# JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

# Daniel Bättig Jean-Claude Guillot

# The Fermi surface for the discretized Maxwell equations

Journées Équations aux dérivées partielles (1991), p. 1-6 <a href="http://www.numdam.org/item?id=JEDP\_1991\_\_\_\_A11\_0">http://www.numdam.org/item?id=JEDP\_1991\_\_\_\_A11\_0</a>

© Journées Équations aux dérivées partielles, 1991, tous droits réservés.

L'accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.math.sciences.univ-nantes.fr/edpa/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



## The Fermi surface for the discretized Maxwell equations

D.Bättig and J.C.Guillot
Département de Mathématiques et Informatique
Université Paris Nord
Av. Jean Baptiste Clément
93430 Villetaneuse, France

#### 1. Introduction

Let  $\Gamma = a_1 \mathbb{Z} \oplus a_2 \mathbb{Z} \oplus a_3 \mathbb{Z}$  be a lattice of  $\mathbb{R}^3$ . The shifted cell problem for Maxwell's system has the following form: For each  $k \in \mathbb{R}^3$  one considers

$$\nabla \wedge H = -i\omega \varepsilon E, \nabla \cdot (\varepsilon E) = 0$$

$$-\nabla \wedge E = -i\omega \mu H, \nabla \cdot (\mu H) = 0$$

with boundary conditions

$$E(x+\gamma) = e^{i\langle k,\gamma\rangle}E(x), H(x+\gamma) = e^{i\langle k,\gamma\rangle}H(x)$$

for all  $\gamma \in \Gamma$ , where E (resp. H) are in  $H^1_{loc}(\mathbb{R}^3)^3$  and  $\varepsilon(x), \mu(x)$  are smooth positive diagonal  $3 \times 3$  matrices of  $\Gamma$ -periodic functions. Eliminating H and supposing  $\mu = 1$  one gets an eigenvalue problem for E:

$$A(\varepsilon)E \stackrel{def}{=} \varepsilon^{-1} \nabla \wedge (\nabla \wedge E) = \lambda E \tag{1}$$

$$D(\varepsilon)E \stackrel{\text{def}}{=} \nabla \cdot (\varepsilon E) = 0 \tag{2}$$

with 
$$E(x+\gamma) = e^{i\langle k,\gamma\rangle} E(x) \quad \forall \gamma \in \Gamma.$$
 (3)

(1) and (3) form a self adjoint boundary value problem yielding a discrete spectrum

$$... \le E_{-2}(k) \le E_{-1}(k) \le E_0(k) = 0 \le E_1(k) \le ...$$

where  $E_j(k)$  depends continuously on k. It is periodic in the dual lattice

$$\Gamma^{\sharp} = \{b \in \mathbb{R}^3 \mid < b, \Gamma > \subset 2\pi \mathbb{Z}\}.$$

In particular  $\lambda = 0$  is an eigenvalue of infinite geometric multiplicity, with eigenspace

$$N(k) = \{ E \in L^2_{loc}(\mathbb{R}^3)^3 \mid \nabla \wedge E = 0 \text{ and } (3) \}.$$

These eigenvectors do not satisfy  $\nabla \cdot (\varepsilon E) = 0$  and if  $\lambda$  is an eigenvalue of (1) different from zero then the corresponding eigenvectors fulfill  $\nabla \cdot (\varepsilon E) = 0$ . In view of the periodicity with respect to  $\Gamma^{\sharp}$ , one can replace (3) by

$$E(x+\gamma) = \xi_1^{\gamma_1} \xi_2^{\gamma_2} \xi_3^{\gamma_3} E(x) \tag{4}$$

where  $(\gamma_1, \gamma_2, \gamma_3)$  are the coordinates of  $\gamma$  in  $\Gamma$ ; and one defines the (physical) Fermi surface  $\mathcal{F}_{phys,\lambda}(\varepsilon)$  as

$$\mathcal{F}_{phys,\lambda}(\varepsilon) = \{ (\xi_1, \xi_2, \xi_3) \in (S^1)^3 \mid E_n(\xi) = \lambda \quad \text{for some} \quad n \neq 0 \}.$$

We also consider solutions  $\xi$  in  $(\mathbb{C}^*)^3$ , therefore we define the (complex) Fermi surface for  $\lambda \neq 0$ 

$$\mathcal{F}_{\lambda}(\varepsilon) = \{ (\xi_1, \xi_2, \xi_3) \in (\mathbb{C}^*)^3 \mid \exists E \neq 0 \quad \text{solving} \quad (1), (2), (4) \}.$$

Clearly  $\mathcal{F}_{phys,\lambda}(\varepsilon) \subset \mathcal{F}_{\lambda}(\varepsilon)$ . Using regularized determinants and decomposing the operator  $A(\varepsilon)$  as in [I] it can be shown that  $\mathcal{F}_{\lambda}(\varepsilon)$  is a complex hypersurface in  $(\mathbb{C}^*)^3$ . One is interested in the following questions:

- Does  $\mathcal{F}_{phys,\lambda}(\varepsilon)$  determines  $\mathcal{F}_{\lambda}(\varepsilon)$ ?
- Does the geometry of  $\mathcal{F}_{\lambda}(\varepsilon)$  contains isospectral information?
- Does  $\mathcal{F}_{\lambda}(\varepsilon)$  determines (generically)  $\varepsilon$ ?

In order to focus on this geometric aspects we consider a discrete approximation. Here the analogue of the Fermi surface is an algebraic variety.

#### 2. The discrete model

Inside  $\mathbb{Z}^3$  we take the lattice  $\Gamma = \bigoplus_{j=1,2,3} \mathbb{Z} a_j e_j$ , where  $e_j$  is the j-th standard basis vector and all the  $a_j$  are distinct, greater two and relatively prime. Let  $\varepsilon = (\varepsilon_i \delta_{ij})$  with  $\varepsilon_i : \mathbb{Z}^3 \to \mathbb{R}_+$  be periodic with respect to  $\Gamma$ . The operators  $\varepsilon A(\varepsilon)$  and  $D(\varepsilon)$  are discretized by replacing the partial derivates  $\partial_i$  by the operators  $S^{e_i} - S^{-e_i}$ , where  $S^{\alpha}$  is the shift operator acting on functions  $\mathbb{Z}^3 \to \mathbb{C}$  by

$$(S^{\alpha}f)(m) = f(m+\alpha).$$

We don't change the notation for the discretized operators.

For  $\lambda \neq 0$  the Fermi surface is

$$\mathcal{F}_{\lambda}(\varepsilon) = \{(\xi_1, \xi_2, \xi_3) \in (\mathbb{C}^*)^3 \mid \exists E \neq 0 \text{ with } A(\varepsilon)E = \lambda E,$$

$$D(\varepsilon)E = 0, S^{a_i e_i}E = \xi_i E, i = 1, 2, 3$$
.

Due to the boundary conditions, the vector E is determined by its  $a_1a_2a_3$  values on the fundamental domain of  $\Gamma$ . So  $\mathcal{F}_{\lambda}(\varepsilon)$  translates into an eigenvalue problem for a  $3a_1a_2a_3 \times 3a_1a_2a_3$  matrix, and  $\mathcal{F}_{\lambda}(\varepsilon)$  is then given by the zero set of a polynomial in the variables  $\xi_1, \xi_1^{-1}, \xi_2, \xi_2^{-1}, \xi_3, \xi_3^{-1}$ .

#### 3. Results

We have

**Theorem 1.** Assume  $\varepsilon_1(m) < \varepsilon_2(m) < \varepsilon_3(m) \quad \forall m \in \mathbb{Z}^3 \text{ then } \mathcal{F}_{\lambda}(\varepsilon) \text{ is irreducible.}$ 

It follows, that if  $\mathcal{F}_{phys,\lambda}(\varepsilon)$  contains a piece of a two-dimensional real surface, then  $\mathcal{F}_{phys,\lambda}(\varepsilon)$  determines  $\mathcal{F}_{\lambda}(\varepsilon)$ .

The idea of the proof is to construct a compactification  $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$  of  $\mathcal{F}_{\lambda}(\varepsilon)$ , such that the generic points added at "infinity" are smooth points of  $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$ .

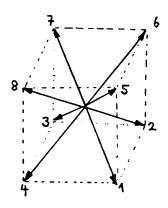
Naively one could try to compactify  $\mathcal{F}_{\lambda}(\varepsilon)$  by embedding  $(\mathbb{C}^*)^3$  in  $(\mathbb{P})^3$  and closing the Fermi surface in there. This doesn't work, since the new points added to  $\mathcal{F}_{\lambda}(\varepsilon)$  are highly singular. Instead we construct, motivated by an idea of Mumford (see [M]), as in [B1] an intrinsic compactification of  $\mathcal{F}_{\lambda}(\varepsilon)$  by embedding the algebraic torus  $T = (\mathbb{C}^*)^3$  in the toroidal compactification  $X_{\Sigma}$  of T corresponding to the fan  $\Sigma$  in  $\mathbb{R}^3$  of the cones over the faces of the 6 prisms of the following picture:

$$1 \stackrel{def}{=} (+a_1, +a_2, +a_3), 2 \stackrel{def}{=} (-a_1, +a_2, +a_3)$$

$$3 \stackrel{def}{=} (-a_1, -a_2, +a_3), 4 \stackrel{def}{=} (+a_1, -a_2, +a_3)$$

$$5 \stackrel{def}{=} (+a_1, +a_2, -a_3), 6 \stackrel{def}{=} (-a_1, +a_2, -a_3)$$

$$7 \stackrel{def}{=} (-a_1, -a_2, -a_3), 8 \stackrel{def}{=} (+a_1, -a_2, -a_3)$$



The corresponding toroidal "octahedron" is a singular complete algebraic variety with one-dimensional singular locus. The latter is stratified into 18 T-orbits, 12 of dimension 1 and 6 of dimension 0. The one-dimensional orbits correspond to the codimension one cones over the 8 edges of the above cube. These curves have transversal  $A_k$  type, with  $k=2a_i-1$  (i=1,2,3). The zero dimensional orbits in the closure of the one-dimensional orbits correspond to the zero-codimensional faces. Take now the closure of  $\mathcal{F}_{\lambda}(\varepsilon)$  in the octahedron  $X_{\Sigma}$ . The resulting variety is always singular in , assuming  $\varepsilon_1(m)<\varepsilon_2(m)<\varepsilon_3(m)$  for all  $m\in \mathbb{Z}$ ,  $12\cdot 4$  points , where it meets the one-dimensional singular locus of the toroidal embedding. Blowing-up these singular points in the octahedron gives the compactified Fermi surface  $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$ .

One shows that the divisor  $\overline{\mathcal{F}_{\lambda}(\varepsilon)} - \mathcal{F}_{\lambda}(\varepsilon)$  is a connected union of reduced, irreducible curves, intersecting transversally. Furthermore  $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$  is smooth on the smooth points of  $\overline{\mathcal{F}_{\lambda}(\varepsilon)} - \mathcal{F}_{\lambda}(\varepsilon)$ . This induces Theorem 1.

Observe now that the Fermi surface  $\mathcal{F}_{\lambda}(\varepsilon)$  is the locus of points in  $(\mathbb{C}^*)^3$ , where the operators

$$A(\varepsilon) - \lambda 1, D(\varepsilon), S^{a_i e_i} - \xi_i 1 \ (i = 1, 2, 3)$$

have a common kernel in the space  $F=\{E:\mathbb{Z}^3\to\mathbb{C}^3\}$ . This means that  $\mathcal{F}_{\lambda}(\varepsilon)$  is the support of the subsheaf  $\mathcal{L}_{\lambda}$  of the trivial bundle  $\mathcal{F}_{\lambda}(\varepsilon)\times F$  given by

 $\mathcal{L}_{\lambda} = \{((\xi_1, \xi_2, \xi_3), E) \in (\mathbb{C}^*)^3 \times F \mid \text{the above operators have a common kernel}\}.$ 

**Theorem 2.**  $\mathcal{L}_{\lambda}$  can be extended to a sheaf over his compactification  $\overline{\mathcal{F}_{\lambda}(\varepsilon)}$ .

By this the curves at "infinity" occurs as the support of one-dimensional spectral problems. For this we introduce the well known ( see [vM-M] ) one-dimensional Bloch variety  $\mathcal{B}_a(W)$  defined by

 $\mathcal{B}_a(W) \stackrel{def}{=} \{(\xi, \lambda) \in \mathbb{C}^* \times \mathbb{C} \mid \text{there exists a nontrivial solution } \psi : \mathbf{Z} \to \mathbb{C} \text{ solving } \mathbf{Z} \in \mathbb{C} \text{ solving } \mathbf{Z} \in \mathbb{C}$ 

$$-[\psi(m-2) - 2\psi(m) + \psi(m+2)] + W(m)\psi(m) = \lambda\psi(m), \psi(m+a) = \xi\psi(m)\}$$

where  $W: \mathbb{Z} \to \mathbb{C}$  has period a, a odd.  $\mathcal{B}_a(W)$  is a double covering of a hyperelliptic curve of arithmetic genus 2a-2.

One then has, again under the assumption of Theorem 1:

**Theorem 3.**  $\overline{\mathcal{F}_{\lambda}(\varepsilon)} - \mathcal{F}_{\lambda}(\varepsilon)$  contains the Bloch varieties  $\mathcal{B}_{a_i}(W_i)$  with

$$W_i(m_i) = \frac{1}{a_j a_k} \sum_{m_j, m_k} \varepsilon_i(m_1, m_2, m_3), \quad (i, j, k) \in S_3$$

#### 4. Sketch of the proof of Theorem 3

 $\mathcal{B}_{a_1}(W_1)$  is in the chart V of the blown-up octahedron. This chart is generated by the coordinates  $(x, z, \mu) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C}$ . On  $V \cap (\mathbb{C}^*)^3$  we have

$$x=\xi_1^{-1}, z=\xi_2^{y_0}\xi_3^{z_0}, \mu z^2=1+\xi_2^{-2a_3}\xi_3^{2a_2}$$

where  $(y_0, z_0) \in \mathbb{Z}^2$  with  $a_2y_0 + a_3z_0 = 1$ . Furthermore the fiber F over V is glued with the fiber F on  $(\mathbb{C}^*)^3$  by

$$E(m_1, m_2, m_3) = z^{m_2 + m_3} E^V(m_1, m_2, m_3).$$

Finally one has  $V - (V \cap (\mathbb{C}^*)^3) = \{z = 0\}$ .

Now  $S^{a_1 e_1} E = \xi_1 E$  transforms to

$$S^{-a_1e_1}E^V = xE^V. (5)$$

Since  $S^{(0,a_2y_0,a_3z_0)}E=\xi_2^{y_0}\xi_3^{z_0}E=zE$  , using the transition function we have

$$S^{(0,a_2y_0,a_3z_0)}E_1^V = E_1^V. (6)$$

A straightfoward calculation shows, that putting the transition function in

$$A(\varepsilon)S^{2(0,a_2y_0,a_3z_0)}E = \lambda z^2 E$$

gives on z = 0

$$(-S^{-2e_2} - S^{-2e_3})E_1^V = 0, -S^{-2e_3}E_2^V + S^{-(e_2+e_3)}E_3^V = 0$$
 (7)

and  $D(\varepsilon)S^{(0,a_2y_0,a_3z_0)}E=0$  translates on z=0 to

$$S^{(0,-1,0)}(\varepsilon_2 E_2^V) + S^{(0,0,-1)}(\varepsilon_3 E_3^V) = 0.$$
(8)

From (7) and (8) it follows, using  $\varepsilon_1(m) < \varepsilon_2(m) < \varepsilon_3(m)$  for all  $m \in \mathbb{Z}^3$ , that

$$E_2^V = E_3^V = 0$$
 and  $S^{(0,-2,2)}E_1^V = -E_1^V$ . (9)

Observe now that  $S^{(0,-a_2a_3,a_2a_3)}E=(\mu z^2-1)E$ , i.e. we get on z=0  $S^{(0,-a_2a_3,a_2a_3)}E_1^V=-E_1^V$ . Since  $a_2$  and  $a_3$  are relatively prime and different from 2, it follows with (9) that

$$S^{(0,-1,1)}E_1^V = \kappa E_1^V \quad \text{with} \quad \kappa^2 = -1.$$
 (10)

This shows that we have the boundary conditions for  $E_1^V$  given by :

$$S^{-a_1e_1}E_1^V=xE_1^V, S^{(0,a_2y_0,a_3z_0)}E_1^V=E_1^V,$$

$$S^{(0,-1,1)}E_1^V = \kappa E_1^V.$$

Now we also have  $z^{-2}(1+S^{(0,-2a_2a_3,2a_2a_3)})E=\mu E$  . But

$$1 + S^{(0,-2a_2a_3,2a_2a_3)} = \sum_{i=0}^{a_2a_3-1} (-1)^i (S^{i(0,-2,2)} + S^{(i+1)(0,-2,2)}). \tag{11}$$

Using  $A(\varepsilon)E = \lambda E$  and  $D(\varepsilon)E = 0$  one gets after some calculation

$$(S^{i(0,-2,2)} + S^{(i+1)(0,-2,2)})E_1^V =$$

$$z^2(-S^{(-2,0,2)}+2S^{(0,0,2)}-S^{(2,0,2)})S^{i(0,-2,2)}E_1^V+z^2S^{i(0,-2,2)}S^{(0,0,2)}(\varepsilon_1E_1^V)+z^3(\ldots).$$

Since by (9)  $S^{i(0,-2,2)}E_1^V=(-1)^iE_1^V$  we have for (11) on z=0

$$z^{-2}(1+S^{(0,-2a_2a_3,2a_2a_3)})E_1^V =$$

$$a_2a_3(-S^{(-2,0,0)}+2-S^{(2,0,0)})E_1^V+(\sum_{i=0}^{a_2a_3-1}\varepsilon_1(m_1,m_2-2i,m_3+2i))E_1^V=\mu E_1^V$$

6

i.e.

$$(-S^{(-2,0,0)} + 2 - S^{(2,0,0)})E_1^V + \frac{1}{a_2 a_3} (\sum_{m_2,m_3} \varepsilon_1(m_1,m_2,m_3)) E_1^V = \mu E_1^V.$$

This shows that one gets the Bloch variety  $\mathcal{B}_{a_1}(W_1)$ .

#### 5. Related results

The questions posed in the introduction were answered for the operator  $-\Delta + V$  in dimension 2 and 3.

Gieseker, Knörrer, Trubowitz have shown that in dimension 2 the Bloch variety is irreducible (in the discrete case [GKT], in the continuus case [KT]). Moreover for the discrete model for generic potentials V the Bloch variety determines the potential up to obvious symmetries. This has been generalized by Kappeler in [K] to higher dimensions.

There exists for the discretized model also using toroidal embeddings an intrinsic compactification of the Bloch variety in dimension 2 and for the Fermi surface in dimension 3 (see [B1], [B2]).

For an overview of these and more stronger results consider [P].

### 6. Bibliography

- [B1] Bättig, D. A toroidal compactification of the complex Fermi surface. Preprint 1990
- [B2] Bättig, D. A toroidal compactification of the two dimensional Bloch variety. Thesis, ETH Zürich 1988
- [GKT] Gieseker, D; Knörrer, H; Trubowitz, E. The geometry of algebraic Fermi curves. To appear
- [I] Ikebe, T. Remarks on non-elliptic stationary wavez propagation problems. Japan J. Math. Vol 6, No 2, 1980
- [K] Kappeler, T. On isospectral potentials on a discrete lattice II. To appear in Adv. in Appl. Math
- [KT] Knörrer, H; Trubowitz, E. A directional compactification of the complex Bloch variety. Comm. Math. Helv. 65 (1990) 114 149
- [P] Peters, C. Algebraic Fermi curves ( after Gieseker, Knörrer, Trubowitz ). Sém. Bourbaki 89 / 90 No 723