GEORGI VODEV
Sharp bounds for the number of the scattering poles

Journées Equations aux dérivées partielles (1992), p. 1-5

<http://www.numdam.org/item?id=JEDP_1992 A6_0>

© Journées Equations aux dérivées partielles, 1992, tous droits réservés.

L’acces aux archives de la revue « Journées Equations aux dérivées partielles » (http:/www.
math.sciences.univ-nantes.fr/edpa/) implique 1’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression sys-
tématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=JEDP_1992____A6_0
http://www.math.sciences.univ-nantes.fr/edpa/
http://www.math.sciences.univ-nantes.fr/edpa/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Sharp bounds for the number of the scattering poles

G. Vodev
Institute of Mathematics
Bulgarian Academy of Sciences
1090 Sofia, Bulgaria

1 Introduction

In this talk we want to describe some recent author’s results concerning upper bounds on
the number of scattering poles for a large class compactly supported perturbations of the
Laplacian. The details of the proofs can be found in [9], [10] and [11]. Our main result extends
a recent result of Sjostrand and Zworski [5] to the case of non-selfadjoint perturbations and
in particular we give a simpler proof. As a consequence we obtain polynomial upper bounds
on the number of the scattering poles for hypoelliptic operators. In the case of elliptic
perturbations we get bounds O(r™) which are known to be sharp in some situations ([7],
12)).

Our second result concerns the distribution of scattering poles outside small conic neigh-
bourhood of the real axis. We show that the growth of the number of the scattering poles
in such regions does not depend on the regularity of the perturbed operator and is always
O(r™). That is, in the case of hypoelliptic operators the main contribution to the total num-
ber comes from the poles close in some sense to the real axis. This observation combined
with the recent result of Sjostrand and Zworski [6], where they study the distribution of the
scattering poles in conic neighbourhoods of the real axis with respect to both small angle and
large radius, allow to obtain more precise upper bounds on the total number of scattering

poles for a class of hypoelliptic operators.
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2 Upper bounds for the total number

Let G be a linear unbounded closed operator in a complex Hilbert space H = H'@L*(R"\B,),
where n > 3 is odd, B, = {z € R™; |z| < p}; H' is a complex Hilbert space whose elements
are supposed to satisfy the condition: xf = 0, Vf € H', Vx € C®(R"™), x = 0 on B,.
Denote by D(G) the domain of G. The following assumption means that G is a compactly

supported perturbation of the Laplacian.

(H1) Vx € C*(R"™), x =0 on B,, x = 1 outside a compact domain, Vf € D(G), we have
xf € D(G) N H*(R™\ B,) and Gxf = —Axf, where A is the Laplacian in R™.

The following assumption means that the operator G is similar to the differential operators

in sense that it preserves the supports.
(H2) Vx1,x2 € C*(R™) with supp x1 N supp x2 = 0, we have x1Gx2f =0, Vf € D(G).

To introduce the scattering poles (known also as resonances) associated to the operator

G we also need the following assumptions.
(H3) The resolvent set of G is not empty.

It follows from this assumption that there exist zp € C with Sz > 0 and an open
neighborhood A C {z € C; Sz > 0} of 2 so that the resolvent R(z) = (G — 22)™" € £(H, H)

is well defined and holomorphic in A.

(H4) There exists a function x € C°(R"), x = 1 on B,, so that xR(z) is a compact
operator in £(H, H).

By definition, the scattering poles (or resonances) are the poles of the meromorphic
continuation of the cutoff resolvent R,(2) = xR(z)x from A to the complex plane C. If 2,

is a pole of R,(z), its multiplicity is given by the rank of the operator

/] ' 2R, (2) dz,
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provided that ¢ > 0 is small enough. It is not hard to see that the scattering poles (with
the multiplicities) are independent of the choice of x, provided x = 1 on B,. Let {2;} be
the poles of R,(z), repeated according to multiplicity, and set N(r) = #{z;; |2;| < r}. Our
aim is to get upper bounds on N(r) as r — +o00. Given any compact operator A, denote
by u;j(A) the characteristic values of A, repeated according to multiplicity, which are by
definition the eigenvalues of (A*A)/2. We need the following assumption:

(H5) There exists an increasing function f(t) € C[1,+00) such that 0 < f(t) <t/ f(8t) <
C'0°f(t), Vt > 1, V8 > 1, with constants C’ > 0, 0 < § < 1/2; and p;(xR(20)) <
Cf(3)72 V.

Define the function ¢ € C[1,+00) by ¢(f(t)) =t. Our first result is:
Theorem 1 Under the assumptions (H1)-(H5), the number N(r) of the scattering poles
associated to the operator G satisfies the bound
N(r) < Cyp(Cr), (1)
with some constant C > 0.

As a consequence of this theorem we obtain the following bounds for hypoelliptic opera-
tors.

Corollary 1 Let the operator G satisfy the assumptions (H1)-(H3) and the hypoelliptic
estimates

Nullsree < Cs (|Gulls + ||ulls), Vs>0,Vue D(G), Gue H?,
where 0 < ¢ < 1, || - ||, denotes the norm in the Sobolev space H*. Then
N(r) < Cr*e 4 C. (2)

It is easy to see that the above hypoelliptic estimates imply (H4) and (H5) with f(t) =
t1/? where p = n/e. Hence p(t) = t* and (2) follows from (1) at once.

In the elliptic case (¢ = 1) such a bound was first obtained by Melrose [4] in the case
of obstacle scattering, and by Zworski [13] in the case of compactly supported potential.
In the case of selfadjoint operators bounds equivalent to (1), (2) are proved by Sjéstrand
and Zworski [5] by using the complex scaling method. Our proof of (1) avoids using this
approach and is in the spirit of the earlier works on this problem (see [3], [4], [9], [13]).
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3 Upper bounds for the number of the scattering
poles outside a conic neighbourhood of the real axis

Let G be a second order differential operator in R™, which is a compactly supported pertur-
bation of the Laplacian. Assume that G is a positively definite selfadjoint operator which
satisfies the assumption (H4) above. Then it is well known that the scattering poles {z;} are
allin {2 < 0}. Givenanye, 0 <e < 1,set N(e,7) = #{2j; |7| <, ¢ < arg(—z;) < 7—¢}.

Our second result is the following.

Theorem 2 For any € and r as above, 3C, > 0 so that
N(e,r) < Cer™ + C.. (3)

Note that this bound does not depend on the regularity of G. It shows that to study
the total number N(r) modulo O(r") it suffices to study the number of the scattering poles
near the real axis. In [6] Sjostrand and Zworski used this observation to obtain quite precise
upper bounds on the total number for a class of hypoelliptic operators.

The idea of the proof of (3) is to characterize the scattering poles in {Jz < 0}, with
multiplicity, as zeros of a function h(z) defined and holomorphic in {Iz < 0}, such that for

any v > 0, 3C, > 0, satisfying the estimate
|h(2)| < Cyexp (Cy|2|") for Sz < —1. (4)

Then (3) is derived from (4) with the help of a classical result due to Carleman (see [8
Sec. 3]).
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