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Global solution of the wave equation
by
A.Laptev and Vu.G.Safarov

LetMbea C°° Riemannian manifold, dim M =n. In the present paper we

consider the Cauchy problem for the wave equation
1
(=3 +/-8)ultxy)=0
i

uOxy) = 8(x-vy), X,y € M,t € [0,00]

where A denotes the Laplace-Beltrami operator on M. Let {gii} be components of
the metric tensor gon M, h(x,E) = (Zgii?,iii)uz be a smooth function on T*M\O.

Let us introduce a smooth homogeneous canonical transformation G defined
by the Hamiltonian flow generated by the Hamiltonian system of equations
(1) ¥ x=h,, gr&=h,
with initial conditions x(0) =y, £(0) =1, (ym)e T*M. S, G : T*M - T*M and
Glym) = (x*&%) = (x*(ty.n), gXtym)),
where (x*, £*) is the solution of the system (1)

We consider a fanlily of Lagrangian manifolds
A'={(x8).(ym) : (x&) =G'(y,-n)} € T*M x T*M,
smoothly depending on the parameter t.
Definition . We say that function ¢ € C(R'xMx{T*M\0}) parametrizes A = Uio
A'f
(2) A'={(xo,). (v0,):0,=0)
and ¢ is non degenerate, homogeneous phase function of positive type, such that

differentials d<pTl , j=1,...,n are linearly independant (we use the terminology from
j

[1,v.IV])
In this paper we construct a global (for all t) phase function parametrizing A

and as a result we can modulo smooth functions represent the Schwartz Kernel of
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the operator exp (-it+v-A ) as a simple oscillatory integral. It was thought for a
long time that Lagrangian manifolds in general do not allow a global parametrization
of the type (2). This is apparently the case if the phase function ¢ is real. We
introduce here function ¢ which is a complex-valued function and Im ¢ >O0.
Computation of the principal symbol of the amplitude allows us to introduce 1-form
Q and to interpret the Maslov class as an element in the de Rham cohomology group.
The value of this class on a closed curve gives the value of the Maslov index of the
curve. (an analogous definition has been given by V. Arnold [2] only for the
Lagrangian Grassmannian).

Complex phase functions have been applied to different problems earlier, see
[3], [4], [5]. General method concerning homogeneous Lagrangian manifold was

given in [6]. Some analogues one can also find in [7], [8]

onstructi

Let I be a linear symmetric Levi- Civita connection corresponding to
Riemannian metric g, I';k = I‘;k be the Christoffel symbols of the connectionT.

For sufficiently close points Xx€M, yeM let us denote by Yx'y(‘t) the
"shortest" geodesic connecting x and y. We shall choose the parameter < such that
ey (0) = x Yx'y(l) =y. Put v(x,y) = Yx'y(O) € T,M. Denote by ¢, the parallel
transport from T} M into T’;M along the geodesic ¥, . In the normal system of
coordinates with centre x this operator can be represented by nxn matrix. We

denote this matrix by ¢(x,y).

Lemmai: If x =y then
o(xzy) = 1+ 0 (x-y[).

Proof. In the normal system of coordinates y = (yl,...,y") the components ¢;(x,y)
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satisly the following equations

Z, 7 -x) 9 k0] (xy) = Z Ty ) (V5 -x) 0 (xiy)

i i
¢i(st)|y=x = 81-

\ 4 . . .. .
Since I‘ki(x) =0 is the normal system of coordinates, it implies that

i .
aykq)i(x,y)ly=x =0. Lemma is proved.

Lemma 2 In an arbitrary system of coordinates

g* (t,ym). X’; (tym)=0, k=1,..n,
kK
gtyn). x(x (tym) = n k=1....n,

where (x*,£¥) = G'(y.n).

Proof. If we considerd  and ayk as vector fields on T¥M , then

Mg
¥ x* = <kdx,dG (@_)>,
¢ Xﬂk <& dx ("k)>
*. ¥k = , ! k
£ X <& dx dG(ay )>

Since the transformation G' preserves the canonical 1-form §dx, it follows

that
X X
X =<ndn,9 > =0
& n n dn N
E¥ x*k= <ndy,d k> = M-
Y Y

Thus the proof is complete

Lemma 3 . In an arbitrary system of coordinates

X X X x o _ _

(3) xnk.gye- gnk.gye =8, k=1..n
X X X b S _

(4) xnk.gne-gnk .xne_o, kl=1,..n
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Proof
X EX¥e _E¥ | x* = <dxAdE,dG(d )A dG'(a €)> =
X Syt T 8, Xy, = <9XA (ne) (3,6)>

=<dyAdn, a Ad €>=3,,.
y TI le Y k@

By analogy

x* EX _E* . x* = <dx AdE, dG (3 )AdG'(a
) gne §nk o < & ( "8) ( Tle)>

= <dy Adn,da_ A9 =0.
<day n n, Tle>

Lemma is proved.

Let|. Iy be the length of the covector (vector) from T* M(TYM) in the metric

g. We introduce the following functions, which are positively homogeneous of degree

1inn.

o, (tx,yn) = ¥ (tym).v (x* (tyn).x)

o (txym) = gl (Heym) 2 px (. hly
(7) o(t,x,ym) = ¢ (tx,ym) + ig,(t,x,y.n)

Here it is enough for us to define the function v for points x*, xeM
sufficiently close to each other. However we do not lose anything if we continue v
by a smooth non-zero function outside a neighborhood of
diag (MxM)

Let us denote

8) Z,=¢&* ~ilnl, x*

Ny Ny
and
(9) Z ={Z,};_,
Lemme 4

(10) 3, o(txym) = vix* x) Z+ O (Ix- %),
k

(11) N ol(t,x ym) = -n,.
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(12) o _ko(t.x*ym) = &,
(13) (Vx<p)nk (t,x%ym) =Z,.

Proof. In the normal system of coordinates with centre x

v(x* ,x) = —¢x,x*v(x.x*) = ¢(x;x*) (x-x*).

In view of Lemmas 1 and 2 we obtain that

(14) é)nkq)l=<1>(X;x’§(x—x"‘)«§"1‘1 - o(x;x*) x;ké* + 0(lx-x*4°) = v(x*,x)g’;lk

k
+0(Ix-x*)

Now, in an arbitrary system of coordinates

. 2
(15) %, 92" —i( xtl V(X" %)) xdnly +O(Ix-x* %),

k
where (.,.), is the scalar product of vectors (covectors) from T M (T’;M) in the
metric g. Combining (14) and (15) we have (10).
By analogy, in view of Lemma 2
dko(t,x*ym = -&¥. x* = -
y o(t,x*,ym) = -& v, M
In the normal system of coordinate with centre x*

a_ko(tx*ym) = a_k (€ (x-x*) + zlx-x*I7, = &}.

By differentiation (14) and (15) with respect to x we obtain (13).
Theorem 1. The function ¢ is a non-degenerate phase function parametrizing A.

Proof. Assume first that the matrix Z introduced in (9) in non- degenerate. Then
from (10) it follows that the condition ¢ =0 is equivalent to x = x*for x close to x*.
In view of (11) and (12) we obtain that

A'={(x0,). (y.0,) : ¢, =0} for te[0,c0])

Now it is clear that (13) implies
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(det (px-fl)|<pn _0° detZ=z0,

and therefore the function ¢ is a non-degenerate phase function.
To prove that the matrix Z is non-degenerate let us suppose first that

A= (ll,...,l.n)e R" and
n
> a7 =0,
Pl "

where Z, are columns of Z, see (8). Then both real and imaginary parts are equal to

zero

16) 24, E* =0,22.x* =0.
1) kg"k xn,

Multipling (3) by &, A, after summation using (16) we have

n n
2
0= A x*¥ A - A &* A X = A .

k%:: ( k- ny egye kE""k ¢ ye) k2=:l k

This implies A=..=k = O. Now if A =ak+ibk ,k=1,....n, then from the
n .

equation 2 lklkz 0 and (4) it follows that
k=1

n n
> 2Z.7. =2 A Re(Z .Z.) =0for =1, n.
ST e

This means that
. n n
a . 7,= k2=1 b, Z,Z,=0 for £=1,...n. So k%’,:l a, Z,.2,Z,=0

M=

=
1]

1

(*DM =]
o
N
o
N
1
o

K,8=1
Since Z, are linearly independent over the set of real numbers we obtain that
a, =b =0fork=1.,n

Theorem 2. Modulo the smooth functions the Schwartz kernel of the operator
u(t) = exp(-itv= A) can be written in the form

(17) (2z)™" JT* M gle(txym) a(t,ym) dn, x,y € M, te [0,[ where ¢ is defined
y
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in (7) and a€ C° (R'xT'M) is a classical amplitude with the principal symbol

(18) a,=(det 2)"?

Proof To prove this theorem we need only to find the principal symbol of the
amplitude. The problem is reduced to solution of the transport equations. Let us

assume that a is a classical amplitude function. Then

(fTat+ VZA)e'a =

-l;- a, + [(Pt + h(x,vx(p) + lZ-i h§§ Puxt O(|T|I‘1)]a =

1

= —a +[E*v - 8% - ix*v Inl+h(xE* +iv Inl+0 (b))

1

+ 57 hy o, +0 (WDa =
1

if a,+ —;,—[hxxv.v + 2ihy, vy I'r||—h§gvv|'ql2 + T Dy @yt R ]a,

3,2 2 -
where R =0 (Iv[" Inl"+ Iv[" Il + vl + Iviinl '), when [l = oo, Iv| = O.
Since Z is non-degenerate we obtain that

i 1 -1 i
ve‘p=-i— YA Vne‘p.

Formaly integrating by part we have
(19) (-o, + V=24 )u =

-n 1 1 -1 e 2,-1
(2r) JT;M [Ta, + 57 Tr(Z h, x| + 202 h,x)-Inl"Z hyx})a+

h a+R,] e'? dn,
where R, = O(vPml+Inl™"). From the definitions (8), (9) of Z we have

2 -1 x _ -1 X
(20) " 27 hy, x7 = inlZ " by, (Z-§7)

XX(p XX

Hamiltonian system of equations (1) implies

4  x _ X X
gt Xy = By by + D X,

(21)

d X X X
v &y 7 b &g - by X

If we substitude (20) and (21) into (19) and put it equal to zero we obtain
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the following equation for the principal symbol a, of the amplitude a
S ay - >Tr (2,27 a,=0.

Therefore

ay= (det 7)"?
To finish the proof of the theorem 2 we should notice that further terms of the
amplitude we obtain by solving recurrent system of transport equations.

Using the explicite formula for the principal symbol in oscillatory integral (17)
we can now define the phase shift determined by the Maslov index.

Let us introduce 1-form Q on A

1 2
Q = 5 d(agr det” Z)

Theorem 3 The 1-form represents an element of the Maslov class in the de Rham
cohomology group. The Maslov index of a closed curve on A is equal to the integral

of the form Q over this curve.
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