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ON ZETA FUNCTION AND SCATTERING POLES
FOR SEVERAL CONVEX BODIES

MITSURU IKAWA

Department of Mathematics
Osaka University

Toyonaka 560, Japan

1. Introduction. Let Op j = 1,2,... , J, be open bounded sets in R3 with smooth
boundary Fj. We set

o=u/^o,,
and assume the following:

Each Oj is strictly convex, that is, the Gaussian curvature of
(H.I)

L J does not vanish.

For each {/ i , l^ h} € {1, 2 , . . . . J}3 such that ji + jv for / +11,

(convex hull of ~0^ and ~0^) n ~0^ = 0.

In this note, we consider the case of

(1.1) J > 3 .

We set
^l=R3 -0.

and consider two dynamics in ^. The one is the classical dynamics in Q, and the another
is the quantum dynamics in f^, and we are interested in relationships between these two
dynamics. As the first step of study of relationships of two dynamics, we would like to take
up the zeta function as the subject of the classical dynamics, and the scattering matrix
as that of the quantum dynamics. Our interest as to these subjects is to know how the
singularities of the zeta function relate to the poles of the scattering matrix, and vice versa.

Note that under the assumption (1.1), the classical dynamics in ^, which is nothing but
the geometric optics, becomes chaotic. This chaotic property makes the both dynamics
difficult to treat.

Our result we shall talk about is as follows: In a small neighborhood of the axis of
absolute convergence of the zeta function, the scattering matrix is holomorphic at points
which are not so near to the poles of the zeta function.
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2. Zeta Function for The Classical Dynamics

2.1. Definition of the zeta function
Let A = [A(i,j)]2j=i^2,...,j be a J x J matrix defined by

^J)=[A(zj)
1 for z 7^ j,
0 for i = j.

Set

SA = {<^ = (• • - ^-n^-n+l? • • • ^-l^O^l? • • • ?^n? • • • );

^ € { 1 , 2 , . . . ,J} andA(^+i)=l for all z).

Then, for each element ^ 6 SA there corresponds uniquely a ray <Y(<^) of the geometric
optics trapped by 0 in the future and in the past with the reflection order <^. Namely,
<Y(<0 is the ray of geometric optics in ^, which reflects on F^ and, following the advance
of time in the future, reflects on F^, F^,- • • successively and following the time going
back to the past, reflects on F^, I\_^, • • - successively. Denote the j-th reflection point
of <Y(<0 by Py(<0. Then X{^) is an infinite broken ray connecting successively the points

...,p-i(0,Po(0,Pi(0,....

We define a function /(<^) on EA by

(2.1) /(O = |Po(0 - Pi(01.

For ^ € E,4 we can define a sequence of phase functions {<^j(a;)}jl_oo satisfying for all j

' |V<^j(a;)|2 =1 in a neighborhood of Pj(^)Pj+i($),

^^•(^•(0) is parallel to Pj{^Pj^),
(2.2) < V^,j(x) = <^j+i(a;) on F^^ n (a neighborhood of Pj+i(0),

the principal curvatures of C^j(Pj(^)) with respect to Vy^j(Pj($))

are positive,

where
C(.AX) = {y; y$j(y) = ̂ j^^))-

Note that the conditions (2.2) determine uniquely Vy>^ j(x) in a neighborhood of
W^-+i(0-

Denote by G^j(a;) the Gaussian curvatue of C^j(x) at a;. We define a function (/(^) by

(2.3) <?(0 = log ̂ ,o(Pi(0)/^,o(Po(0).

11-2



We see easily that

(2.4) f f ( 0 < 0 f o r a l l ^ e S A .

Denote by aA the left shift operator in SA, which is given by

(^A<0i = ^-4-1 for a^ z -

The zeta function attached to the boundary value problem with Dirichlet boundary
condition is given by

I ' °° i \
(2.5) C(3) = exp ^ - ^ exp S^ s) ,

I - I v In
n=l aAn^=S

where

(2.6) r(^ 5) = -^(0 + g(0 + V^TTT,

5nr(^ 5) = r(^ ̂ ) + r(<7A^ ̂ ) + • • • + r^A71-1^ ̂ ).

Evidently <^ 6 EA satisfying o'A71^ == <^ is a periodic element with repect to O-A of period
n, and the corresponding ray <Y($) is also a periodic ray in Q with n reflection points.
Denote by 7 the corresponding periodic ray, that is, the ray starting from a point on F^
and reflecting on F^, F^, . . . . successively, and after the reflection on F^_^ returning to
the starting point. Then, we have

(2.7) Snr(^s) = e-^A^A^)1^-!)71,

where d-y denotes the length of 7 and A-y^ (/ = 1,2) the eigenvalues less than 1 of the
Poincare map of 7.

As to the convergence of C(5)? we see immediately

^es^A^e}^-!^,
5n/(0 > n^min,

where c?min = min,^j dis(C?,, Oj). By taking account of (2.4), the right hand side of (2.5)
converges absolutely in

(2.8) Re s > A " 1 .
dr

Remark that it holds that

(2.9) - d log W = ̂ (-l)1- r,e-^(A^A,,2)1/2,
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where the summation is taken over all the oriented periodic rays 7, and z'-y denotes tlie
number of reflection points, and T^ the prime period of 7.

Needless to say, c,\^) converges absolutely in a larger domain than (2.8).

2.2. Ruelle operator and the abscissa of absolute convergence
For a function A'(^) defined on S 4, we set

var, k = sup{\W - H^)|; ^ = ̂  for all \z\ < 72),

and for 0 < 6 < 1
yarn k

^ | ^=sup —n^—
n t7

We set
I IA 'Hoc = sup |̂ )|, and |||^|||, = \\k\\e + p||oo,

^A

and define the space ^(S^) by

WA)={k{^\\\k\\\e<oo}.

Now we introduce the spaces of one sided sequences

E ^ = { $ = ( $ o ^ i , — ) ; A(^+i)=l foralH>0},

SA = U = (• • • ^-2,^-1); A(^i,^) = 1 for all i < -1}.

Concerning the functions /(<^) and ^($) introduced in the previous subsection it is easy
to check

/, g € ^(SA)

for some 0 < 6 < 1.
For r{^s) defined by (2.6), we can construct r($,.s) and x(^6) suc^ ^at

r(^,6) depends only on (^o^i? • • • ) ?

that is, r is a function in ^(E^), and

^ 5) = ̂ (^ ̂  - X(^ ^) + X(^A^ ̂

(for the construction of r and ^, see, Bowen[l, page 11]).
We introduce the Ruelle operator, which is the operator in ^(SJ^) defined by

(2.10) ^(O- ^ e^^vW forv^W^).
^A^=S

Related to ^3, define I ^ C ^ I by

(2.11) (1^1^(0= E l^^l^) forveW^
CTAT1=^
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The Perron-Frobenius theorem shows that there is uniquely h G R satisfying

(2.12)
the spectrum of \C-k\ is contained in { A G C; |A| < 1),
\C-h\ has 1 as an eigenvalue.

Moreover, \C^h\ has the following decomposition:

|r^|=ip+5,

where

^(0=w(o/ ^)d^)7^
the spectral radius of S < 1,

where w(^) is an eigenvector associated to the eigenvalue 1, and /^) is a Gibbs measure
satisfying

/ . ^WM = 1.
^s+^A

Remark that

(2.13) the abscissa of the absolute convergence of ^(^) is Re s = —h.

The Perron-Frobenius Theorem shows that the eigenvector w(^) satisfies

(2.14) inf w(Q>0.
$est

We set

M== max ^° m= min ̂ ^
^^ ^{ri) (es^

As to the analytic continuation of <^(,s) beyond the abscissa of the absolute convergence,
it is proved that C(^) is meromorphically continued into the domain

R^>-^"——|iog(?|
^ / rx-»

(see for example, [2], [8]).
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3. Statement of Theorem
Denote by S(z) the scattering matrix for 0. It is well known that S{z) is holomorphic

in {z € C; 1m z <, 0} and meromorphic in the whole complex plane C. In [3] we showed
that, for 0 given by (1.1) with (H.I) and (H.2), under the assumption of h > 0, the number
of poles of S{z) in {z G C; 1m z < h - e} is finit for any e > 0.

In this talk, we would like to show the following

Theorem. Suppose that 0 given (1.1) satisfies (H.I), (H.2) and the condition

(A) ^v^l.
m

Then we have 0 < a < 1 with the following property:
For any e > 0, there is a positive constant Ce such that, if ZQ is a point in T>^ e which

is a domain given by

P^= {z € C; Imz ^h+^ez^, \Rez\^Ce],

and if the zeta function satisfies the estimate

(3.1) |C(^o)| < M1-',

the scattering matrix S(z) is holomorphic at z = ZQ.

REMARK 1. Note that a in the theorem will be chosen by the following way:
First we choose a > 0 in such a way that

M
a|log 6\ > 2, alog— < 1.

m

Next we choose a as
i M

alog — < a < 1.
m

Therefore, according to the smallness of -^V^, we can choose a small.
REMARK 2. As an example of 0 satisfying Condition (A), we have the following one:

Let Pi, Pz, ?3 be points in R3 such that APiP^Pa is a right triangle. For e > 0 set

Oe = U]^ C^,, 0^ = {x € R3; \x - Pj\ < £}.

Then, Oe satisfies Condition (A) when e > 0 is small.
REMARK 3. If there is ZQ € Oa,e such that

|C(^o)| > N1-',

then, for all z 6 Pa,£ satisfying

N^^ < \Rez-Rezo\ <(log|^o|)~1
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we have the estimate
IC(^)1 < M1-'.

REMARK 4. It is not yet known whether ^(^) has a pole in general, and it is an interesting
problem to know whether there exists a sequence of poles of ^(.s) converging to the line
Re s = —h.

4. Outline of The Proof of Theorem

4.1. Cosntruction of asymptotic solutions for oscillatory data
Consider the following boundary value problem with papameter z 6 C:

(4.1)
(-A-^2)^ =0 in fi,

u = f{x) on r.

For Im z < 0, the problem has a unique solution in L2^). Denote this solution as

u(x) = Wz)f)(x).

Then, R(z) € £(L2 (T) ̂  L2 (fl.)) and it depends analytically on z 6 [z\ Imz < 0}. By uisng
the regularity theory for —A we can regard R{z) as a mapping from C'°°(r) into C°°(^).
Then we have

R(z) is r(C^(r),C°°(n))-valued holomorphic function in 1m z < 0.

It is known that this R{z) can be prolonged meromorphically into the whole complex
plane, and

the poles of R{z) coincide with those of <?(^).

Thus, the consideration of poles of S(z) is reduced to that of R(z).
Our method to consider the analytic continuation of R(z) into the upper half plane is

an explicit construction of asymptotic solutions, which was done in [3].
For the oscillatory data given on Fi of the form

(4.2) f(x,z) = e-^^g^x)

we will construct an asymptotic solution of the boundary value problem

{ (-A-^^ in^,

(4.3) u=f{x^z) onFi,

u = 0 on F2 U Fs U • • • U F j

by the following way:
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Let (^i)(.r) be a real valued function satisfying

^(l){x) = y{x) on Fi

|V^(i)(.r)| = 1

and construct U(i)(.r, 2) of the form

U(,){x,2)=e-lz^x)g^{x)

by the standard method. Next we construct u^ 2 )? u(l 3)? * • • ? ^(i j) of the form

^(i,o(^ ̂  = e-'^'o^ g(,^)(x) (I = 2,3,... , 7)

so that we have

U(i){x,z) + u^^{x,z) =0 on I\/ (/ = 2,3,... , J),

where I\j denotes the part of Fj seen from F,. In order to repeat this procedure, we
introduce some notations. For n = 2 ,3 , . . . , we set

In = {i= ( ^ 1 , Z 2 , . . . ^'n); i j € { 1 , 2 , . . . ,J}, Z'i = 1

and A(z^,^-4.i) =1 for all j = 1,2,. . . ,n — 1}.

Suppose that for all i G In

(4.4) zzi(rr^) = e-^^i(:r)

is defined. For j 6 ^n+i, we define

u,{x^)=e-^z^g^x)

by the following way: denote j 6 In+i ^s J = (1?^)? A € I n ' Let Uj(*r,^) be an asymptotic
solution of the form

u^z)=e-i2^g,(x)

satisfying the boundary condition

u,(x,z)+u^{x,z) = 0 on r\^.

By this procedure, we get a set of asymptotic solutions {u[(x^ ^)}i^j, where I = U^=ioo j^.
Define w ( x ^ z ) by

(4.5) w(x,z) = ̂  ̂ i(a-^),
i€J

which is a first approximation of the solution to the problem (4.3).
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In [3], the constant h is characterized as

(4.6) h = sup{a;^ |^i(.r,-2:)| < oo for all 1m z < a}.
id

Note that the constant h defined by (4.6) coincides with the one defined by (2.12).
Thus, our problem is mainly related to the analytic continuation of w{x, z) defined (4.5)

beyond the abscissa of absolute convergence.

4.2. Representation ofw(x^z) by the Ruelle operator
For ^ € SJ[, we have a sequence of points {^-(O^o satisfying for all j = 0,1,2 .. .

0,(0 € r^, and O,-H(O = Q,(Q + |Q^(O - ̂ .(0| V^(Q,(O),

where i = ( ^ o ^ i ? - - - ?<^)- Namely, {Q^(0}^:o ls nothing but the sequence of reflection
points of the ray which starts from a point on Fi in the direction Vy?(i) and repeats the
reflection on T^, r^, • - * successively. Set

/;(0= KWO-WI and g?(0 = | log ̂ Q^

where G\(x) denotes the Gaussian curvature of the surface C\{x) = {y; <^i(y) = y[{x)}.

For each j € { 1 , 2 , . . . ,J}, choose a sequence ^u^, n = 1,2, . . . , such that ^u^ 7^ j
and A^-n-i^-n) = 1 for all n = 1 ,2 , . . . . For ^ = (<^o, <^i, • • • ) € S^[ we corresponds an
element e(<^) in SA by

_ / ^ \ / <^0') Aj) fU) c e \e(a '•= ( • • • ,< ; -n ,< ; -n+ i , - ' - , < ; - i , < ; o , < ; i ^ ' - )

when ^o = j.
We define the function (^i^^) for <f 6 SJ[ such that <^o = 1 by

00

(4.7) ^(0 = ̂  {-. (/(CTA" e(Q) - /^-(O) + ̂ (OA" e(0) - ̂ (Q} .
n=0

For each k € {1 ,2 , . . . ,J), fix a point :r^ £ F^, and let ^ is an element in EA such
that ^o = ^- Then, there exists a unique broken ray arriving at x^ after the reflection on
r^_. (j = 1,2,. . .) . Denote the reflection points by Q - ( < 0 ? J = I? 2 , . . . . Also there is a

sequence of phase functions '0^-^(:r) defined in a neighborhood of Q - ( 0 0 - - i - i ( 0 which
satisfies

|V^,-^)| = 1

^,-i(3') = V^,-.^^) o11 r^-, •
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We set

frw = Î K) - Q^-UW -d ,,-(() = | iog ̂ ^^
where G^-j(a1) denotes the Gaussian curvature of the wave front {y; z/^ -j(y) == ̂  -?(:^)}
at a;. We define a function <^~(<^ s) for ^ 6 SA by

00

^"(^5) = E {-s (A^A-O - ̂ -(0) + (ff(<7A-"0 - ̂ (0)}.
n=l

We introduce new operators Qs o^d Mn,s in ^(SJ,) by

(4.8) ^(0= ^ e^^^^^^^v^ri)
<7A»?=$
^1=1

and

(4.9) (Mn^v)^)= ^ e^^"^6^^^^16^'3^^^)^^).
(7A»7=$

respectively.
Let ^o(0 be the function given by

,n-J1 if ^ 0 = 1 ?
vo{!i) - f 0 otherwise.

Suppose that ^w € S^ satisfies ̂ ) = fc. Then, ther exists C > 0 such that

(4.10) K^^^^^o)^)- ^ ^\-^)|
|i|=n4-2

^ |^| (^ + ca)^2 for all Re 6 > -h - a,

where c is a positive constant.
The estimate (4.10) shows that the existence of ^^LQ {^snMn,sGsVo) implies the ex-

istence of w(a*, —is\ because we have

00

I ̂  {C^Mn^s Gs VQ) - W(X, -is) | ̂  0

n=0

Thus, the problem of analytic continuation of w(x^s) is reduced to that of
E^=0 ^Mn^GsVo).
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4.3. Summation of .C^A^a
Note that (f>~ satisfies

(4.11) I^A" e(0,.) - r^A'-1 e(aAO, .)| < c\s\ ̂ n-1,

which implies that

(4.12) lir^A^ - r^-^-i^iloo ^ c\s\ ̂ -1.
Then we see that

7Z, =^(o., + (r î,, - MoM + {^M2,s - C^Mi,,C^

+ • • • + [C^Mn^ - C^Mn-l^s) + • • •

converges absolutely for all Re 5 > —h — a. On the other hand, we have

r," Mn,s = {C^Mn.s - C^Mn-^C,)

+ (r^-^n-i,, - c^Mn-^c^ r,
+ • • • + (r̂ i,, - A^o,,^) r,"-1 + ̂ (o,,^".

Suppose that Re,? > —/i. Then, since we have ||/^||oo < 1» it follows from the above
relation that

00 00

(4.13) ^^".M^=7Z,^r,".
n==0 n=0

Moreover, suppose that Cs can be decomposed as

(4.14) Cs=\sPs+Qs.

where

(4.15) the spectral radius of Qs <: 1 — CQ (eo > 0) for all Res > —h — a.

Then, we have

00 - 00

(4.i6) E^^—r^+E^"-
n=0 L ~ As n=0

This formula shows that even for SQ with Re SQ < —h, if SQ is connected by a curve where Cg
is decomposable as (4.14) with property (4.15), the left had side of (4.13) can be continued
analytically up to .so, where it is also of the form

1 °°-—^nsPs+^sV, Qsn.
1 ~ As n=0
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This fact implies that

w[x^ \z) can be continued analytically up to — isQ.

Since
(1 — \s)({s) is uniformly bounded for all Res > —h — a,

we get

(4.17) K^^^-^I^CIC^)!.

Therefore, if |C('So)| < I'sol1"'^ the standard argument for asymptotic solutions gives us the
existence of R{z) at z = —iso,

Thus, in the next subsection, we shall consider the decomposition of Cs'

4.4. Decomposition of the Ruelle operator
Choose a > 0 so that

a | log^|>2.

Then, we have

(4.18) ^alog k = k^ 6 < fc-2^ (£ > 0).

Set

(4.19) n = alogk

and

^(n) = <^(n) = (^0^2, . . . , ̂ n); A(^, ̂ +1) =1 for i = 0, 1, . . . , 72 - l}.

For each ^(^) take an extension ^ € EJ[ and set

^(n)^) =^^)-

Define £5 (yi) an operator in EJ. , x by

{L^(n)V)^(n))= E ^^^'^(^(n))-
^A^(n)=$(n)

where cr^rj(n) == ^(n) signifies that 7714-1 = ^ for n = 0,1,. . . , n — 1.
We fix n and consider Ls (n) f01 k <: \lms\ < k + 1. We have from (4.18) that

(4.20) ll^-L^lloo^-1--.

Denote by Amax,5 the largest eigenvalue of \Cs \ and by w(<^) the associate eigenvector such
that w(<Q > 0.
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Lemma 4.1. Let a > 0 be the constant in Theorem. Then there exists a positive constant
/? such that the estimates

(4.21) \\L^n)V^\v\\<k^M. v^O

and

(4.22) |A|>A^-fc Q
max, s — A<

implies that

(4.23) ^^-l ^fc^.
^(0 I ~

Proposition 4.2. Suppose that (4.21) and (4.22) hold. Then, there is a unitary matrix
Q such that

(4.24) || |£,| - A^e-^L^eiloo < fc^.
Recall that \Cs\ has the following decomposition for all Re s > —h — a:

(4.25) |r,|=A^^+Q,,
the spectral radius of Qg < 1 — CQ (60 > 0).

If ^a,(n) has an eigenvalue A such that

[A [ > Amax,a ~ K 5

Proposition shows that

\\\C,\-\^Q^L^)Q\\^<k^.

Then, the decomposition (4.25) implies that

A^e-1^.^?^^,
the spectral radius of Q^ < 1 — CQ + fc~ ' .

from which it follows that

^3,(n) = A Pa + Qs^

the spectral radius of Qs < 1 — £o + &"".

By combining the above decomposition and the estimate (4.20), we have the desired de-
composability of Cs'
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