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Consider the Navier-Stokes equations in two dimensions, describing the motion of

viscous incompressible fluid in all of R2. Using the well-known vorticity formulation [4]

the equations can be written as follows.

(1)
(t + (u • V)^ = ̂ , in (x,<) e R2 x R+,

u(x . f )=(K*0(x . f ) ,

where the kernel K(x) = ̂ -^-x^x1)^ = (^.a-2), and ^ is the scalar vorticity.

Equation (1) is supplemented by the initial condition,

(2) ^(x,0)^o(x).

Suppose that we know that |u(x,()| ^ C for (x,^) (= R2 x R+. It then follows form
(1) that,

(3) ^( - ̂  < C|V^|.

Inequality (3) motivates our study of the following scalar equation, in any space di-
mension,

(4) Ut =Au+/x|Vu| in R" x R+,

(5) u(x,0) =uo(x), x € R " .

In (4) we are assuming that /j, ^ 0 is a real constant.

The precise results concerning existence of global solutions of (1) will be stated else-

where. However, the method of proof is similar to that used in the proof of the following
theorem.

THEOREM 1. Let uo(x) € C^(R")(= three times continuously differentiable functions with

compact support). Then there exists a unique classical solution to (4)-(5), in all ofR^xR-)..

Furthermore, this solution satisfies the maximum - minimum principle,

(6) ^P K(x,<) =supuo(x), inf u(x,() =infuo(x).
li^xtO.oo) K" R"x[0,oo) R" ' '
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PROOF: A detailed proof may be found in [2]. We outline here the main ingredients of the

proof.
r\

Let (?(x,() = (47^<}-te~^t- be the heat kernel. We set u<-1) = 0 and solve iteratively,

^-Au^^lV^-1)!, fc=0,l,2,.. . ,

where yW(x,0) = uo(x). Thus,

u^(x,t)=yG'(x-y,f)uo(y)rfy
R"

(

(7) + { ^ [ [ G ( x - y , t - ̂ IVn^-^y, ̂ )|rfy<fo.
K" 0

Differentiating (7) with respect to x yields,

W^x,^ f G(x-y,t)^uo(y)dy
ioniî

<

(8) + 11 I I V^G(x - y, ( - ̂ |V^(^l)(y, ̂ )|rfy^.
W1 0

Set,

A^(<) = sup^Vu^x^l/x e R^O < 6 < (},

then it follows from (8) and the properties of G that, with some constant C,

t

Ak(t) < Ao(() + C l{t - s)~^Ak-i(s)ds,
o

which implies that, fixing T > 0, there exists a constant £, depending only on C,T, such

that, for k == 1 ,2, . . . ,

(9) Ak{t) < 2Ao(T)eLt, 0 < t< T.

Thus, the sequence {^^(x,*)}, which consists of twice continuously differentiable func-

tions which decay as |x| -^ oo, is seen to possess uniformly bounded gradients (with respect
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to x) in every strip of the form R71 x [0,T]. It follows from (7) that the sequence itself is

uniformly bounded in such strips.

Differentiating (8) once more it follows similarly that the sequence {V^u^x,*)} is

also uniformly bounded in strips, and it can be further shown that it is uniformly Holder
continuous.

Finally, using ideas similar to the above, one shows that for every T > 0,

limsup{|^)(x,() - ̂ -^^/(x.f) 6 R71 x [0,T]} = 0.
k—>oo

Using the Ascoli-Arzela theorem it follows that one can extract uniformly convergent (in

every strip) subsequences {Au^x,^} and {VH^-T^X,*)}, hence also {^(x^)}.

This implies that {^^(x.f)} converges uniformly to u{x,t), which is a classical solution
of (4)-(5).

Q.E.D.
Observe that the initial function uo(x) was assumed to be in C^R"). However, the

following theorem shows that the (nonlinear) solution operator can be extended to initial
values in ^(R").

THEOREM 2. For uo(x) e Co^R") let StUo = u(x,<),0 ̂  t< oo, be the solution given by

Theorem 1. Then St can be extended continuously to L^R").

PROOF: Let u(x,*),u(x,<) be two solutions of (4) such that u(x,0) == Mo(x),v(x,0) =
uo(x). Then,

(u - v)t =A(u - u) + ^(|Vu| - |Vu|).

Multiplication by u - v and integration over R" yields, for all e > 0,

^ A" - v)^x ^ - / |V(u - v^dx + e\^\ I |V(u - v^dx
R" Rn yn

, 1^1 / / ,2 .
+ -J- f (•" - V) 'rfx,

R»

from which we infer, in view of Gro.nwall's inequality,

t\
|| StUo - StVo\\L2(Kn) < C^ ^juo - Vo\\^(yn).
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Q.E.D.
It is not clear to us whether or not Sf extends continuously also to .L^R^. For various

reasons, the space Z^R") is more natural, and indeed more interesting, than JD^R^) in our

case. In particular, the case where /x > 0 is of special interest, and constitutes a continuous

analogue of a discrete "averaging and penalization" model [5]. In this case (^ < 0) the

effect of AIA in the right-hand side of (4) is to "diffuse" the profile of u, however without

changing its L1 - norm. On the other hand, the negative term ^|V| serves to diminish

the size of u pointwise, especially in places with large |Vu|, i.e., where the diffusive effect

of the Laplacian has not yet taken over completely. In conclusion, Eq. (4) in the case of

ft < 0 represents a "competition" between a diffusive operator, preserving the J^-norm

and a damping operation, effective especially in large-gradient locations. For the case of

smooth nonnegative initial data we have the following result.

THEOREM 3. Assume 0 <, Uo(x) e C^R71) and ^ < 0. Then n(x,t), the solution to

(4)-(5), decays as t —^ +00 in the following sense.

There exists a constant An, depending only on n, such that

tAr^ L(x,i-^•y-TAn /
sup (^H / ^(x,<)rfx < oo.

0<«oo J
^n

PROOF: The detailed proof can be found in [2]. We give here a very brief outline.

(a) Let ^o(x) = 0 for [x| > J2, and set, Mj = sup^n |g UQ • |,j = l , . . . ,n. Using
•'j

the comparison principle for parabolic equations one shows that, with some constant C

depending only on n (and not on /z, R etc.),

(9) KX,<)| < min{M,M72exp((C + Hn^2 + 1)< + R - |x|)},

where M == max{Mi,... ,Mn, ||^o||Loo(ii^)}-

(b) Denoting by An a generic constant depending only on n, the estimate (a) yields,

(10) / \u{x,t)\dx^MAne-\

\x\>^Aant

where dn = C + Hn172 + 1.
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(c) Using the Sobolev imbedding theorem and the Holder inequality one gets,

(11) / KX,<) |Ac ^ (An(l + H) / |V^(x,<)|dx,
\x\<4ant R71

so that in conjunction with (10),

(12) J^u{x^\dx> An [ju^dx-Me-^
R71 IR71

(d) Setting Q{t) = / u{x,t)dx and using Eq. (4) and (12) we finally get
R71

w^rT^-f^-^'1-
from which the assertion follows.

Q.E.D.

Note that in the proof of Theorem 3 we have made substantial use of the positivity

of the solution z^(x,t). It is not clear to us what are the decay properties of the solution

(if any) for nonsmooth or nonpositive initial data.

Finally, we mention the papers [1,3] for blow-up results concerning closely related

nonlinear parabolic equations.
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