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REGULARIZING ESTIMATES FOR SCHRODINGER
AND WAVE EQUATIONS
By Alberto Ruiz
§1. INTRODUCTION. Let us consider the initial value problems

f L^{x,t) = F(x,t), ( a • ,< )6R n xR,
1 ' ; f u(x,0)=0.

where L\ denotes the time dependent Schrodinger operator i9t + Ar,
and

{ L-iU-2{x,t}= F(a;,<), (a•,()€RnxR,
(1-2) U2(;r,0)=0

5<U2(a?,0)=0,

for L<i the Wave operator 9u + A^.
We define the Morrey-Campanato class L"^,? ̂  n/a,a > 0 as

(1-3) L°-P = {V € L^ such that ||y||a,p == sup^^r-" t \V{x}\^dx)1^} < oo}.
r,xo JB(xo,r)

We prove weighted estimates for solutions of the problem (1-1), more precisely:
THEOREM 1
Let Ui be a solution of (1 — z), i = 1,2 and V a non negative function such that sup^ V

is in the class L2^ withp > (n—l)/2, n > 3ythen there exists a constant C only depending
on n such that the following a priori estimate holds

/* /•+00

(1-4) sup R-1 \ \ ^u^dtdx < C\\ ̂ V\\^\\F\\^y,^
XQ,R JB(xo,R) J-oo <

The last inequality can be understood as a smoothing effect for the non homogeneous
equation, with a gain of one half derivative and a gain of one half derivative in the Lf
spaces gap. This can be easily seen in the weaker case p = n/2 which corresponds with V €
I ^ ' ^ L ^ ) ; by duality we can prove the following estimate (in the case of the Schrodinger
operator see [RV2])

(1-5) IIPW-HIL = sup - / F \Dyu^dtdx < C\\F\\2^^
xo,R^ JB(XO,R)J-OO '

with — — — == — and n > 3.q 2 n "~
Similar estimates have been obtained in [KPV] for the wave equation, with gain of

one derivative and with non homogeneous term F in .Z^da'lda:). Also other kind of mixed
norm inequalities has been obtained by [H],
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As in [RV2], these inequalities are consequence of a similar one for Helmholtz equa-
tion:

THEOREM 2 Let u be a solution of

Au + (r + ie)u = / x € R",

where c > 0, and let V(x) 6 L2^ with p > (n - l)/2,n >: 3.
Then there exists a constant C > 0, independent of r and e such that

(1-5) sup(- / \D\/W2 ^ C\\V\\^\\f\\^y,^
XQ,R ^ JB(xo,R)

Meanwhile the L2 estimates are consequence of traze type lemmas (see [AH]), the
present ones involve curvature of the zero set of the symbols and can be seen as consequence
of some type of restriction theorems for the Fourier transform.

In the case of the Schrodinger equation, (1-2) can be used in a perturbation argument,
obtaining the following theorem wich is an improvement of theorem 1.1 in [RV2]:

THEOREM 3 Let V be a potential in R'1 x R,n > 2, which can be written as
V(x,t) = V^x.t) + V^x.t) with sup^TT\ \Vi | € L2^? > (n - 1)/2, ̂  € L^^T.T] :
LT\ r > 1

and || sup^f_j. r^ |yi|||2,p small enough.
Then there exists a unique solution u(x^t) of

f i9fu + A^u + V(x,t)u =0 (x,t) € R" x R
v ) \u(x,0)=UQ(x).

such that

(1-7) h||L2(Rnx[-T,ri,|Vi(z,()|drd<) + SUp ||u(., <)||^2(Rn) < C(T)\\UQ\\^(^).
\t\<T

Moreover,

m

(1-8) \\\Dyu\\\^ = sup - / / ^ufdtdx < C(T)\\u4i^ny
xo,R K JB(XQ,R) J-T

If V^ = 0, T can be taken to be oo and C(T) independent of T.
Let us remark that this class of time independent potential contains the functions

in the Lorentz spaces JD"/2^00 with small norm. Also some functions like (l/l.z:!2)/^/!;!;))
for / € I^S'1"-"1) with p > (n - 1)/2 and small norm and V € I^^Z^), without any
restriccion on the size of its norm, are included in the statement of the theorem.

Theorem 3 (smoothing effect for the initial value problem) has been obtained in the
free case V = 0 by [S], [V], [CSl] and for potential with more restrictive conditions that
in our statement by [SSj], [CS2], and [RV2].
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This kind of smoothing effect was firstly observed by [K] in the case of the non linear
KDV equation, and plays an important role in the proof of well posedness of some linear
and non linear equations (see [S], [KPV]). For similar identities see [LP].

In section 2 we prove Theorem 1, as consequence of theorem 2 and some estimates for
solutions of the the initial value problem for the homogeneous equation. In section 3 we
outline the proof of theorem 2. In section 4 we prove theorem 3 .

These results are a summary of joint work with Luis Vega. An expanded version will
appear elsewhere. Notation

(F(a;,.)^T)=;_o^e-«•<rF(a•,<)A,
(F^t)r^)=f^e-^F(x,t)dx.
F(^, r} will be the whole Fourier transform.
S^~1 and da~r the euclidean sphere of radius r and its measure.
7°7 will be the fractional integration defined by (I0/)^) = ^""/(^O < a < n.
D^f will be the fractional derivative, (P^/)^) = l^l3/^).. Sometimes we write

I0 = D^
3s f will be the Bessel potential, (JV)'(Q = (1 + l^l2)-'/2/^), 0 < s < n.
\\WT = ̂ P^R -k fB(^R) & Wdtdx.iiWoo = sup,̂  ̂  ;̂ ^ f°^ wdtdx.
in/ill2 ̂ P^*JB(^) i^i2^
§2. PROOF OF THEOREM 1
The proof is based upon representation formulas for solutions of problems (1-i) and

some, more or less known, a priory estimates for solution of the initial value problems:

/2^ (Liu^x,t)=0 x^Rn,t>0,
1^(^,0)=/i,

and

{ L2Ut(x,t) = 0 a;€R",*>0,
(2-2) U2(.r,0)=/i,

5<"2(a;,0)=/2.

Let us denote

{ Sfi (x,t) = e'^/i, the solution of (2,1);
(2-3) Wifi (a;, <) = a^^^/i, the solution of (2-2) for ft = 0,

W2f2(x,t) = ̂ ^D^^the solution of (2-2) for /i = 0

Proposition 2.1: Let da be the uniform measure on the unit sphere S""1 and da its
Fourier transform, let V € L2^ with p> (n- 1)/2, n > 3, and consider the operator

Tf{x) = da * /(a-).
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Then there exists a constant C such that

\\Tfhw^C\\V\\^\\f\\mv-^

for any f in C^°.
Proof: See [RV1].
Proposition 2.2: Let fji be an L2 density on S""1, consider the extension operator

E^x) = ̂ daY(x)

and V as in Proposition 2.1 then there exists a constant C, independent of p. such that

\\E^(V) ^ c'diyii^^iHi^sn-t)

Proof: By duality it reduces to

/ JEVI2^ = / l/l2^ =/ / ( / * (d<rn
Js»-1 Js"-1 J

^mkpll/lliw.)-!)
where we have used Holder inequality and Proposition 2.1.
Proposition 2.3: Let y(a;,() as in theorem 1, and 7 >, —1/2, then the following a

priori estimates hold:

(2-4) \\sfi\\^v^t) <. (^supyii^ii/iii^,

(2-5) WW,h\\L.(v^) <. C'||supy||;/;|p^+l/2/l||̂ ,

(2-6.) mW^\\mvd.dt) <. C\\s^yV\\^\\D^l/2f2h^

Proof: Let us consider first estimate (2-4). Using polar coordinates and a simple
change of variable we can write,

(2-7) e^UQ= Fe^ f e"^o(0 ,̂(0dr
Jo Js?-1

= 1/2 r e^ I e^Wda^)s-^ds
Jo J s " - 1

v
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Taking supremun in t and using Plancherel, we have

IWII^(w^t) < C t ( I00 | / e-^/i^d^OI^-V^^supy^,^
JR" JO JS^1 <v/7

^C{F I I/ e^/i^^oi^upy^,*)^-1^)
Jo JR» Js?-1 «

^ q| supy||2,p( /00 / W^da^dr)
t JO JS?-1

=q|s^py||2,,||/i||^(Rn)

The last inequality follows from Proposition (2.2). Let us go to (2.5) and (2.6). From
(2-3), since all the operators in the statement commute, we may reduce to prove

(2-8.) We-^f^vd.dt) < c\\ s^pyii;/;!!^1/2/!!^,

As in the above case we may write

Dy^f = /°° e^ I e^/(OA7,(Odr,
Jo Jsy1

Then the proof follows as in the Schrodinger case.
Proposition 2.4: The following inequalities hold

(2-9) \\\D^Sf^<C\\f\\L^

(2-10) |||25?^i/ii||oo<q|^/i||L^

(2-11) \\\D^f^<C\\D^lf2h^

Proof: It is similar to the proof of Proposition 2.3 , just use theorem 2.1 in [AH]
instead of Proposition 2.2.

Remark on dual operators,
We can obtain easily the following formal expresions for the dual of the above opera-

tors: ^
S-F(x)^ I S{F^t))^x)\^dt

J—00

W^F(x) = F Wi{F(.,t)){s,x)\^dt,i == 1,2.
J—00

By duality we can prove the following estimates, with C independent of T
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(2-4*) || F5(F(.,<))(.,;r)|^|| < C\\ sup y||̂ ||F||L.(R"><[o;n,v-î ),
Jo v ' <e[o,7]

(2-5*)
/y-»

ll^-1/2/ W,{F^t})^x)\^dt\\ ^C\\ sup ^ll^ni^dt-xto.Ti.y-^t),
jo t€[o,r|

(2-6*)

H^2 r^(F^t))(s,x)\^dt\\ <c\\ sup yil̂ liriî ^o,̂ -^),
Jo <e[o,r]

Next lemma gives a representation of the solutions of problems (1.1) and (1.2), in
order to discribe it, let us take the solution to the corresponding equations obtained by
taking whole Fourier transform :

">(-.') -^a^w^i^'
and ^-^j/^^y^y^-
Lemma 2.5: The solutions of problems ( 1 . 1 ) and (1.2) can be written as:

v,i{x,t) = Vi(x,t) + Ri{x,t)

where
RI = S(S*(G)) and R-i = (W^ + W^W^{G\

for G(x,t) = sigtF{x,t) .
Proof: The case of Schrodinger equation can by seen in [RV2].
For the wave equation , since ua is a solution of the equation, the remainder term is

given by
R^x, t) = Wi(u2(., 0))(a-, t) + W^v^., 0))

But

^^^f/^^^^r

=^|S^(wSwJ^dTd^
/ r e^ r e^

= 1/2^ ^F(̂ )|r1 ( / î  _ (^ i^ + / ,̂  (^ ̂ rdtd^

= S e^^Qe^sigtF^d^dt.
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Similar calculations for QfV^x.O) give the result.
End of proof of theorem 1:
The bound for R^ is a consequence of lemma 2.5 , (2.4*) and (2.9).
For J?2 use the lemma, (2.5*) and (2.11), (2.6*) and (2.10).
Let us proceed to bound v,. Recall

.̂,(.,<)=.̂ yJ.i•<-|̂ ,̂
then, by Minkowsky integral inequality, Plancherel identity in <, we have

III // l̂ i'̂ ^ ̂ '̂ "WIloo

= ^/_7111 /^ i^1!11^ .^(.^no îii2^)1/2.
Theorem 2 and Plancherel give

( r ||supy||^ / K^^.^Ml^supy^,*))-1^^)172
W-oo t JK^ t )

((2.12))

^ ^00 \ 1/2

||supV||^ / IF^.^I^supy^,*))-1^)
L" t J-oo t /a ^oo v 1/2

< l|supy||2,p/ IF^,*)!^^,^1^^)
L" t J-oo /

For v^ similar argument work.
§3.
We are going to outline the proof of theorem 2. For the complete proof see [RV3].
By homogeneity of the inequality we may reduce to the case r = 1.
Also, by dilation invariance we assume XQ = 0.
Take

1/11/2 °°m^)= i^'Ji.^ = E ̂ (0^(0 + ̂ °o(a
1 1 7=0

where the functions ^jj = 1,... are given by ^-(^) = ^(2^|), for a cutoff function ^
supported on {t € R : 1/2 < t < 2} and aj is a symbol of zero order bounded by CV.

The terms j = 0 and j == oo can be bounded by using the results on fractional integrals
and Holder inequality (see [FP],[ChF]).

A partition of unity in the Fourier transform side, together with the invariance by
rotations, allow us to assume that

(3-1) suppf C {(^i,0 € R x R"-1 : l^j < l/4^i}.
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By taking 6 = V everything is reduced to the following
Lemma 3.1 For 6 a possitive number , m(^) a C^° function supported on {^ : 1 - 8 <

j ^ j <; 1 -(- ^J and V 6 'L2^ ,then there exists a possitive T) and a constant C, such that the
following inequalities hold for any function satisfying (S.I):

(3.2) /orp=(n-l)/2J|| / e^m^f^\\\ < ̂ IZo^KHy^^^^H/ll^tv-id.).
J^

(3.3) forp> (n - 1)/2, III / e^m^f^d^ < ̂ ^(liyH^^^^II/llL^v-^).
JR'*

Proo/: Let us denote a; = (0:1,^) € R^ € R'1"1.
By using Plancherel in a;' we have

[ R I \ 1 eir/^+ia;l^m(0/(0^|2^l^
JO JR"-1 JR"

13

= / / | / e•^^lm(0/(0^l|2^d.rl.
JO JR"-1 JR

Define

(^J)(^)= / e^^m^AO^i-
JR

We prove that T^ : L2(Y~ldx) -» ̂ (d^), and

(3.4) \\T^(V-^)^L^') ̂  C8^\\V\\^ ifp>(n- 1)/2,

(3.5) ||T.J|^(v-td.)-.^W) ^ CS\logS\\\V\\2,p, ifp=(n-l)/2,

with (7 independent of x\.

(3.6) /' |T,J(^)|2 '̂ = yr.J(OT.J(0< = ̂  /(!/)Qx,(y)dy,

where

Q,J(y) = T:JT.J )̂](!/)

(3.7) = L'^-'^-^'m^O// e'^MOAO^i^i^-

Use Holder inequality in (3.6) and obtain

r / r V2/ r N172y iT.ĵ ))2^ < [y lAy)!2^-1^ [y lo^/i2^^ ,
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hence it suffices to prove

(3.8) \\Q..f\\L^V(y)dy) <. C\\V\\^\\f\\^(V-.dy)^\ tor p > (n - 1)/2,

(3.9) ^ q|y||2,p||/||̂ (v-^)^W|, for p = (n - 1)/2,

We may write

Q.JW) = fP^-y^^f^^e-^-^^d^1,

where
P(*i,Ci,0 = ̂ (^Oe-^1 f e^m^^drji.

From the support propperties of m , we may write, for a function <^ supported in [—2,2]
and identically 1 in [—1,1]

P( î -!/l,^i,0 = m(^,^)/^(^)e'^-^^m(Ci +Cl,e')^l

=m(^,0(m(0+^,0^))^i-yi)

(3.10) = Cm^.O^^^ma.),^))^)^ 6^6z,)\x, - 1/1),

Now we take an appropriate decomposition of Q^, and use real interpolation in each piece
to obtain (3.9) and (3.8), in a similar way as we did in [RV],

§4.PROOF OF THEOREM 3
We need the following
Proposition 4.1 Let u be a solution of the Selmholtz equation

(4.1) Au + (r + ie)u == / e > 0.

and V(x) non negative in the class L2'^, with p > (n — 1)/2. Then

IHk )̂ ^ c\\v\\^\\f\\^y-^)

proof See [CS], [ChR].
Proposition 4.2£e< u be a solution of

(4.2)
iQtU + Au = F

u{x,0) =0.

and V{x^t) such that sup^ro 'p»i V(x,t) € L2'7',? > (n — 1)/2 r^en

(4.3) \\U\\L^(R"x[0,T\,Vdxdt) <: C\\ SUp y||2,p||^||£2(R» x[0,Tl,V-^dxdt)-
te[o,Ti
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Proof:
We use the representation formula lemma 2.5. -Ri is bounded by (2.4) and (2.4*). The

boundedness of the main term v\ follows, as in the proof of theorem 1, by proposition 4.1
End of proof of theorem 3:
We must establish the solvability of (1.6), we make use of Duhamels formula,

rt
(4.4) u = e^uo + i / (e^- l̂̂ ., 5)<, s))(x)ds.

Jo

Define the operator T and the space of functions XT by

(4.5) TF{x, t} = i /'(e^-^yC, .)F(, s)){x)ds,
Jo

XT = {F : \\F\\xr = max(||F||^(Rnx[o,Tl,|Vi|^t), sup ||F(.,<)||̂ ) < oo}.
W<T

In order to establish the solvability of (1.6) it will be sufficient to prove that e^UQ e XT
provided that UQ G L^IU1) and to find and inverse in XT of (J— T). The bound of C^UQ
is a consequence of a version for finite t-intervals of (2.4) and the fact that the || ||2 is
preserved.

Now take F G XT' Use proposition 4.2 and 2.4 in (4.5) to obtain,

\\T(F)\\L2(^n^T\^\dxdt)

<C\\ SUp |Vl|||2,p||Vl^||L2(Rnx[0,ri,|Vi|-l^dt)
t€[0,T]

+ 1 1 sup IVilll^^ll^G^)^.^)!!^^)^
<e[o,T] J-T

<C\\ SUp |Vl|||2,p||^||L2(R-x[0,ri,|Vi|d^t)
t€[o,ri

+ 1 1 sup IVilll^C^^ll^llL-a-T^:^) sup ||F(.,^)||̂ (R.)
t€[0,T] H<T

(4.6) <G(|| sup |yi|||2,p+|| sup IVilll^^ll^llL-a-T^:^))^^.,
te[o,T] t€[o,ri

Now using (2.4*) and that the [| [[2 of the free propagator is preserved we have

SUP ||TF(.,f)||^(Rn)

W<T
rp

< C\\^np Î IIÎ IIVî ll̂ Rn,̂ ^-^^) +y^||V2(.,^(.^)||^(R")^

<C'(|| sup IVilll^+^/'-'li^llL.a-T.ri:^))^^^
t€[0,T)
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Hence choosing || sup^rg^ |^i|||2,p and T small enough we conclude that the operator
norm of T is less than one. Hence (J — T) has an inverse. Repeating this procedure we
establish the solvability of (4.4) for T arbitrarily large.

Now we are prepared to obtain the desired bound (1.8) for [HjD^^ulH. Using in
DuhamePs formula (4.4), (2.9) and theorem 1, we have

\\\Dyu\\\T
m

^ML'+C'|| sup |Vi|l|^||Vi"||^(B.»x[o,7l,|v»|-i^t)+/ \\V^s)u{.,s)\\^n)ds
<€[0,T| J-T

< ML'+C'II SUp V^\\\^\\U\\^(^^Q,T\,\V^dxdt)
t€[0,Tl

+CTl/rt\\V^Lr([-T,T^•.Lr)SUp\\u(.,s)\\^(Iin)
s

< C(T)\\u\\x.
< C1ML2(Rn).

The proof is over.
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