν(νz). (42)

It is sufficient for the lower bound to prove that for any ν < r, for ν > ν0 and
r >> 0 sufficiently large, that there are at least ν(1− ε1), ε1 > 0 small, solutions of
the equation (40) in the half-disk Im λ > 0 and |λ| ≤ r, uniformly in r and ν.

A special role in the uniform asymptotics of the Bessel and Hankel functions is
played by the compact, eye-shaped region K in the complex plane defined as follows.
Let t0 be the positive root of t = coth t, so t0 ∼ 1.19967864 . . .. The region K is the
symmetric region in the neighborhood of the origin bounded in C+ by the curve

z = ±(t coth t− t2)1/2 + i(t2 − t tanh t)1/2, 0 ≤ t ≤ t0, (43)
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intercepting the real axis at ±1 and intercepting the imaginary axis at iz0, where
z0 = (t20 − 1)1/2 ∼ 0.66274 . . .. The region K is bounded by the conjugate curve in
the lower half-plane. To prove that there are at least ν(1− ε1) zeros of F (ν)

m (λ) near
the upper boundary of the eye-shaped region νK, we concentrate a small region
Ω1,ε ⊂ C, in the z variable, near the upper boundary of K, defined, for fixed ε > 0,
by Ω1,ε = {z ∈ C+ : dist (z, ∂K+) < ε} ∩ {z ∈ C+ : |z + 1| > ε and |z − 1| > ε}.

We computed the uniform asymptotics of each term in (40). In order to state
these, we need a map z → ρ(z) defined by

ρ(z) ≡ log 1 +
√

1− z2

z
−
√

1− z2. (44)

The uniform asymptotic expansion of F (ν)
0 (νz) for z ∈ Ω1,ε, as computed in [6,

sections 5 and 6], is

F
(ν)
0 (νz) = −2i

π

{
1− 1

ν

[
V0(1− z2)1/2

2z2

]
+O

( 1
ν2

)}
, (45)

and for G(ν)
0 , we obtained

G
(ν)
0 (νz) = e−2νρ

2π

[
V0

2ν2(1− z2) +O
( 1
ν3

)]
, (46)

where the error is uniform for z ∈ Ω1,ε. Consequently, the condition for zeros on the
mth-sheet is that there exists solutions z ∈ Ω1,ε to the equation

e2νρ(z) (1 + g1(z, ν)) = imV0

4ν2

( 1
1− z2

)
+ g2(z, ν), (47)

where g1(z, ν) = O(1/ν), and g2(z, ν) = O(1/ν3), both uniformly for z ∈ Ω1,ε. We
note that for V0 = 0 there are no solutions to this equation.

We consider (47) as an equation for ρ. The variable ρ lies in a set that is the image
of Ω1,ε under the mapping z → ρ given in (44). This set contains a neighborhood of
an interval of the negative imaginary axis of the form (−π+h(ε),−h(ε))i ⊂ (−π, 0)i.
We proved that there exists at least ν(1 − ε1) solutions in a neighborhood of this
set, where ε1 = O(ε). We first analyzed the zeros of the function g(z, ν) defined by

g(z, ν) = ν2e2νρ − imV0

4 . (48)

These can be computed explicitly and have the form

ρk =
{

1
2ν log

(
|m|V0

4

)
− log ν

ν

}
+ i

π

ν

[
k + sgn(m)1

4

]
, k ∈ Z. (49)

Then, using Rouché’s Theorem, we proved that in a neighborhood of each zero
ρk of g(z, ν) with imaginary part in (−iπ + i2h(ε),−i2h(ε)), there is exactly one
solution to (47). Consequently, there are at least ν(1 − ε1), ε1 = O(ε) > 0 zeros in
a neighborhood of the interval on the negative imaginary axis (−π, 0)i for all ν > 0
large.

To prove the lower bound, recall that ν = l + (d − 2)/2, l ∈ N and ε1 > 0 is
arbitrary. By the symmetry reduction described in the beginning of this section,
each zero of F (ν)

m (λ) corresponds to a resonance of multiplicity m(l), the dimension
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of the space of spherical harmonics on Sd−1 with eigenvalue l(l + d − 2). Since
m(l) ≥ cld−2 +O(ld−3), for some c > 0, it follows that

nm,V (r) ≥
[r]∑
`=1

1
4(l − (d− 2)/2)(cld−2 +O(ld−3)) ≥ Cmrd +O(rd−1), (50)

for some Cm > 0, depending on m ∈ Z∗. This proves the lower bound on the mth-
sheet, m ∈ Z∗. If the potential V is real, the symmetry of the zeros means that the
resonances on Λ−m are in one-to-one correspondence with those on Λm.

7. Open Problems

One of the main open problems in this area is the proof of the optimal lower bound
nV,m(r) ≥ Cd,mr

d, Cd,m > 0, for nontrivial, real-valued potentials V ∈ L∞0 (Rd).
Alternately, it would be of interest to construct such a potential whose resonance
counting function has order of growth strictly less than d showing that such a lower
bound is not possible. The question of computing an asymptotic expansion for the
resonance counting function is of great interest but seemingly out of reach at this
time. It is not even clear if such an asymptotic expansion should exist.
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