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INVERSE PROBLEMS AND MICROLOCAL ANALYSIS

Anders Melin
Department of Mathematics, Lund Institute of Technology

Box 118, S-221 00 Lund. Sweden.

0. Introduction.
In this lecture we shall discuss some recent problems in inverse scattering for the two-
body Schrodinger operator Hv = HQ + v in R" where HQ = —A. The main part of the
presentation will be devoted to the definition of exceptional points for Hv and a study of
the geometrical properties of the set £ of such points. At the end of the lecture we explain
briefly why the investigation of the set £ is important in inverse scattering.

The exceptional points were considered already many years ago by Faddeev [1, 2].
They appear as the zeros of a Fredholm determinant of the generalized Lippmann -
Schwinger equation obtained when the generalized direction dependent Green^s function
is introduced. In the 9 -approach to inverse scattering and the characterization problem
for scattering matrices the set £ is again important (see Henkin-Novikov [3] and Lavine-
Nachman [5], Newton [7] and Weder [8]). In our approach [6] to inverse scattering, which is
similar to Faddeev's, we reduce the Schrodinger operator to a direction dependent family
of finite rank perturbations of the Laplacian. The set £ is then the set of points C, where
a certain determinant of a finite-dimensional matrix M{Q vanishes. The parameter ^ is
the generalized complex momentum variable which lies in manifold with boundary and
interior equal to C" \ R".

It was proved by Henkin-Novikov and Nachman-Lavine that £ has real points as
soon as it is non-empty. This result is also obvious from our approach, and we shall also
state some other already known results about £ and indicate how they are proved by our
methods. Probably much more can be said about £ and some open problems about that
set are stated in [7]. At the end of our lecture we also sketch briefly how the set £ may
prevent the scattering matrix from being factorized into a product of upper and lower
triangular matrices for some values of the energy and some directions in space.

It will be assumed that n is odd and that n > 3. Also we assume that the potential
v is real-valued and that

/(I + H)2^14-'0'!!/^)) dx < oo (0.1)

for any a. However most results stated here (except those making use of intertwining
operators) are independent of the parity of the dimension and extend to more general
classes of short range potentials. This will be quite clear from the definition of £^ and
we refer to Weder [8] for more details. We also remark here that in the proof of some of
our results we have made use of some spaces of functions constructed in Hormander [4,
Chapter 14], where the limiting absorbtion principle for general short range potentials is
discussed.
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1. Fundamental solutions of Helmholtz5 equations.
We first recall the following fact:

Lemma 1.1. Assume that 1m X > 0. Then there exists a unique g = g\ G ^(R")
such that (HQ — A2)^^) = 6(x). There is a polynomial pn of degree (n — 3)/2 with real
coefficients such that

^(a;)=e•A'Il|a;|2-"p„(^•A|a;|). (1.1)

We observe that the limits

g^(x) = ̂ m^±|^|+^(a?)

exist in S ' when A 6 R, and the Fourier transform of g^ equals ($2 — X2 ^p lO)"1, where
e={^

Next we introduce a large class of generalized fundamental solutions for Helmholtz'
operator.

Lemma 1.2. Let C € C" and assume that Re^ and Im^ are linearly independent. Then
there exists a unique distribution g^ € T^R") such that
(i) (Jfo ~ C2)^) = W,
(ii) f^x) = e-^O^Or) € n2<p<oo^(Rn \ 0).

PROOF: We set g^(x) = ^x^ f^{x\ where /( is the inverse Fourier transform of l/p(
and p<(Q = (^ + C)2 - C2 = ^2 + 2(^ €)• Then (i) holds, and since Re dp^\ Im dp^) are
linearly independent at the real zeros ofp( it follows that l/p( 6 ^i<g<2-^?oc • Hence (ii)
follows since p( is an elliptic polynomial. Finally, the uniqueness assertion follows from
(ii), since the real zeros ofp( are contained in a compact subset of a hypersurface.

Next we want to extend g^ to a larger set of parameters ^. The map

R" x R^" x 5n•'l 9 (x,r,0) ̂  x + ir0 (=. C"

allows us to consider C" \ R" as the interior of a smooth manifold C" with boundary
QC^ = R'1 x S'""1 so that the map

Cn \Rn 3 C ̂  0(C) == ImC/|ImC| 6 5n-l

extends to a smooth map C^ ^-^ 5'rl~l. We observe also that the inclusion map C71 \Rn »->
Cn extends to a smooth map TT : C"* ̂  C^*, and if ^w € C" we set

(C,w)=c^=W)^(w)).
Let

M = {< € C^ReTr^),^) are linearly independent }.

If C»w € ̂  we write ^ ̂  w if
either C,w € M, C2 == w2, ^(C) = 0(w), (C,0«)) = (w,0(w))

or C,w ^ M, C2 = w2, «,0(0) = (w,0(w))._
This gives us an equivalence relation on C".
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Proposition 1^3. The map (C^R/^nM 9 C '-̂ C extends by continuity to a continuous
mapping from C" to '̂(R") and the following conditions are fulfilled:
(i) (Ho -C2)^) = 6{x).
(ii) The maps C \ R 9 z ̂  g^xp € V are analytic when a, ft € R".
(iii; The set {f^(x) = e-^^g^x); <€<?*} is a bounded set in S'.
(iv) g-^(x) = gc(-x) and g^(x) = gw(x), where w = -C.
(v) 9<. = 9w ̂  C ~ w.

In the proof of this proposition one needs some observations.
Lemma 1.4. Let 6 € 5'""1. Then there exists a unique distribution Ey e <?'(R" x R")
with the following properties:
(i) (A,-Ay)^(a;,y)==5(a;,t/).
(ii) |a;| = \y\ and {y - x,0) >0 in the support of Eg.

(Hi) There are functions /^a € L00 with support in the set where \x\ ̂  \y\ so that

Ee{x,y)= ^ (^+^)o((|a•-y|l-n/<,,,(a:,y)).
|a|=n—l

Civ) Ee(x +t6,y+16} -v 0 in •D' when |(| -» oo.

The distributions Ey depend continuously on 0. It follows from the uniqueness asser-
tions that Ee(x^y) is real, and

ETe(Tx, Ty) = E(x, y), E^T'x, T"y) = E^x, y) (1.2)
if T,T',T" are orthogonal linear transformation on R" and T'Q = T"0 = 0.

One can prove that

<7<(aQ = - / E^)(X, y)e•<»•<> dy, (1.3)

when C € (C" \ R") n M. This formula allows us therefore to define g^ for any < € 6"
and all statements except the last of Proposition 1.3 follow easily. In order to prove that
assertion we need to describe the behaviour at infinity of ge{x) when ^ is real.
Lemma 1.5. Assume that < 6 M and that ImTr(^) = 0. Then g^(x) = 0(|a;|~1) at
inanity. Moreover, if(Yor example ) <C»^(0) >. 0 and r+, Fo and F_ are cJosed conic sets
in R" \ 0 such that for some e > 0

x e r+ =^ 1 - e > {x,0} > {^0} + e

x € Fo =^ {ff,0} - e > {x,0} > e - {f),0}
x € r- =^ -(^,0) - e > {x,0} > -1 + e,

where 77 = v(r]), 9 = 0«) and x = a;/|a;|, then

^(^)=:0(M-n/2)in^+

^-^(^^(H-^inro
g<W - g^ - g^(x) = 0(|a;|-"/2) in r-
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Lemma 1.6. Assume that < € C" is the limit as e -^ +0 of (A + ie)0, where ImA > 0
and 0 € S^. Then g^x) = gx(x).

Since the wave front set of the Fourier transform of f( when C € (C^ \ R") n M equals
the set of all non-zero linear combinations of Redp^) and Imdp^) where ^ is a real zero
°fpc(0? ^ ls clear that there is no half-plane such that f((x) is rapidly decreasing in any
closed cone contained in the interior of that half-plane. Hence if g^ = g^ and Im7r(C) 7^ 0
then Im7r(C) = Im7r(w) and since C2 = w2 we conclude then that C ~ w. On the other
hand if C € M, ^, w are both real and g^ = <7iy, then it follows from Lemma 1.5 that (, ^ w.
If g^ == giy and (^,w ^ M, then it follows from Lemma 1.6 that (^ ^ w. This completes the
proof of Proposition 1.3 since (1.3) implies that g^ = g^ when ^ ~ w.

2. Exceptional points.

By using some interpolation theory one can prove the following result.

Lemma 2.1. Assume that 0 < a < 1. Then there is a Hilbert space C^ C L^R") with
the following properties
(i) Ifx € WR") and ̂ (0) = 1 then (1 + [^(l ~ x(D))u(x) € L2 when u € Co.
(ii) Assume that A, [A,T] and [[A,9/9xj},T] are continuous on L2 when T = 9/9xk,

T = ̂ Xk9/9xk or T = Xk9/9xf - x^9/9xk. Then A is continuous on Cy.

Since the adjoint of A satisfies the same conditions it follows that the operator A
above is also continuous on the dual C^.a of Cy.

We now define the spaces C<y^ when |a| < 1 and ^ € Cn:

C € (C" \ R") n M => C^ = {u : e-i<z*<>(l + |(:r,Im 01)^ € L2}

Cec^R^c^M^r^^L2

Ceac^r^^r^

We observe that £-<r,-< is the dual of jC^(.
Set

G^u(x) = / ̂ (a: - y)u(y) dy, u € C^R").

This maps extends to a continuous map from jCy,< to the dual of this space when 1/2 <
a < 1. We set

^C == ^i/2<<r<iG(Ca^'

We can now introduce the notion of exceptional point.

Definition 2.2. We say that C € C" is an exceptional point for Hy if(Hv — C2)^ = 0 for
some 0 7^ u € X<;.

We let ^ denote the set of exceptional points.
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Theorem 2.3. There exists a continuous function r(^) on C" which is rapidly decreasing
at infinity so that

^ = { C ; r ( C ) = l ) .

The set € and the function r have the following properties:
(i) r(a + zff} is analytic on C \ R when a, /3 e R/1.
(ii) r(C) 6 R when <2 € R and C t 90^.
(iii) c e £ ̂  -C, C e £.
(iv) JfC^M and 7r(C) ̂  0 then < 6 £ if and only if (2 is an eigenvalue.
(v) If£ is non-empty then ^R = € n 90" is non-empty. In particular, ^R is not empty if

Hv has a negative eigenvalue.
(vi) £ is a union of equivalence classes for ^.

We shall make some remarks on the proof of this result. One can construct a contin-
uous family of isomorphisms AQ, 6 € •S^"1, on L2 such that the conditions (ii) of Lemma
2.1 are fulfilled and

HyAe = Ae(Ho + Ke) (2.1)
where

N

^==1^®^ (2.2)
i

and f^g g^ € L^R") for any a. Moreover, these functions are real valued, depend
continuously on 0 and {y - x,0} > 0 in the support of the kernels of AQ and Kg. The
operators AQ are isomorphisms on the spaces X^ when 0 = 0{Q.

It follows from these properties that (, is exceptional for Hv if and only if it is excep-
tional for Ho + Ke where 6 = (?(C). Some simple computations show then that ^ € £ if
and only if det(J - .R(C)) = 0 where J2(C) is the N x N matrix with entries

^(C) = (Gcfk^(C),gj^((:))'

We now set r(C) = 1 - det(Z- .R(C). Then the first assertion of the theorem holds and
r(^) is a continuous function on C71. It can be proved that it vanishes rapidly at infinity.
We observe also that

Rjk{Q = / / ̂ (O^y^ewW^ dy (2.3)

where gj,k,0j= fk,e * 9j,e- Combining this with the fact that 0(-C) = ^(C) one finds that
^C) = ̂ -O- Hence (^ € € => -< € ^. When ^ € C» is given we can always choose AQ(_^
as the adjoint of the inverse of A^). A simple calculation, which makes use of the fact
that E-e(x,y) = Ee(-x, -y) and that the Ag are real, shows then that R(() = R{Q* for
such ^. Hence £ is invariant under conjugation and we have verified (iii). The conditions
(i), (iv) and (vi) are easy to verify, so we finish this section by discussing (ii) and (v).

When proving (ii) we may in view of (vi) assume that (^ = sen-i + ite^, where s 6 R
and t > 0. Then 0(C) = Q = Cn and it follows from (1.2) that Eo(x,y) = E ^ x ^ y ' )
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i f y ' = (t/i,...,yn-2,~!/n-i,!/n). Since e^'O = e1^-15^", it follows from (2.3) that
-R^(C) € R Hence r(C) € R.

In order to prove (v) we argue by contradiction and assume (using (vi)) that soen-i +
^o^n € ^ for some SQ > 0 and some ZQ in the upper half-plane, while ^R is empty. Set
qs{z) = r(,seyi-i + ^n) — 1, when Qz > 0 and s > SQ. This is a continuous family of
functions which are analytic in the upper half-plane and continuous in the closure of that
set. Moreover, there is a positive constant R so that |9a(^)| > 1/2 when s 4- \z\ > R' Our
assumptions allow us therefore to find a rectangle K in the upper half-plane, so that ZQ is
in the interior of K while qs{z) ̂  0 when s > SQ and z 6 9K. Set

^)=(27^i)-l/^rl^(i)d..
J K dz

Then N{s) is a continuous integer valued function which vanishes for large s. Since N(so) •^-
0 we obtain a contradiction.

3. Exceptional points and factorization of the scattering matrix.
In this section we shall briefly indicate why the investigation of the exceptional points is
important in inverse scattering problems. In order to avoid some technical difficulties we
assume in addition to (0.1) that v{x) is an integrable function

The scattering operator is represented by a family 5'(A) = I + T(A), X > 0, of unitary
operators on L^.S'""'1), where the integral kernel of T(A) (the scattering amplitude) is a
continuous function T(A,<^,<^) on R^- x Sn'~l x S11'"1 since we have assumed that v is
integrable.

We shall say that an operator N on ^(.S'"^1) is a Volterra operator w.r.t. 0 6 .S "̂1

if its integral kernel N{(f>, <f>1) is supported in the set where (<f> — <^, 0) > 0 and

sup ! \N(<f>, <^)| d(f>1 < oo, sup / \N(<{>, (j>'}\ d(f> < oo.
<fe J ^ J

We let Ve be the space of such operators, and we say that the unitary operator S on
^2^n-i^ admits a 6- factorization if there exist N± € V^e so that

J+^+=5(J~JV~). (3.1)

Lemma 3.1. Let Me{\) be the operator on L2^1^"1) which is given by

Me(\)u(<l>) == lim r(\<f> + ie6}u{(f>\ u 6 ̂ (.S^-1).

There are operators P^A) € Ve, which depend continuously on 6 and \, so that

I - Me(\) + P^(A) = 5(A)(I - Me(\) - P<r(A)), A > 0, 0 e S .̂ (3.2)

From this lemma follows the following result.
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Theorem 3.2. Assume that \ > 0, 0 e 5'n~l and that there is no C € ^R with C2 = A2

and Q{(^) == 0. Then 5(A) admits a 6-factorization.

We remark finally that if v is small then (2.1) holds with KQ = 0 and there are no
exceptional points. The equation (3.2) can then be replaced by

I+N^\)=SW(I-N,(\))

if we set
<(A) = P^-WI - M,(A))-1, N^(\) == P,-(A)(I - M,(A))~1.

Let
Wi:= lim e^e^110

t-^±00

be the wave operators. Then the operators Nj^ = WjLA^, which commute with HQ^
correspond to the families of operators N^(\).
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