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RADIATION CONDITIONS AND SCATTERING THEORY
FOR N-PARTICLE HAMILTONIANS
(MAIN IDEAS OF THE APPROACH)

D.Yafaev *
Universite de Nantes

Abstract

The correct form of radiation conditions is found in scattering prob-
lem for N-particle quantum systems. The estimates obtained allow us
to give an elementary proof of asymptotic completeness for such sys-
tems in the framework of the theory of smooth perturbations. Here we
outline main ideas of this proof.

1. One of the main problems of scattering theory is a description of asymp-
totic behaviour of N interacting quantum particles for large times. The com-
plete classification of all possible asymptotics (channels of scattering) is called
asymptotic completeness. The final result can easily be formulated in physics
terms. Two particles can either form a bound state or are asymptotically free.
In the case N > 3 a system of N particles can additionally be decomposed for
large times into non-trivial subsystems (clusters). Particles of the same cluster
form a bound state and different clusters do not interact with each other.

There are two essentially different approaches to a proof of asymptotic
completeness for multiparticle (N ^ 3) quantum systems. The first of them,
suggested by L. D. Faddeev [I], relies on the detailed study of a set of equa-
tions derived by him for the resolvent of the corresponding Hamiltonian. This
approach was developped in [1] for the case of three particles and was further
elaborated by J. Ginibre and M. Moulin [2] and L. Thomas [3]. The attempts
[4, 5] towards a straightforward generalization of Faddeev's method to an arbi-
trary number of particles meet with numerous difficulties. However, the results
of [6] for weak interactions are quite elementary.

Another approach relies on the commutator method [7] of T. Kato. In
the theory of ^V-particle scattering it was introduced by R. Lavine [85 9] for
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repulsive potentials. The proof of asymptotic completeness in the general case
is much more complicated and is due to I. Sigal and A. Soffer [10] (see also the
article [11] by J. Derezinski for the proof of intermediary analytical results and
the article [12] by H. Tamura for more careful presentation of the method of
[10]). In the recent paper [13] G. M. Graf gave an accurate proof of asymptotic
completeness in the time-dependent framework. The distinguishing feature of
[13] is that all intermediary results are also purely time-dependent and most
of them have a direct classical interpretation. Papers [10, 13] were to a large
extent inspired by V. Enss (see e.g. [14]) who was the first to apply a time-
dependent technique for the proof of asymptotic completeness.

The aim of the present paper is to give an elementary proof of asymptotic
completeness for TV-particle Hamiltonians with short-range potentials which
fits into the theory of smooth perturbations [7, 15]. This proof is quite similar
to the one [16] suggested by the author for three-particle Hamiltonians. One
of the advantages of the theory of smooth perturbations is that it admits two
equivalent formulations. The first of them, time-dependent, is given in terms of
unitary groups of the Hamiltonians considered. Another, the stationary one, is
based on their resolvents. In particular, the stationary version automatically
gives (see e.g. [17]) formulas for basic objects of scattering theory: wave
operators, scattering matrix etc. Properties of these representations, specific
for TV-particle systems, will hopefully be discussed elsewhere.

Our proof of asymptotic completeness relies on new estimates which estab-
lish some kind of radiation conditions for TV-particle systems. Compared to the
limiting absorption principle (see below) radiation conditions-estimates give us
an additional information on the asymptotic behaviour of a quantum system
for large distances and large times. The limiting absorption principle suffices
for a proof of asymptotic completeness in the case of two-particle Hamiltoni-
ans with short-range potentials. However, radiation conditions-estimates are
crucial in scattering for long-range potentials (see e.g. [18]), in scattering by
unbounded obstacles [19, 20] and in scattering for anisotropically decreasing
potentials [21]. In the latter paper the role of radiation conditions was also
advocated for three-particle Hamiltonians.

2. Our interpretation of radiation conditions is, of course, different from
the two-particle case. Before discussing their precise form let us introduce the
generalized TV-particle Hamiltonians. We consider the self-adjoint Schrodinger
operator H = —A + V(x) in the Hilbert space H = L^T^). Suppose that
some finite number OQ of subspaces X01 of X := B^ is given and let a^, x^ be
the orthogonal projections of x € X on X" and Xa == X Q X01 respectively.
We assume that

V(x) = f: V^x^ (1)
a=l
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where V0 are decreasing real functions of variables x0. Without loss of gen-
erality, one can suppose that the linear sum of all subspaces X^ exhausts X.
The two-particle Hamiltonian H is recovered if (1) consists of only one term
with X01 = X. The three-particle problem is distinguished from the general
situation by the condition Xa n X^ == {0} for a -^ /3. We prove asymptotic
completeness under the assumption that V01 are short-range functions of X0'
but many intermediary results (in particular, radiation conditions-estimates)
are as well true for long-range potentials. Clearly, V^^x^) tends to zero as
\x\ —> oo outside of any conical neighbourhood of Xa and y^a^) is constant
on planes parallel to Xa. Due to this property the structure of the spec-
trum of H is much more complicated than in the two-particle case. Operators
H considered here were introduced in [22] and are natural generalizations of
A^-particle Hamiltonians. Consideration of a more general class of operators
allows to unravel better the geometry of the problem.

The spectral theory of the operator H starts with the following geometrical
construction. Let us introduce the set X of linear sums

Xs = X^ + X^ + ... + X^

of subspaces X013. The zero subspace X° == {0} is included in the set X and
X itself is excluded. The index a (or 6) labels all subspaces X0' € X and can
be interpreted as the collection of all those aj for which X013 C X01. Let x°'
and Xa be the orthogonal projections of x 6 X on the subspaces X01 and

Xa := x e x " = x^ n Xa, n... n x,,,
respectively. Since X = Xa © X", 7Y splits into a tensor product

L^X}^L^Xa)®W}. (2)

In the multiparticle terminology, index a parametrizes decompositions of an
^V-particle system into noninteracting clusters; x01 is the set of ^internaP co-
ordinates of all clusters, Xa describes the relative motion of clusters.

Let us introduce for each a an auxiliary operator Ha = T + V01 ^ T = —A,
with a potential

^a= E v^ (3)
xctcxa

which does not depend on Xa' In the representation (2)

H a = T a ® I + I ® H a , (4)

where Ta = —Aa^ acts in the space T~ia == L^(Xa) and

IT = T0 + V s , T0 = -A^a
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are the operators in the space U0- == L^ (X°). Set ^° == (T, V0 = 0,H° =
0. The operator ^a corresponds to the Hamiltonian of clusters with their
centers-of-mass fixed at the origin, Ta is the kinetic energy of the center-of-
mass motion of these clusters and Ha describes an TV-particle system with
interactions between different clusters neglected. Eigenvalues of the operators
JY" are called thresholds for the Hamiltonian H.

3. Let us introduce the following notation: E(A) = £'(A; H) is the spectral
projection of the operator H corresponding to a Borel set A C R; Ti^^H)
is the absolutely continuous subspace of H\ P^(H) is the orthogonal projec-
tion on TY^^); 'H^\H) is the subspace spanned by all eigenvectors of the
operator H; Q is the operator of multiplication by (x2 + l)1^2.

The limiting absorption principle asserts that the operator Q^ is locally
H-smooth (in the sense of T. Kato) for any r > 1/2. The term "locally7'
means that actually only the operator Q^E^A) is J^-smooth for an arbitrary
bounded interval A which is separated from all thresholds and eigenvalues of H.
A definition of ^-smoothness of the operators Q^T-E(A) can be given either in
terms of the resolvent (H — 2:)""1, Imz ^ 0, of the operator H or of its unitary
group U(t} = exp(-iHt). This is discussed e.g. in [17] or [23]. We recall here
the definition in terms of U(t): an H -bounded operator K is called jff-smooth
if for every / € T>(H)

F \\Kexp(^iHtWdt<CW.
J-oo

The limiting absorption principle ensures, in particular, that the singular con-
tinuous spectrum of H is empty.that is H = U^^H^H^^H}. Furthermore,
in the case N = 2 (but not N > 2) it suffices for construction of scattering
theory. There are many different proofs of the limiting absorption principle
for N = 2 but the only one applicable for N > 2 relies on the Mourre estimate
(see articles [24, 25, 26]).

The fundamental result of TV-particle scattering theory called asymptotic
completeness is the assertion that the evolution governed by the Hamiltonian
H is decomposed as t —> ±00 into a sum of simpler evolutions governed by
the Hamiltonians Ha. This means that for every / € H^ there exist f^ such
that

U(t)f-^Ua(t)f^ Ua(t)=exp(^iHat), f^±oo, (5)
a

where " ~ " denotes that the difference between left and right sides tends
to zero. This relation is also called sometimes asymptotic clustering. Using
separation of variables (4) and applying (5) to the Hamiltonians jfP (in place
of H) one can desribe the asymptotics of U(t)f in terms of the free operators
Ta and of eigenvalues A^ and eigenvectors ̂  of the operators ^a. Actually,
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by inductive procedure, (5) yields

^V-EE^pM^+^Wo^®^ .fce^o. (6)
a n

In particular, in the two-particle case the right side of (6) consists of the single
term exp^T^ where /± 6 H.

More detailed formulation of the scattering problem for A^-particle Hamil-
tonians is given in terms of wave operators. Recall that for a couple of self-
adjoint operators Hj^ j = 1,2, in a Hilbert space T~t and a bounded operator
(identification) J : 7~i —> Ji the wave operator is defined by the relation

W^^H^H^ J ) = = 5 - lim exp(^^2<)^exp(-^fi^l<)P(ac)(^l) (7)
t—*-d:oo

under the assumption that this limit exists. In this case the intertwining
property

E(^; H^W^H^H^ J ) = ̂ ?,̂ 1; W^ H,)
(H C R is any Borel set) holds. It follows that the range RiW^^H^H^ </))
of the operator (7) is contained in ^^(T^) and its closure is an unvari-
ant subspace of H^. Moreover, if the wave operator is isometric on some
subspace 'Ki, then the restrictions of H\ and H^ on the subspaces /H\ and
7-^2 = W±(H^^ H^\ J\H\ respectively are unitarily equivalent. This equivalence
is realized by the wave operator. Clearly, for every /2 = W±{H^^ H\\ J}f\

exp(—%^f2^)/2 ^ «^exp(--%^fif)/i, t —> ±00.

In the case J = I we omit dependence of wave operators on «7. The operator
^(^ H^) is obviously isometric on P^^i). The operator ^(^2, H^) is
called complete if R^W^^H^ H^}) == H^{H^). This is equivalent to existence
of the wave operator W^^^^H^).

Let P" be the orthogonal projection in 7^ on the subspace spanned by
all eigenvectors of H0^. Set Pa = J g) P" where the tensor product is defined
by (2). According to (4) the orthogonal projection Pa commutes with the
operator Ha = T + Va and its functions. Set also V0 = O^HQ = T,Po = J.
The basic result of the scattering theory for JV-particle Schrodinger operators
is the following

Theorem. Suppose that operators V^^T0 + /)~1 are compact in the space
7-T and

(l^l+i^y^r'+Jr1

are bounded in H" for some p > 1. Then the wave operators

W^W^^H.H^Pa)
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exist and are isometric on the ranges R{Pa) of projections Pa. The ranges
^(^f) °f^^ are mutually orthogonal and the asymptotic completeness holds:

^QR^W^^H^^H).
a

4. Our proof of this assertion relies on new estimates which we call radi-
ation conditions-estimates. Actually, there is only one estimate which looks
differently in different regions of the configuration space X. Denote by ( • , - )
the scalar product in the space (Z^. Let Va === V^ be the gradient in the
variable Xa (i.e. Va^ is the orthogonal projection of Vu on Xa} and let V^,

(V^)(.r) = (V^)(.r) - \xa^2{^au){x^xa)xa,

be its orthogonal projection in Xa on the plane orthogonal to the vector Xa.
Let Ta be a cone in E^ such that Ta^X^ == {0} if Xa f X^ and let Ya be
an intersection of Ta with some conical neighbourhood of Xa' In other words,
Ya is a neighbourhood of Xa with some neighbourhoods of all X^, Xa <jL X^^
removed from it. Denote by ^(-) the characteristic function of a corresponding
set. Our main analytical result is that for every a the operator

Qa = xWQ-1^

is locally .H-smooth. This result is formulated as a certain estimate (expressed
either in terms of the resolvent of H or of its unitary group) which, by anal-
ogy with the two-particle problem, we call the radiation conditions-estimate.
Actually, it suffices to verify local ^-smoothness of operators

Ga = XCYJC?-1/2^.

Considering the collection of these operators for all a we obtain Jf-smoothness
of the operators QaE{A).

Let us compare the limiting absorption principle with the radiation con-
ditions-estimates. Note that the operator Q"1^2 is definitely not If-smooth
even in the free case H = —A. Thus the radiation conditions-estimates show
that the differential operators V^ improve the fall-off of functions (U(t)f)(x)
for large t and x G Fa. In particular, in the free region Fo, where all potentials
V01 are vanishing, we have that the operator (^"'"^V^ is AT-smooth. This
result is not very astonishing from the viewpoint of analogy with the classical
mechanics. Indeed, for the free motion the vector x[t) of the position of a
particle is directed asymptotically as its momentum p (corresponding to the
operator —zV). So the projection of p on the plane orthogonal to x(t) tends
to zero. According to the conjecture (6) in the region I\ (for arbitrary a) the
evolution in the variable Xa (corresponding to the relative motion of clusters
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of particles) is also asymptotically free. Therefore one can expect that the
operator x(fa)^^ ls "improving^ for all a.

Our proof of J^-smoothness of the operators Ga hinges on the commuta-
tor method rather than the integration-by-parts machinery which is used (see
e.g. [18]) to derive the radiation conditions-estimates in the two-particle case.
Actually, we construct such an ^-bounded operator M that the commutator
[H^ M] := HM — MH satisfies locally the estimate

i[H,M]>c{G:Ga-Q^ p> l , Va. (8)

The arguments of [7] show that ^-smoothness of the operator Ga is a direct
consequence of this estimate and of the limiting absorption principle. We look
for an operator M in a form of a first-order differential operator

d
M = ̂ (mjDj + Djrrij), mj = 9m/9xj, (9)

j=i

with a suitably chosen real function m which we call generating for M. Note
that m is a homogeneous function of degree 1 so that coefficients mj of the
operator M are bounded. The leading term G^Ga in the right side of (8) comes
from i[HQ^M}. We emphasize that due to the operator Q^p values of m in a
compact domain are inessential. The operator Q'~p controls in (8) also the
commutator

z^.M] = ̂ (Vm^W0^)). (10)

To give an idea of the choice of m suppose for a moment that m(x) = |rc[.
Then there is the identity

i[Ho, M] = 4V(a)H-lV(5), HQ=T= -A.

Furthermore, by (10),

z^.M] = ^2\x^l{xa^Va(xa)}. (11)

Thus, under proper assumptions on V0, we have that in the case X01 = X

[V^M] =0(|rrD, \x\ ̂  oo, (12)

for some p > 1. This yields the estimate (8) and hence smoothness of the
operator Q~~1/2^^ with respect to the two-particle Schrodinger operator H .

However, if X01 ~=^ X^ then functions (11) decrease only as \x\~1 at infin-
ity. Actually, one can not expect that the operator Q"'172^7^ is smooth with
respect to the TV-particle Hamiltonian H. To prove a weaker result about
ff-smoothness of the operators Ga the function m{x) should be modified in
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such a way that the estimate (12) with p > 1 holds for all a. According
to (10), this is true if m(x) depends only on the variable x^ in some cone
where V^) is concentrated. A similar idea was applied by G. M. Graf [13]
in the time-dependent context. We emphasize that our requirement on the
function m{x) ensures that m{x) = m(xa) in some conical neighbourhood of
every Xa. In other words, a level surface m{x) = const (which is a sphere
for m{x) = |^[) should be flattened in a neighbourhood of each X^ Another
restriction on m(x) is that the commutator i[Ho, M] should be positive (up to
an error Od^l^), p > 1). This demands that m{x) be a convex function. In
this case we can neglect the region X \ Ya by the derivation of the estimate
(8). It turns out that flattening and convexity are compatible. However, the
commutator i[Ho,M] gets smaller compared to the case m(x) = \x\ so that
radiation conditions-estimates in the JV-particle case are weaker for N > 2
than for N = 2. Note also that due to localization in energy in this estimate
we can easily dispense with derivatives of V" and prove jEf-smoothness of the
operators Ga both in short-range and long-range cases.

5. Our approach to the TV-particle scattering theory starts with consider-
ation of the wave operators

W^H, H^ M^E^A)), W±(H^ H', M^E(A)} (13)

with "identifications"

M^ = ̂ (m^D, + D,m^ m^ = Qm^/Qx^ (14)
j=i

which are first-order differential operators with suitably chosen "generating"
functions m^. The "effective perturbation" equals

HM^ - M^Ha = [T, M^] + [V\ M^] + VaM^\ (15)

where V 0 ' is defined by (3) and

y^y-y0^ ^ y^.
X^tX0-

To prove existence of the wave operators (13) it suffices (see e.g. [17] or
[23]) to verify that every term in the right side of (15) can be factorized into a
product K*I<a where K is H -smooth and Ka is ^-smooth (locally). Functions
m^ are chosen as homogeneous functions of order 1 (for \x\ > 1). Therefore
coefficients of the second-order differential operator [T.M^] decrease only as
|a*|~1 at infinity. It turns out that this term can be considered with the help
of the radiation conditions-estimates. Furthermore, similarly to m(a;), the
function m^^x) depends only on x^ in some conical neighbourhood of Xa.
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This ensures that [V^\M^} = O(H^) where p > 1. Finally, it is required
that m^(x) equals zero in some conical neighbourhood of Xa such that Xa (^
Xa. So coefficients of the operator VaM^ also vanish as Od^l"^), p > 1, at
infinity. Thus the second and third terms in the right side of (15) can be taken
into account by the limiting absorption principle. The obtained representation
for the operator (15) ensures existence of both wave operators (13) (for all a).

Existence of the second wave operator (13) implies that for every vector
/± € E(A)n and some f^

M^U^ - Ua(t)f^ <^±oo. (16)

If the sum of M^ over all a were equal the identity operator J, then summing
up, as advised in [27], the relations (16) we would have obtained the asymptotic
completeness (5). However, the equality ̂  M^ = I is incompatible with the
definition (14). We choose functions m^ in such a way that

EM^M,
a

where M is the same operator as in (9). Summing up the relations (16) we
find only that ^m^-E^w/^ ^±00. (IT)

a

At the final step of the proof of the asymptotic completeness we get rid of
the operator M in the left side of (17). To that end we introduce the observable

M^A) = W^^H, H', M£(A))

and verify that the range of the operator M±(A) coincides with the subspace
E^P^T-L. Actually, we show that the operator rbM^A) is positively definite on
2?(A)7Y. In virtue of the inequality m{x) >_ \x\ for |a*| ^ 1, this can be derived
from the Mourre estimate. Here we shall explain this result by analogy with
classical mechanics. Let us consider a particle (of mass 1/2) in an external field.
In this case the observable U*(t)MU(t) corresponds, in the Heisenberg picture
of motion, to the projection M(t) = \x{t}\~~1 {^(t\ x(t}} of the momentum ^(t)
of a particle on a vector x(t) of its position. For positive energies A and large t
we have that ^(f) ~ ^±, ̂  = A, and x(t) ̂  2^±< + a-±. Therefore M(t) tends
to ±A1/2 as t ~> ±00.

The asymptotic completeness in the form (5) can be easily deduced from
these results. Actually, for every / = M±(A)f± we have that

U{t)f - M^)^, t ̂  ±00. (18)

Comparing (17) with (18) and taking into account that the range of Af^A)
equals -E(A)7^ we arrive at (5). It remains to establish existence of the wave
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operators W^^H.Ha). This is derived from existence of the first set of the
wave operators (13). At this step we assume validity of the main Theorem
for all operators Ha (in place of H). This additional assumption is, finally,
removed by an inductive procedure.
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