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Consider the Navier-Stokes equations in two dimensions, describing the motion of
viscous incompressible fluid in all of R%. Using the well-known vorticity formulation [4]

the equations can be written as follows.
£+ (u- V)¢ =vAE, in (x,t) € RZx Ry,
u(x,t) = (K x§)(x,1),

(1)

where the kernel K(x) = 5 |x|7?(—z?,2'),x = (2!, 2?), and € is the scalar vorticity.

Equation (1) is supplemented by the initial condition,
(2) {(x’ 0) = éO(x)-

Suppose that we know that |u(x,t)| < C for (x,t) € R? x R4. It then follows form
(1) that,

3) & — vAE < C|VE|.

Inequality (3) motivates our study of the following scalar equation, in any space di-

mension,
(4) u; = Au+ p|Vu| in R® x Ry,
(5) u(x,0) = uo(x), x€R™

In (4) we are assuming that u # 0 is a real constant.
The precise results concerning existence of global solutions of (1) will be stated else-

where. However, the method of proof is similar to that used in the proof of the following

theorem.

THEOREM 1. Let ug(x) € C3(R™)(= three times continuously differentiable functions with
compact support). Then there exists a unique classical solution to (4)-(5), in all f R xR 4.

Furthermore, this solution satisfies the maximum - minimum principle,

(6) sup u(x,t) =supug(x), inf wu(x,t)=infug(x).
. R™ x[0,00) R™ R™ x[0,00) R"
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PROOF: A detailed proof may be found in [2]. We outline here the main ingredients of the

proof.
2

Let G(x,t) = (47rt)_% e—JT’t_ be the heat kernel. We set (=1 = 0 and solve iteratively,
(k) _ (k) — (k-1) —
Uy Au'® = plVu l, £=0,1,2,...,

where u(*)(x,0) = ug(x). Thus,

u¥(x, 1) = / G(x — v, tuo(y)dy
R’n

(7) + p / / G(x —y,t — s)|Vulb=(y, s)|dyds.

R™ 0

Differentiating (7) with respect to x yields,

Vul®(x, 1) = / G(x — y,6)Vuo(y)dy
R?

t
(8) wu [ [ G =yt = )TutDy,5)ldyds.

R 0
Set,
Ax(t) = sup{|Vu¥(x,5)|/x e R",0 < s < 1},

then it follows from (8) and the properties of G that, with some constant C,
t
1
D) < Ao(t)+C [(t=9) b aea(o)ds,
0

which implies that, fixing T > 0, there exists a constant L, depending only on C, T, such
that, for k =1,2,...,

(9) Ar(t) < 240(T)elt, 0<t<T.

Thus, the sequence {u(*)(x,t)}, which consists of twice continuously differentiable func-

tions which decay as |x| — o0, is seen to possess uniformly bounded gradients (with respect
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to x) in every strip of the form R™ x [0, T]. It follows from (7) that the sequence itself is

uniformly bounded in such strips.
Differentiating (8) once more it follows similarly that the sequence {VZu(F)(x,1)} is

also uniformly bounded in strips, and it can be further shown that it is uniformly Holder

continuous.

Finally, using ideas similar to the above, one shows that for every T > 0,
lim sup{|u®(x,t) — u* =V (x,1)|/(x,t) € R" x [0,T]} = 0.
k—o00

Using the Ascoli-Arzela theorem it follows that one can extract uniformly convergent (in

every strip) subsequences {Au'*7(x,t)} and {Vu'*i"Y(x,t)}, hence also {ugkj)(x,t)}.

This implies that {u'¥7)(x, )} converges uniformly to u(x,t), which is a classical solution
of (4)-(5).

Q.E.D.

Observe that the initial function ug(x) was assumed to be in C3(R"). However, the

following theorem shows that the (nonlinear) solution operator can be extended to initial

values in L?(R™).

THEOREM 2. For ug(x) € C3(R™) let Squg = u(x,t),0 < ¢t < oo, be the solution given by

Theorem 1. Then S; can be extended continuously to L*(R™).

PROOF: Let u(x,t),v(x,t) be two solutions of (4) such that u(x,0) = ug(x),v(x,0) =
vo(x). Then,
(u —v)e = Au — v) + p(|Vu| - [Vol).

Multiplication by u — v and integration over R" yields, for all ¢ > 0,

% /(u —v)%dx < — / IV(u — v)|?dx + €|p / |V (u — v)|2dx

Iul/(u_v

from which we infer, in view of Grgnwall’s inequality,

| Stuo — Sevoll 2(gny < e 2w “No — woll L2gr -
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Q.E.D.

It is not clear to us whether or not S; extends continuously also to L}(R™). For various
reasons, the spaée L!(R™) is more natural, and indeed more interesting, than L2(R") in our
case. In particular, the case where p > 0 is of special interest, and constitutes a continuous
analogue of a discrete “averaging and penalization” model [5]. In this case (u < 0) the
effect of Au in the right-hand side of (4) is to “diffuse” the profile of u, however without
changing its L! - norm. On the other hand, the negative term u|V| serves to diminish
the size of u pointwise, especially in places with large |Vul, i.e., where the diffusive effect
of the Laplacian has not yet taken over completely. In conclusion, Eq. (4) in the case of
i < 0 represents a “competition” between a diffusive operator, preserving the L!-norm
and a damping operation, effective especially in large-gradient locations. For the case of

smooth nonnegative initial data we have the following result.

THEOREM 3. Assume 0 < ug(x) € C3(R™) and u < 0. Then u(x,t), the solution to
(4)-(5), decays as t — +oo in the following sense.

There exists a constant Ay, depending only on n, such that

Ll a
sup tltls n/u(x,t)dx < 0.
0<t<co

Rn

PROOF: The detailed proof can be found in [2]. We give here a very brief outline.
(a) Let ug(x) = 0 for [x| > R, and set, M; = supgn |5a—-z:f_?u—-[,j = 1,...,n. Using
the comparison principle for parabolic equations one shows that, with some constant C

depending only on n (and not on g, R etc.),
9) |lu(x,t)| < min{M, Mnexp((C + |pu[n'/? + 1)t + R — |x|)},

where M = max{Ml, PN ,Mn, ”’lt()”Lm(Rn)}.

(b) Denoting by A, a generic constant depending only on n, the estimate (a) yields,

(10) / lu(x,t)|dx < MA,e”t,

|z|>4ant
where a, = C + |u|nt/? + 1.
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(c) Using the Sobolev imbedding theorem and the Holder inequality one gets,

(11) / fu(x,1) ldx < tAu(1 + |ul) / Vu(x, )ldx,
]Rn

IiIS‘lant

so that in conjunction with (10),

(12) / IVu(x, )ldx > —Am | / u(x,t)dx — Me™Y).

(14 |ul)t
R™ R"

(d) Setting Q(t) = [ u(x,t)dx and using Eq. (4) and (12) we finally get
Rn

' H An - —t
Q) < TEo A2l - e,

from which the assertion follows.
Q.E.D.
Note that in the proof of Theorem 3 we have made substantial use of the positivity
of the solution u(x,t). It is not clear to us what are the decay properties of the solution
(if any) for nonsmooth or nonpositive initial data.

Finally, we mention the papers [1,3] for blow-up results concerning closely related

nonlinear parabolic equations.
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