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FOCUSING AND ABSORB 11 ON OF NONLINEAR OSCILLATIONS
J . L . J oly? Univ. de Bordeaux
G . Me t i v i er < Un i v . de? Rennes
J. Rauch? . U n i v . of Michigan

The subject of this talk is the propagation of noni i r»(-5{

osci l lat ions across /ocal paint s • l^hen rays converge near a

focus? amplitudes grow. These large amplitudes can lead to more

s t tong ly nonlinear phenomena than in other regions.

(Je consider focusing leaves in the regime of nonlinear

geoemtric opt ics which is character ized by the fact that the

prinicpal profi le satisfies a nonlinear equation. For the

send linear wave equation

Du ^- F ( Du ) =- 0 ? ( 1 5 x ) c= [RxtR

this means that the amplitude and wavelength are of order .£ as

c.—^ 0. For piecemse smooth conormal solutions the analogous

strength of waves occurs for solutions whose gradient is

discontinuous. For smaller arnplitudes or smoother conormal

solutions? the principal profile (resp. prinicipal symbol)

satisf ies a li'ne^ar equation.

The nonlinear effects can lead to catastrophic breakdown of

solutions CJMR23. l̂ e consider problems for which solutions are

guaranteed to exist for all t^O? in part icular? long enough fen

oscil lations to cross focal points.

Consider the dissipative wave equation

1 ) 0 ^ D-A + F(u ) , F < s ) z = as ls l^ ? p'Z2? a>0.
0

For Cauchy data ^^(Op^e.H ° (IP .) j==0. : l? there is a unique\/

s o l u t i o n

u ~ C < C 0 , a.C ; H1 ([F^d ) ) n C J ( C 0 , a»C ? L2 < [Rd ) )
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and the evolution is contractive in the sense that -Tor two
solutions u and v

i f~^ f-^
2> ;rr f<^4-~v ) + |V < u - v ) | dx = - f ( u - v . ) ( F < u , )-F < v , ) ) dx <. 0.

0 </ •" L v X *' t L "L L

we study spherical wavefronts which -focus at the origin. The

goal is to describe what is observed after the focus. The

analogous problem for general caustics is open? but formal

calculations suggest that the phenomenon we describe extends to

that case.

we first present computations which motivate the results and

a part of the proof. They also suggest some? as yet unproved?

results concerning the smoothing of focusing conormal wavefronts

for strongly dissipative equations.

Linear spherical wavefronts.

For incoming Linear geometric optics solutions of DU=O?

i ( t+ - r ) / ^ r , , , . ., - (d- l ) /a )e < f < t +r 9 x / | x | ) r 4. , , , i

the outgoing wave is given by

i ( t - r ) / ^ f . , , < d - l ) / a - , . ., ,, - < d - l ) / 2 }e -( ( ~ 1 ) f < t - r 5 - x / I x | ) r -» ' - • v

The formula is interpreted as fol lows. Conservation of energy

implies that r ^amplitude is constant on rays. The rete o f

change per unit length of the phase is equal to one. Crossing the

focus there is an additional phase factor ( - 1 ) ? a

Ke1ler-Naslov index,

T ! <nn^ po! t equat i ons f or j usnps.

Consider a radial solution u ( t ? r ) of the semi linear wave equal ion

3) 0 = D-i 4- F(u ) = u ~u. - (d- l )u, / r + F(u )c v c 11 r r tj
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supposed to be piecewise smooth Nith discontinuit ies in its f i r s t

derivatives on the incoming 1 ight cone t-t-r==0? t<0.

Derivat ives in i x | > 0 of such piecemse smooth functions

are given by

d f == 2 C f 3 6 ( t + r ) -+• J:f 3h( t+r ) -+ - • <c t

^ f = 2 r f 1 6 ( t - h r ) + Cf ] h < t - + - r ) -<• - - -r r '

inhere C ^ 3 denotes the jump measured from t+r>0 to t+ - r<0? h is the

Heaviside function and the terms * • • are smoother. Then?

Hu + F (u ) =

2Cu -u 36<t -< - r ) + C < e d -2^ - ( d-1 )/r ) u + F < u. ) 3h ( t4 r ) + • • « .t- ' t ^ " f t

Set t ing the coef f i c ien t of the most s ingu la r term equal to zero

shows that u,-u^ must be continuous. Setting the coefficient ofc \

the next t e r m equal to zero y i e lds

(2(3, -a^_-(d- l ) / r ) Cu,3 -+- C F ( u . ) 3 = 0.c i t t

If u is constant in front of the ^ave? then u =0 in t^r<0, and one

finds the nonlinear transport equation

^ ) ( 2 < ? . ~ S ^ - ( d - l ) / r ) C u , 1 + F ( C u , 3 ) = 0.
Xr ( l̂  C

Transport equation for oscillations.

Consider o s c i l l a t o r y asympto t i c so lu t ions

5 ) u^ v t ^v < t. r , (t+r ) /£• ) -^ ^V (t. r ? < t+r ) /-f ) 4- < < •

^ith smooth V . ( t , r . ' 9 ) ^n periodic in S. Plugging into (3) yields

Du^ + FCu^) == ( 2 ^ , 2 d - (d -1 ) / r ) ^ . V , + - F < ^ - V , ) ^ 0 (-:) .^ 'c ( c' i y i

Setting the leading order term equal to zero yields a t ransport

r o r V : = ̂  ̂ V î h i c h is identical t o (A ) ,
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6 ) ( Zf}. "Oc? " (d- 1 ) / r ) W + F ( W ) ^= 0 ,I- r

Note that 0 is a parameter and intergr r31ing the transport equation

-for U with respect to C shows that the identity JWdB=--0 propagates.

Solution of the transport equation.

Parametrize the focussing ray as ( - r ^ r ) . Thus as r decreases to

z e r o ? t==-r increases to zero and the ray approaches the oriqin,

The transport equation yields an ordinary differential

equation for w( r ? ;=Cu ( ~r ? r ) 1 or ^ ( r ) ;==i'i< -r ., r ^0 ) ?

7) Sd^/dr 4 (d- l)^/r - a^j^i13 '"2 = 0.

„. , <d - l ) /2 ,. ,.Then z »==r \^ sat isf ies

Q) Sdz/dr ~ ar^^z | z j p"'2 = O ? /3 [ = ( d- 1 ) (p £ ) /2 .

It fol lows for {3^1 that.

9) d/dr f -1 z| '^/p - ar'"^ l/(E<-/?-^l ) )1 = o.

Consider strong dissipation, that is a>0 and p^1. Then the

•JY ' dr term is not integrable at r==0. Equation (9) shoi^s that 2 ( 1 )

tends to zero as r decreases to zero.

On the other hand? for 0 < / ? < 1 » z converges to a nonzero

constant as r tends to zero.

Thus? all of the energy is absorbed by the dissipat ive term

when ft>1 and a positive fract ion survives if 0< /3<1 .

For d-=3? the condition ft^l is equivalent to p>3 i^hich

corresponds to a friction term u, |u | with at least quadratic
\r v

growth.

Explosive solutions.

If a<0» the F(u ) term supplies energy. If /^l? then solutions uf
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the equation 'for z which are nonzero for' some '" / •^ 'O explode : -.;' - . -

the ray ( -r 9 r ) reaches the origin.

Applying known results about piecewise smooth solutions ( i n

dimension 1 < 1 for radial solutions) one proves blowup theorems

^^/ors? t?^— ^av^ re-ach^s th^ /ocus.

Formal analysis after a strongly dissipative focus.

Suppose that a piecewise smooth solution survives focusing and

emerges as piecewise smooth solution in | x | >0 with discontinuities

on the outgoing light cone. Along outgoing rays one has the

transport equal ion

1 0 ) (5t).+2d «(d~l ) / r ) Cu,3 + C F < u ) 3 = 0.t r" tr Xr

The strong monotonicity o'f the dissipative p power nonlinearity

irnplies that 9

1 1 ) C u , 3 C F < u . ) 3 ^ c I C u l l^3 , c=a/EP .
L \f w

Multiply the transport equation by r Cu 3 and use

r^^Cu.K^+Sc? -<d- l ) / r ) ) C u , 3 = < a . ^ ) ( r d " l C u 3 2 )"C L r \f v r c

to find the transport inequality for ^ \^r Cu,3

IS) dF/dr + ar^KI^2 < 0, /? ! = ( d~l ) (p-S)/2.

The same analysis as for the explosive solutions shows that i f /^l

and ?, is nonzero at a point on the outgoing r a y ? then tracing

bach^ard along the ray? C must explode be/ore arri-uin^ ^t the-

foczis. Thus if the solution is piecewise smooth away from the

or ig in? one must have C^O on the outgoing ray. This pred ic ts that

t l i ^ disc ant i-nuLty ?:n 7 u is smoothed aft^r th^ ^'oc-us.
L 5 X

j-he same type of formal argument on an outgoing ra/ stiors

that J. f an oscil lation survives focusing and emerges as s iv'a.e
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^ith an asymptot ic expansion

.;." 2
u' -- < r ^ ( t , r , ( t - r ) / . £ : ) + ^ ^ ( f ,r , ( t-r ) / ^ ) -»- • —

then for /35:1 , the outgoing profile V, must be identically zero.

The two formal arguments suggest that incoming Conor-mat

singularities or oscil lations which are of cri t ical size

(discontinuities in gradient, or as in ( 5 ) ) , the nabural principal

symbol of the outgoing wave vanishes. In both cases, this is a

smooth i ng effect.

Mat n Res ul t. •

Ue prove that the smoothing effect for oscillatory solutions does

occur. More generally, we prove such a smoothing for arbitrary

families which are uniformly smooth in the angular variables. The

smoothing is expressed by the fact that families with bounded

energy emerge on the other side of the focus as families compact
in the energy norm.

An additional analysis is required to identify the strong

limits of the family, and, to show that solutions with profiles as

in <^> are described with profiles up to the focus (see C J M R 4 3 ) .

Consider a family of solutions û  of ( 1 ) with Cauchy data
^ y-

u ^ ( 0 , x ) , u . ( 0 , x ) which are of unformly bounded energy together

with their angular derivatives. Precisely, for l<k,l<d let

i3) r̂  : = x^/<^ - .^/^ ,
and, consider initial data such that the families

3 u " ( 0 , x ) , 7̂ u ^ O . x ) , and r, , 7 , u^ ( 0 , x ) , CK-^l^ • s X k ^ l t i X
^) t

are uniformly bounded in L (IR ) . Then the families

L r ( t , x ) , 7 u ^ < t , x ) , and r, , 7 , u^ < t , x ) , t>0, CK-^]^ ? X K . l O . X
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are uniformly bounded in L^(GR ) - , and

Cu'} bounded in iP ( CO T'x.CxO^ ) .\f

The fact tha t one has ex t r a r e g u l a r i t y in the angular -

d i r ec t ions forces the p r i n c i p a l d i rec t ions of p r o p a g a t i o n to be

r a d i a l . In t roduce

1 ^ ) v" :•= (^ ^ d, ̂ /a, <?, ;=| K|""1 x - ^7 .— v i i

In x^^O? the d i f f e r e n t i a l equa t ion ( 1 ) takes the fo rm

1 5 ) 2(d,±(? )v^ - <d-l ) (v^+v^)/r - Y rf .u'^/r2 + F^^) = 0.t r ± 4- - Z^ k,l ^ -

Definili.on. A bounded family z1"" in L (€?) is compact at .̂ =0 if

there is a. neighborhood cocO of ^ such that the restrictions of z'

to co lie in a compact subset of L < ' u ) .

Example. The angular regularity of u^ implies that if q^S and
;̂ Q ,;-"

x^O» then '7. u is compact in L at ( t? x) if and only if both v'"— t, x ' -- — f .4-

and v^ are compact in L at < t^ ^) .

For angularly smooth solutions? compactness of v^ propagates along

integral curves of Q ±9 until they reach the origin,\i \

THEOREM. CPropagation of compact ness 3. Suppose that u" is

angular Iv smooth family as above. If the Cauchy data v ^ ' ( 0 ? ^ ) is

2 . ^^compact in L at ^0 then v_ is compact at the points

^ ( l ^ti."1^.7 Iril ) s0^'1-'^ !^-i }' on the focuy^ing ray through ^. Similarly

€ E - ln lx

if v ( O ? * ) is compact in L at ^_^0 then v is compact at all

points ( ( t ? ^ _ ^ t ^ _ / j ̂  J ) ; O-'S't} of the outgoing ray through .̂

The rays which have passed through a focus are the ^.4-^.. rays i P.
V (
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the -Forward light cone < t > | y . j } . Our main result expresses the

fact that oscillations which may be present in the initial date do
not survive a passage through the focus.

THEOREM. <-Absorbtion of oscil lations). I f a>0 and
•T ?D

I </?;--< d - 1 ) ( p ~ a ) / 2 ^ then v^ is compact in L at all points of the

punctured forward light cone < : t > ( ^ | > 0 > ,

Outline of the proofs.

Step 1 . E-x tract limits using uniform bounds.

Let 0:==30iTCx[R , Passing to a subsequence? one can suppose that

f C~ 1 }̂

1 6 ) u^—>u, and F u^-^r u, weakly H (Q) and strongly in I (0)
K ? 1 K ? 1 - / \QC

1 7 ) Similar convergence holds for the Cauchy data.

18 ) F<u^) —> F weakly in L^ ( p"1 ) ( 0) .

It fol lows that the limit u^ is the unique solution of

Dy. + E = 0.» u^< 0, « ) = u , u. < 0, • ) == u ,̂ .
\} " v 1,

A key ingredient is to determine F_ which is often not equal

F(l im uf).u

Step iS. Independence of the Young measures.

Any lack of compactness in 7. u~ must come from u^ and u^.t » x t r
Introduce

w^ : -= (d T^ ) < u^ u^) / 2 .

JT ;̂

Then the w^' and F w^ tend weakly to zero and are bounded in

2
L (0) . Passing to a subsequence we can suppose that there & A i s t

Young measures p(y9d>^d. \_) which are probabil i ty measures on fR^'

(w i th running point X = = < A ?X ) ) depending measurably on y-=0 and

P ?
such that for all f^CdPr;^) such that f ^ o ( | X | ) as A.—^ <p, and

A
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V^eC^(O)

Fp ( y ) f < w'"" ( y ) , w^ < y ) ) dy—> pp < y) f (A. ,/\ )^' ( y , d.\ d\ ) dy ...
J T" '~" .J ^ ~ ~ ^ • • '

Then the Young measures p < y ? d X . ) of the sequence w is g ivers by

f^(X ) u < y , d \ ) = f ¥••</< )ju<y,d;\d:\. )
iJ T" "r" "T <J i T' •

i^ith a sinular formula "for p _ ,

A crucial step is to show that the Young measure p is given

by

19 ) ...; < y , d\^dX_ ) = ^ ( y , dX )<S>^^ ( y , d\_ ) .

This identity expresses the indpendence of the waves w^ which is

linked to the fact that there are no nontrivial resonance relations

involving the phases t±r.

To prove ( 1 9 ) it suffices to show that for f^eC^CK)»

z^ : =f^_ (w^ ) sat i sfy

weak l im(z z _ ) == (weak lim z ) (weak lim z _ ) .

This fol lows from a variant of the div-curl lemma based on the

angular regularity of the 2 together with the wave equation

which implies that

<t?,±a )z£. is bounded in L? <0 \< : x=0 } )5 q>l.t r ± loc '

Step 3. Transport equations for the Young measures.

^Jrite the equation (S ) in terms of the w ' s ? multiply by -p< y ) f ('/'/^) s

ands pass to the limit using the crucial independence relation

( 1 9 ) . This yields a coupled system of transport equations for / , ^ ?

20) a < € ? ±d ),̂  T (d-l)<^ O^P^/r) - ^ < F .̂ (y ,A^ )p^ = 0,

2 1 ) ^<y^> "-= f F<y?.>^-<T )^<y,dT ) ~ F ( y )

22) F ( y ? r ) :== F(c) , u _ < y ) < r ) .
L
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This contrasts sharply with resonant problems for which the Young

measures at time t^O do not determine their values in t>0.

St^p 4, Transport inequality for the variance of p .

77.e ^r.-^e^y for pra-oin^ campac t ?zess Gin L^ far o<^J> LS ta proue

that t h . ^ uarLances a^ of , u ^ vanish. To do that? one derives a
^transport equation for ^ <y):=J\\ (̂ ( y , d X ) ( s i milarly ŷ ) ,

23) ( d +<? )o' + ( d - l ) o ' /r <- h = 0 on x^Ov r ' • ' " i

where

h ^ ( y ) : = J ̂ ^(y,X^)^(y,d/\^ ) .

Strict monotonicity of F yields

2^) h < y ) > c(o- ( y ) )p/^ .

The propagation of compactness in \3 for q<2 follows

immediately from the transport inequality ( 2 3 ) - ( 2 ^ ) .

For absorbtion? one reasons as in the formal arguments. If

a is nonzero at a point of an outgoing ray? then tracing

hachward9 the transport inequality <23)~<2^) is explosive and a ,

must approach infinity at r >0. This contradicts the energy

bounds on ^7, u .t ,x
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