JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

FRANÇOIS NICOLEAU

Matrices de diffusion pour l'opérateur de Schrödinger avec champ magnétique et phénomène de Aharonov-Bohm

Journées Équations aux dérivées partielles (1993), p. 1-8

http://www.numdam.org/item?id=JEDP_1993____A7_0

© Journées Équations aux dérivées partielles, 1993, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Matrices de diffusion pour l'opérateur de Schrödinger avec champ magnétique et phénomène de Aharonov-Bohm

François Nicoleau
Département de Mathématiques
U.R.A CNRS n° 758 - Université de Nantes
2, rue de la Houssinière F-44072 Nantes cedex 03
E-mail: nicoleau@namath.dnet.circe.fr

1 Introduction

L'objet de cet exposé est une étude de diffusion quantique pour la paire $(H_{A,V}, -\Delta)$, $H_{A,V}$ étant l'opérateur Hamiltonien quantique de Schrödinger décrivant l'interaction d'une particule chargée avec un champ électrique ∇V et un champ magnétique B, donné par l'opérateur différentiel sur \mathbb{R}^n , $n \geq 2$:

(1.1)
$$H_{A,V} = \sum_{j=1}^{n} (D_j - A_j(x))^2 + V(x)$$

où

$$D_j = \frac{1}{i} \frac{\partial}{\partial x_j}$$

 $A = \sum_{i=1}^{n} A_i dx_i$ est la 1-forme potentiel magnétique

B = dA est la 2-forme champ magnétique identifiée à la matrice antisymétrique $(b_{j,k})$, $b_{j,k}(x) = \partial_x A_k(x) - \partial_{x_k} A_j(x)$, dans la base canonique de \mathbb{R}^n .

Cette étude est motivée par une expérience physique, dénommée phénomène de Aharonov-Bohm, sujet de controverse dans la physique contemporaine, ([AH-BO], [NI2], [PE-TO]). Brièvement, l'effet Aharonov-Bohm est un phénomène d'interférences dues à l'existence d'un champ magnétique, en dehors de son support : diffusion de particules chargées autour d'un solénoïde impénétrable parcouru par un courant.

Seule une approche quantique permet d'expliquer ce problème : le champ magnétique engendre un potentiel magnétique non nul en dehors du solénoïde, potentiel qui est la cause de ces interférences.

Plus précisément, à l'aide de la règle empirique de Feynmann, on peut expliquer ce phénomène comme une perturbation de phase du noyau distribution du groupe unitaire $e^{-itH_{A,V}}$:

(1.2)
$$e^{-itH_{A,V}}(x,y) \sim e^{i\omega_A(x,y)} e^{-itH_{0,V}}(x,y)$$

où $\omega_A(x,y)$ représente la circulation de la 1-forme A le long de la caractéristique reliant y au temps 0 à x au temps t, extérieure au support du champ magnétique.

2 Principaux résultats

Nous supposerons que $A, V \in C^{\infty}(\mathbf{R}^n)$ et vérifient les estimations de décroissance :

$$(H_1) |\partial_x^{\alpha} V(x)| \le C_{\alpha} < x >^{-\delta - |\alpha|} , \delta > 0$$

$$(H_2) |\partial_x^{\alpha} A(x)| \le C_{\alpha} < x >^{-\rho - |\alpha|} , \rho > 0$$

où $\langle x \rangle = (1 + |x|^2)^{\frac{1}{2}}$.

En particulier, lorsque $\delta, \rho > 1$, (ie A et V à courte portée), on montre facilement que $H_{A,V}$ est une perturbation à courte portée de l'opérateur de Laplace $H_0 = -\Delta$ et que les opérateurs d'onde de Moeller

(2.1)
$$W^{\pm} = s - \lim_{t \to \pm \infty} e^{itH_{A,V}} e^{-itH_0}$$

existent et sont complets.

Malheureusement, l'exemple dans \mathbb{R}^2 des champs magnétiques à support compact et à flux total non nul, (modèle mathématique du phénomène Aharonov-Bohm!), laisse entrevoir l'insuffisance de la remarque précedente : en vertu du théorème de Stokes, un tel champ engendre un potentiel magnétique A qui ne peut dépasser la décroissance coulombienne, $(\rho = 1)$, et donc a priori A est à longue portée.

Cependant, via une condition de jauge appropriée, sous des hypothèses assez faibles de décroissance du potentiel magnétique, on a le résultat suivant :

Théorème 1

On suppose vérifiées les hypothèses (H_1) , (H_2) avec $\delta > 1$, $\rho > \frac{1}{2}$. On suppose de plus que A vérifie la condition de transversalité :

$$A(x).x = 0 , \forall x \in \mathbf{R}^n.$$

Alors: les opérateurs d'onde W[±] existent et sont complets.

Ce choix de jauge fut introduit historiquement par Uhlenbeck, ([UH]), et détermine entièrement le potentiel A à partir du champ B:

(2.2)
$$A_{j}(x) = \sum_{k=1}^{n} a_{jk}(x).x_{k}$$

οù

(2.3)
$$a_{jk}(x) = -\int_0^1 s \ b_{jk}(sx) \ ds$$

Le théorème 1 fut d'abord démontré par Perry, ([PE]), dans le cas particulier d'interactions magnétiques radiales, puis par Loss et Thaller dans le cas général, ([LO-TH]), en utilisant une méthode dépendant du temps due à Enss, ([EN1]).

Dans ([NI-RO]), nous proposons une nouvelle démonstration de ce résultat à l'aide d'une méthode stationnaire due à Isozaki et Kitada, ([IS-KI]). Cette approche a l'avantage de fournir des informations sur les matrices et l'amplitude de diffusion.

Enfin, signalons que très récemment, V. Enss généralisa le théorème 1 en incluant des potentiels électrostatiques à longue portée, ([EN2]).

Sous les hypothèses du théorème 1, on définit l'opérateur de diffusion :

$$(2.4) S_A = W^{+*} W^-$$

qui se diagonalise dans la représentation spectrale de H_0 pour définir les matrices de diffusion, (opérateurs unitaires sur la sphère) :

$$(2.5) S_A(\lambda) : L^2(S^{n-1}) \longrightarrow L^2(S^{n-1})$$

Le noyau de $S_A(\lambda)-1$, noté $T_A(\lambda)$ (ω,ω') , où $\omega,\omega'\in S^{n-1}$, est appelé amplitude de diffusion.

En 1985, Isozaki et Kitada, ([IS - KI]), ont montré que, dans le cas $A \equiv 0$ et $\delta > 1$, l'amplitude de diffusion est de classe C^{∞} en dehors de la diagonale et vérifie l'estimation :

$$(2.6) |T_0(\lambda)(\omega,\omega')| \le C |\omega-\omega'|^{-n+\delta_0}$$

où $\delta_0 < min(n, \delta)$, la constante C dépendant de δ_0 .

Dans cet exposé, nous nous proposons de démontrer le résultat suivant :

Théorème 2

(i) Sous les hypothèses $(H_1)-(H_3)$ avec $\delta>1$, $\rho>\frac{1}{2}$, l'amplitude de diffusion est de classe C^{∞} en dehors de la diagonale et vérifie l'estimation :

$$|T_A(\lambda) (\omega, \omega')| \leq C |\omega - \omega'|^{-n+\mu_0}$$

 $o\dot{u} \mu_0 < min(\delta, 2\rho, \rho + 1, n).$

(ii) En particulier, $S_A(\lambda) - 1$ est un opérateur compact.

Dans le quatrième paragraphe, nous étudierons en détail le cas particulier où le champ magnétique B est à support compact, (effet Aharonov-Bohm).

3 Esquisses de démonstrations

Dans la première partie de cette section, nous allons donner une démonstration élémentaire du théorème 1, nécessaire à l'obtention d'une formule de représentation des matrices de diffusion, adaptée à notre problème.

L'idée principale de cette démonstration est analogue à celle donnée dans ([NI-RO]), mais en construisant une phase beaucoup plus simple, n'utilisant pas la théorie de Hamilton-Jacobi.

Pour plus de détails, on se reportera à ([IS - KI]), [NI1], [NI - RO]).

3.1 Démonstration du théorème 1

Expliquons brièvement notre approche; on introduit une modification des opérateurs d'onde indépendante du temps, de la forme :

$$(3.1) W_{\Phi}^{\pm} = s - \lim_{t \to +\infty} e^{itH_{A,V}} J_{\Phi} e^{-itH_{0}} E_{H_{0}} (\theta, \infty)$$

où $\theta > 0$ et J_{Φ} est un opérateur Fourier intégral, (O.F.I), de phase Φ et d'amplitude 1, proche de l'identité, ([RO]).

On cherche à déterminer une phase Φ de sorte que :

$$(3.2) a(x, \partial_x \Phi(x, \xi)) - \xi^2 = O\left(\langle x \rangle^{-1-\epsilon}\right), \quad \epsilon > 0$$

dans des zones entrantes et sortantes de l'espace des phases, où

(3.3)
$$a(x,\xi) = (\xi - A(x))^2 + V(x)$$

est le Hamiltonien classique du système.

Pour (x, ξ) dans une zone sortante, (par exemple), l'hypothèse (H_3) permet de définir :

(3.4)
$$c_A(x,\xi) = -\int_0^{+\infty} A(x+t\xi).\xi \ dt$$

circulation de la 1-forme A le long de l'orbite $t \to x + t\xi$. Un calcul trivial nous donne :

(3.5)
$$\partial_x c_A(x,\xi) = A(x) + R(x,\xi)$$

où
$$R(x,\xi) = O(\langle x \rangle^{-\rho})$$
 et vérifie $R(x,\xi).\xi = 0$

On définit la phase Φ sur les états sortants par :

(3.6)
$$\Phi(x,\xi) = x.\xi + c_A(x,\xi) ,$$

phase qui vérifie

(3.7)
$$a(x, \partial_x \Phi^+(x, \xi)) - \xi^2 = V(x) + R^2(x, \xi) = O(\langle x \rangle^{-1-\epsilon})$$

En utilisant la même méthode que ([IS-KI]), on obtient facilement l'existence et la complétude asymptotique pour W_{Φ}^{\pm} .

Passons maintenant à la démonstration du théorème 1. Notons

$$(3.8) l_{jk}(x,\xi) = x_j \xi_k - x_k \xi_j$$

appelés moments cinétiques. On remarque que :

(3.9)
$$c_A(x,\xi) = -\frac{1}{2} \sum_{j,k} \int_0^\infty a_{jk}(x+t\xi) . l_{jk}(x,\xi) dt$$

et par conséquent, sur les espaces où les moments cinétiques sont bornés,

$$\Phi(x,\xi) - x.\xi = O(\langle x \rangle^{-min(1,\rho)}).$$

ce qui montre que, sur de tels espaces, J_{Φ} est une perturbation compacte de l'identité. On en déduit par densité :

$$(3.10) W_{\Phi}^{\pm} = W^{\pm} E_{H_0}(\theta, \infty)$$

Pour de plus amples détails, on se reportera à ([NI-RO], [NI1]). Le théorème 1 découle alors immédiatement de (3.10), de l'existence et de la complétude asymptotique de W_{Φ}^{\pm} . \square

3.2 Formule de représentation des matrices de diffusion

Nous suivons la même approche que celle de ([IS - KI]), avec une microlocalisation très légèrement différente, ([NI1]).

Rappelons brièvement de quoi il s'agit. On notera $J(d, \Phi)$ l'O.F.I de phase $\Phi(x, \xi)$, d'amplitude $d(x, \xi)$, ([RO]).

On cherche à déterminer deux O.F.I $J(d_{j,A}, \Phi_j)$ notés par la suite $J_{j,A}$, entrelaçant $e^{-itH_{A,V}}$ et e^{-itH_0} dans de grandes régions de l'espace des phases, où Φ_j est solution de (3.2) et à support convenablement choisi. Un calcul trivial nous donne :

(3.11)
$$H_{A,V}J(d,\Phi) - J(d,\Phi)H_0 = J(c,\Phi)$$

οù

(3.12)
$$c(x,\xi) = [V(x) + R^{2}(x,\xi) - i \operatorname{div}R(x,\xi)] \cdot d(x,\xi) - 2i [\xi + R(x,\xi)] \cdot \partial_{x}d(x,\xi) - \Delta_{x}d(x,\xi)$$

On cherche l'amplitude sous la forme $d(x,\xi) \sim \sum_{m=0}^{+\infty} d^m(x,\xi)$, $d^0(x,\xi) = 1$, de sorte que $c(x,\xi) \sim 0$.

On résoud pour cela les équations de transport :

(3.13)
$$(\xi + R(x,\xi)) \cdot \partial_x d^m(x,\xi) - \frac{1}{2i} [V(x) + R^2(x,\xi) - i \operatorname{div} R(x,\xi)] \cdot d^{m-1}(x,\xi)$$

$$+ \frac{1}{2i} \Delta_x d^{m-1}(x,\xi) = 0 \quad \text{pour } (x,\xi) \in \Gamma^{\pm}.$$

On obtient aisément les estimations suivantes :

$$(3.14) |\partial_x^{\alpha} \partial_{\xi}^{\beta} d^m(x,\xi)| \le C_{\alpha\beta m} < x >^{-|\alpha|-m(\mu-1)} < \xi >^{-1}$$

où $\mu = min(\delta, 2\rho, 1 + \rho)$.

Les amplitudes $d_{j,A}$ sont obtenues à partir des $d^m(x,\xi)$, à support dans des zones convenables. De façon analogue à (3.10), on a :

(3.15)
$$W^{\pm} E_{H_0}(\theta, \infty) = s - \lim_{t \to \pm \infty} e^{itH_{A,V}} J_{j,A} e^{-itH_0} E_{H_0}(\theta, \infty)$$

On déduit alors de (3.15) une formule de représentation des matrices de diffusion; On notera pour cela :

$$T_{j,A} = H_{A,V}J_{j,A} - J_{j,A}H_0$$

 $\Gamma_0(\lambda)$ =opérateur transformée de Fourier composé avec l'application trace sur la sphère. $R(\lambda+i0)=s-\lim_{\epsilon\downarrow 0} (H_{A,V}-\lambda-i\epsilon)^{-1}$ donnée par le principe d'absorption limite.

On a alors la formule de représentation, ([IS - KI], [NI1]) : $\forall \lambda \geq \sqrt{\theta}$:

$$(3.16) S_A(\lambda) - 1 = B_A(\lambda) + C_A(\lambda)$$

οù

(3.17)
$$B_{A}(\lambda) = -2i\pi \Gamma_{0}(\lambda) J_{1A}^{*} T_{2A} \Gamma_{0}^{*}(\lambda)$$

(3.18)
$$C_A(\lambda) = 2i\pi \Gamma_0(\lambda) T_{1A}^* R(\lambda + i0) T_{2A} \Gamma_0^*(\lambda)$$

Remarques

De la même façon que dans ([IS-KI]) on peut montrer que $C_A(\lambda)$ est un opérateur à noyau C^{∞} sur $S^{n-1} \times S^{n-1}$.

De même, $B_A(\lambda)$ est un opérateur à noyau C^{∞} en dehors de la diagonale et son noyau est donné par :

$$(3.19) \ B_A(\lambda) \ (\omega,\omega') = \lambda^{\frac{n-2}{2}} \ \int_{\mathbb{R}^n} e^{-i \ [\Phi_1(x,\sqrt{\lambda}\omega) - \Phi_2(x,\sqrt{\lambda}\omega')]} \ c_{2,A}(x,\sqrt{\lambda}\omega') . \overline{d_{1,A}(x,\sqrt{\lambda}\omega)} \ dx$$

où $c_{2,A}$ est donnée par (3.12) avec les notations évidentes.

Notations

Nous noterons $S_0(\lambda)$, (resp. $B_0(\lambda)$, $C_0(\lambda)$) les quantités données par (3.16), (resp. (3.17), (3.18)), dans le cas $A \equiv O$.

3.3 Comparaison des matrices de diffusion $S_A(\lambda)$ et $S_0(\lambda)$

Dans cette section, nous nous proposons de démontrer le théorème 2. L'idée de base consiste à considérer $S_A(\lambda)$ comme une perturbation de $S_0(\lambda)$. D'après la remarque de la section précédente et (2.6), il suffit d'étudier l'expression $B_A(\lambda)$ $(\omega, \omega') - B_0(\lambda)$ (ω, ω') , et on a :

$$(3.20) |B_0(\lambda) (\omega, \omega')| \leq C |\omega - \omega'|^{-n + \delta_0}$$

En utilisant l'estimation (3.14) sur les fonctions $d^m(x,\xi)$, on montre l'estimation suivante :

$$(3.21) B_A(\lambda) (\omega, \omega') = B_0(\lambda) (\omega, \omega') + O(|\omega - \omega'|^{-n+\mu_0})$$

où $\mu_0 < min(\mu, n)$. Le théorème 2 en découle. \square

4 Phénomène de Aharonov-Bohm

Dans cette section, nous utilisons les résultats précédents pour faire apparaître le phénomène de Aharonov-Bohm sur l'amplitude de diffusion. Ce sujet fut récemment abordé par S.N.M. Ruijsenaars, ([RU]) dans un cas particulier : n=2, $V\equiv 0$, interactions magnétiques radiales à support dans la boule B(0,R).

Dans ce qui suit, nous allons préciser cela dans un cadre plus général. Nous supposerons que le champ magnétique vérifie :

$$(H_4) B \in C_0^{\infty}(\mathbf{R}^n) et est radial$$

On vérifie facilement que le potentiel A associé à un tel champ est à décroissance coulombienne, (i.e A vérifie (H_2) avec $\rho = 1$).

On peut montrer le résultat suivant :

Théorème 3

Sous les hypothèses (H_1) , (H_3) , (H_4) avec $\delta > 1$, pour (ω, ω') proche de la diagonale,

$$(4.1) T_A(\lambda) (\omega, \omega') = e^{-i \Phi_B(\omega, \omega')} T_0(\lambda) (\omega, \omega')$$

où $\Phi_B(\omega,\omega')$ représente le flux du champ magnétique à travers le secteur angulaire $(0,\omega,\omega')$.

On en déduit aisément :

Corollaire 4

Sous les hypothèses du théorème 3,

(i) en dimension n=2:

$$(4.2) T_A(\lambda) (\omega, \omega') = e^{-i\Phi \frac{P(\omega - \omega')}{2\pi}} T_0(\lambda) (\omega, \omega')$$

où $\Phi = \text{flux total du champ magnétique et où l'on a identifié } S^1 à <math>(-\pi, \pi)$, P(.) étant la détermination principale de l'angle.

(ii) en dimension $n \geq 3$:

(4.3)
$$T_A(\lambda) (\omega, \omega') = T_0(\lambda) (\omega, \omega')$$

Remarques

Le corollaire 4 montre donc que l'effet Aharonov-Bohm est indécelable sur l'amplitude de diffusion, dans un voisinage de la diagonale, en dimension $n \geq 3$.

Par contre, en dimension 2, il apparait comme une perturbation de phase de $T_0(\lambda)$ (ω, ω') , résultat obtenu par S.N.M Ruisjenaars, ([RU]).

References

- [AH-BO] Y.Aharonov D.Bohm: Significance of electromagnetic potentials in the quantum theory, The physical review, second series Vol. 115, n°3, (1959).
- [EN1] V.Enss: Long-range scattering of two-and-three body quantum systems, Actes des journées équations aux dérivées partielles, Saint Jean de Monts, pp. 1-31, (1989).
- [EN2] V.Enss: Quantum scattering with long-range magnetic fields, To appear in the Birkhaüser Series Operator Theory, advances and applications.
- [IS-KI] H.Isozaki H.Kitada: Scattering matrices for two-body Schrödinger operators, The University of Tokyo, Vol. 35, n°2, pp. 81-107, (1985).
- [LO-TH] M.Loss B.Thaller: Scattering of particles by long-range magnetic fields, Annals of physics 176, pp. 159-180, (1987).
- [NII] F.Nicoleau: Matrices de diffusion pour l'opérateur de Schrödinger en présence d'un champ magnétique Phénomène de Aharonov-Bohm, Preprint Université de Nantes, (1993).
- [NI2] F.Nicoleau: Approximation semi-classique du propagateur d'un système électromagnétique et phénomène de Aharonov-Bohm, Helv.Phys. Acta., Vol. 65, pp. 722-747, (1992).
- [NI-RO] F.Nicoleau D.Robert : Théorie de la diffusion quantique pour des perturbations à longue et courte portée du champ magnétique, Annales de la faculté de Toulouse, Vol. XII n°2, pp. 185-194, (1991).
- [PE] P.A.Perry: Scattering theory by the Enss method, Mathematical Reports Series, Vol. 1 part. 1, Harwood Acad. Publishers, (1983).
- [PE-TO] M.Peshkin A.Tonomura: *The Aharonov-Bohm effect*, Lectures notes in Physics, Springer-Verlag, (1989).
- [RO] D.Robert: Autour de l'approximation semi-classique, Progress in Mathematics, Vol. 68, Birkhaüser, Basel, (1987).
- [RU] S.N.M.Ruijsenaars: The Aharonov-Bohm effect and scattering theory, Annals of Physics 146, pp. 1-34, (1983).
- [UH] K.H.Uhlenbeck: Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83, pp. 11-29, (1982).