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COUNTEREXAMPLES TO LOCAL EXISTENCE
FOR NONLINEAR WAVE EQUATIONS

HANS LINDBLAD

Princeton University

Introduction and the main results. In this paper we study how much regu-
larity of data that is needed to ensure local existence of a solution to quasilinear
wave equations. We give counterexamples to local existence for the typical model
equations. The counter examples we construct for semilinear wave equations are
known to be sharp, i.e. one can prove that one has local existence if data has
slightly more regularity. The existence part has been shown in recent papers by
Klainerman-Machedon[3], Ponce-Sideris[8], Beals-Bezard[l], Lindblad[4], Lindblad-
Sogge[7], using space time estimates know as Strichartz5 estimates or refinement of
these.

We are considering the Cauchy problem for a quasilinear wave equations :

(0.1)
Du = G(nW), (t,x) € IR1^71, 0 < t< T,

u{0,x) = f{x), Ut(0,x) = g{x)

where G is a smooth function of u and its derivatives up to second order which is
assumed to be linear in the second order derivatives and vanishing to second order
at the origin. (Here D = 9^ - ]CF=i ^i*) Let H^ denote the homogeneous Sobolev
space with norm ||/||̂  = || IP^I^/J]^ where \D^\ = V-^x and let

(0.2) ||n((, .)|g = t (| \D^Ut{t^ + | \D^u(t,x)\2} dx.

We are studying which is the smallest possible 7 such that

(0.3) (/,5) € ̂ (IR'x)^-^71),

and

(0.4) supp/ U suppff € {x\ \x\ < 2}, singsupp/ U sing supply € {0}

implies that we have a local distributional solution of (0.1) for some T > 0, which
satisfies

(0.5) (n, QtU) e Cb{ [0, T]; ̂ (R3) x JT-^R3))
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2 HANS LINDBLAD

To avoid certain peculiarities when it comes to uniqueness we make the following
definition:

Definition 0.1. We say that u is a proper solution of (0.1) if it is a distributional
solution which satisfies (0.5) and if in addition u is the weak limit of a sequence of
smooth solutions Ue to (0.1) with data (<^g * /, ̂  * ̂ ), where (f)e € C§°^ (f>e —> 6 and
supp^g —^ {0}. D

The problem is that even if one has smooth data and hence a smooth solution
there might still be another distributional solution which satisfies initial data in
the space given by the norm (0.2). This phenomena was first observed by Shatah-
Shadi Tahvildar-Zadeh[10] for wave maps. An easier example is given by u(t^ x) =
2H(t — \x\)/t which satisfies Ou = u3 in the sense of distribution theory, (see
Lemma 1.2 in Lindblad[6]). Furthermore ||n(t,-)||^ —> 0, when t —^ 0 if 7 < 1/2,
by homogeneity. Since u(t, x) = 0 is another solution with the same data it follows
that we have nonuniqueness in the class (0.5) i f 7 < 1/2.

Our main theorem is the following:

Theorem 0.2. Consider the problem in 3 space dimensions, n = 3, with

(0.6)
D^=Gr^=((^^^)^n)((^^^)^^)

n(0,:r) = f{x), Ut(0,x) = g{x)

where 0 < I <: k <: 2, Z == 0,1. Let 7 = fc. Then there are data (/,p) satisfying
(0.3)-(0.4), with H/11^7 + ||̂ || j^-i arbitrarily small, such that the following holds:

i) (0.6) doesn't have any proper solution satisfying (0.5) for any T > 0.
ii) If k — I < 1 then in addition there is no proper solution such that the right

hand side of (0.6) makes sense as a distribution.
Hi) If k = I = 0 then in addition there is no distributional such that the right

hand side of (0.6) makes sense as a distribution.

Remark 0.3. It follows from the proof of the theorem above that the problem is
illposed if 7 is as above. In fact there exist a sequence of data fe^e ^ C§°{{x^ \x\ <
1}) with H/ell^y + H^lljj-Y-i —> 0 such that if Tg is the largest number such that
(0.1) has a solution Ue € C^^O.Te) x R3) we have that either Te -^ 0 or else there
are numbers te —^ 0, such that 0 < te < Tg such that H^e^, •)||-y —> oo. D

Remark 0.4' Just by scaling, one gets a simple, less good, counter example to
well-posedness with

(0.7) ^fc+IL^

In fact if we have u is a solution of (0.1) which blows up when t = T then
Ue(t^x) = ̂ "^(t/e, x / e ) is a solution of the same equation with lifespan Tg = eT
and ||^(0, •)||^ = ^^-^-^IKO,-)^ ̂  0 if 7 satisfies (0.7). The natural gen-
eralization of the counterexample to general number of space dimensions n is

(0.8) ^<k+"—3-
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COUNTEREXAMPLES TO LOCAL EXISTENCE FOR NONLINEAR WAVE EQUATIONS3

Presumably the argument here together with a cutoff argument as in Lindblad[4]
or Lindblad-Sogge[7] would give a proof of this. D

The proof of Theorem 0.2 will appear in Lindblad[5]. The special case when
k = I == 0 was proven in Lindblad[4]. We will however give a short and explicit
proof here. At least in the semilinear case, k - I < 1, Theorem 0.2 is sharp, i.e. we
have local existence in H8, for s > fc. A related theorem was proven in Lindblad-
Sogge[7]:

Theoremn 0.5. The problem

Ou = K, (t, x) 6 R^, 0 < * < T,

n(0,rr) = f{x), Ut(0,x) = g(x)

is illposed in H^ for general data {f,g} satisfying (0.3), ifn > 2 and

{ 11±1 - ——— „ < 21±3
^ ^ ̂ ^ _ 4 ^-1 ' ^ ̂  n-1 .' ' ( ) - ?-A, ./^;s.

Here n is the number of space dimensions. Moreover^ z/7 > 7(/<s) andi^ > KQ, where
^o = (^1)2^4 5 if n > 3, and K,o = 3 for n = 2, ^en we /^aw a local solution in
H^.

1. Proof in the semilinear case without derivatives: Dn = n2. The result
of Theorem 0.2 in case k == I = 0 was already proven in Lindblad[4] using the
asymptotic behavior of a linear solution to show that the problem was ill-posed
and from that constructing data for which we had no local existence by adding up
a sequence of data. Using the formulas from there together with our new way of
constructing counterexamples we can now give explicit data for which there is no
local solution. We will show that there are data / G L^R3) and g = 0 such that

Du = n2, u{0,x) = /(.r), ^(0,^) = g(x),

does not have any solution u € Z^QO.r] x R3) for any T > 0. A distributional
solution of the above equatipon with a right hand side in ^([O.T] x R3) is also a
solution of the convolution equation (see Hormander[2])

u == = E * {Hu2} + UL, where DUL = 0, ^(O.rr) = f{x), (9^(0, :r) = g{x}

Here E is the forward fundamental solution of D and H{t) == 1 when t > 0 and
0 otherwise. First we will make the simple observation that it follows from the
positivity of the fundamental solution that u(t,x) >, UL(t,x) and if UL(t,x) > 0
then u(t,x)2 > UL{t,x)2. Hence if

(1.2) UL(t,x) > 0, when (^) € K = {(t,x}\t+ \x - (1,0,0)| < 1, ( > 0}

then

^•S) u^x) -UL(t,x} > E^ {xKui}(t,x\
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4 HANS LINDBLAD

where ̂  is the characteristic function of K. We will show that one can find data
f e L2 and g = 0 such that (1.2) holds and

(1-4) / \E*(XKui'){t,x) dxdt=oo, for any T > 0.

By (1.3) this shows that

(1.5) j f u(t, x)2 dx dt = oo, for any T > 0.

y^) ^ ! /^1) == ^|!og^/4||^ ^en \x - (1,0,0)| < 1,
I 0, otherwise .

Then

^
10 .

By (1.3) this shows that

fT
(1.5) /

Jo ^

We claim data the following data will do:

Lemma 1.1. Let 3/4 < a < 1 and set

fM ^ f h{xl) = ̂ TKife

/^x) dx = Ca < oo.

The proof is an easy calculation.
With this data we have inside K

u^t,x) = ;̂ l_*i_L^L±^
£t

and hence ui,{t,x)'2 >, h(xi — ̂ /^l in K.
Lemma 1.2. Let ^(t,x) = <!)(< - xi)6(x2)6(x3)H{t). Then

zr . . . ^^_ 1^-1^1E^^(t,x)= TT t — a'i

and
\E*^{t,x)\'2dx=oo, ift>0.

For a proof see Lindblad[6]. We need the following consequence of the lemma:

Lemma 1.3. Assume thatF(t,x) = k{x\ -^a-s,^) and let p,y(t,x) = p,(t,x-y).
Then

E * (HF){t,x) = f E * /^, x)k{y} dy = t ^——^-^1^)^.

Since the set {(t,x); \x - (1/2 + <,0,0)| ^ 1/2,0 < t < 1/2} is contained in K
we conclude using the formula and writing x = (a-i,^7), y = {y\,y') that

E . (̂ D«, .)., /•/ ^-^-^-k--^)^ ̂ ^4 Jo Jly'l2^!-^ * - (.ri - ?/i)
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Introducing polar coordinates y/ = (rcos(?,rsin0), dy/ = rdrdO, and using the fact
that over half the region in 0, x / ' y/ >_ 0 we conclude that

.1 r^yi-y2! rr/S2 _ / _ \2 _ | /|2 _ 2\ ^
^. toui)«,.) ̂  A — — ( ^.-L) ^ ''»•

Assuming that 0 < x\ < t < 1/2 and integrating only over the region 0 < y\ <
(t-.ri)/4,0<r2 <tyi we obtain that ̂ -{x^y^^x1^-^ > (^-.r^-l.r'l2.
Therefore assuming that

(^-^-l.z^X)

we obtain

Hence

- / /-(^i)/4
E^{xKui)^x) > ———— / yMy^dy,.

0 t — Xi JQ

_ , 2,, , G(£ff(t2 - ̂  - 2|a/|2)
E * (xxn^^^ ^ (t-.0|log((f-.Q/16)|^-r

It follows that

/,̂ ( î)^),̂ .̂ ^^4^^^

2 /'* 7r(t2 - a:^)/2da;i
(£J 70 (<-a;i)2|log((t-a;i)/16)|

—— — ry^
211^0 - r ^ - ^V-mM4a-2 uu-

Since by assumption 0 < 4a — 2 < 1. This proves (1.4) and hence (1.5).
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