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Journées Équations aux dérivées partielles
Évian, 4 juin–8 juin 2007
GDR 2434 (CNRS)

Lecture notes :
Global Well-posedness, scattering and blow up

for the energy-critical, focusing, non-linear
Schrödinger and wave equations

Carlos E. Kenig

Lecture 1
In these lectures I will discuss recent joint works with F. Merle. In them we have
developed an approach to the study of non-linear critical problems of dispersive type.
The issues studied are global well-posedness and scattering. The approach works for
both focusing and defocusing problems, but in these lectures I will concentrate on
two focusing problems. The approach proceeds in steps, some of which are general
and hence apply to “all problems” and some which are specific to each particular
problem. The concrete problems to be discussed here are the energy critical, focusing
non-linear Schrödinger equation and wave equation. I will try to separate both kinds
of arguments in the exposition. I will start out by discussing (NLS).

Consider thus the Cauchy problem for the Ḣ1 critical non-linear Schrödinger
equation

(CP )
{
i∂tu+ ∆u± |u|4/N−2u = 0, x ∈ RN , t ∈ R,
u|t=0 = u0 ∈ Ḣ1.

The problem is called “critical” because if u is a solution and λ > 0, uλ(x, t) = 1
λN−2/2

u(x
λ
, t
λ2 ) is also a solution and ||uλ(−, 0)||Ḣ1 = ||u0||Ḣ1 , ∀λ > 0. Here the − sign

corresponds to the defocusing problem and the + sign to the focusing problem.
The theory of the local Cauchy problem (Cazenave-Weissler 90, [4]) shows that if
||u0||Ḣ1 ≤ δ, δ = δN > 0 is small (and N ≤ 5) then ∃ ! solution to (CP ) with
u ∈ C(R; Ḣ1), ||u||L2(N+2)/N−2

x,t < ∞ (i.e. the solution scatters). As we will see later
this is equivalent to ∃u±0 ∈ Ḣ1 s.t. ||u(−, t)− eit∆ u±0 ||Ḣ1 −−−−→

t→±∞
0. Also, the energy

identity holds, i.e.

E(u(t)) = 1
2

∫
|∇u(x, t)|2 dx± 1

2∗
∫
|u(x, t)|2∗ dx = E(u0) .
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Here ± corresponds to the defocusing, focusing cases, 1
2∗ = 1

2 −
1
N

is the “Sobolev
conjugate” exponent. Here we see the difference between the defocusing and focusing
cases. In the defocusing case, Bourgain ([3], 1998) proved that for N = 3, 4, u0 radial,
the above result holds for ||u0||Ḣ1 <∞. Bourgain’s result was extended to u0 radial,
N ≥ 5 by Tao ([30], 2004). For N = 3, general u0 the same result was proved by
Colliander-Keel-Staffilani-Takaoka-Tao ([5], 2004). This was extended to N = 4 by
Ryckman-Visan ([25], 2005) and to N ≥ 5 by Visan ([33], 2007). In the focusing
case, these last results do not hold. In fact, a classical argument, based on the “virial
identity” (Zakharov, Glassey) shows that if

∫
|x|2 |u0(x)|2 <∞ and E(u0) < 0, then

the solution must break-down in finite time (Glassey 77, [11]). Also,

W (x, t) = W (x) =
(

1 + |x|2

N(N − 2)

)−(N−2)/2
∈ Ḣ1

and solves the elliptic equation
∆W + |W |4/N−2 W = 0 , x ∈ RN ,

and hence (NLS), but scattering does not occur, even though the solution is global
in time. Our main result in this case is:

Theorem A (K-Merle [16], 2006). For the energy critical, focusing (NLS), N =
3, 4, 5, u0 radial with E(u0) < E(W ),

i) if ||u0||Ḣ1 < ||W ||Ḣ1 the solution exists for all times and scatters.

ii) if ||u0||Ḣ1 > ||W ||Ḣ1 (and ||u0||L2 < ∞) then the solution breaks down in
finite time.

Remark. The conditions E(u0) < E(W ) and ||∇u0| = ||∇W || are incompatible
(from now on, || || is the L2 norm).

I will now turn to the proof of Theorem A. We start with a quick review of the
local (CP) theory.

Theorem (Cazenave-Weissler [4], 1990). Let u0 ∈ Ḣ1(RN), ||u0||Ḣ1 ≤ A. Then,
(for 3 ≤ N ≤ 5) ∃δ = δ(A) s.t. if ||eit∆u0||S(I) ≤ δ, 0 ∈ İ, there exists a
unique solution to (CP) in RN × I s.t. u ∈ C(I; Ḣ1), sup

t∈I
||u(t)||Ḣ1 + ||∇u||W (I) ≤

C(A) and ||u||S(I) ≤ 2δ. (Here ||f ||S(I) = ||f ||2(N+2)/N−2
I L2(N+2)/N−2

x ; ||f ||W (I) =
||f ||

L
2(N+2)/N−2
I L

2N(N+2)/N2+4
x

). Moreover, u0 7→ u ∈ C(I; Ḣ1) is Lipschitz.

Sketch of the Proof . The key ingredients are the Strichartz estimates (Strichartz
77, [28], Keel-Tao 98, [15]) (N ≥ 3)

(S)

i) ||∇ eit∆ u0||W (−∞,+∞) ≤ C ||u0||Ḣ1

ii) ||∇
∫ t

0 e
i(t−t′)∆g(−, t′) dt′||W (−∞,+∞) ≤ C ||∇g||L2

t L
2N/N+2
x

iii) sup
t
||∇
∫ t

0
ei(t−t

′)∆ g(−, t′) dt′|| ≤ C ||∇g||L2
t L

2N/N+2

and the Sobolev embedding:
(Sob) ||v||

L
2(N+2)/N−2
I L

2(N+2)/N−2
x

≤ C ||∇v||W (I) .
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We then have (with f(u) = ±|u|4/N−2 u) to solve the integral equation (Duhamel’s
principle)

u(t) = eit∆ u0 +
∫ t

0
ei(t−t

′)∆ f(u) dt′.

Let Ba,b = {v ∈ RN × I : ||v||S(I) ≤ a, ||∇v||W (I) ≤ b}, Φu0(v) = eit∆ u0 +∫ t
0 e
i(t−t′)∆ f(v) dt′. We will show that we can choose δ, a, b s.t.

Φu0 : Ba,b −→ Ba,b

and is a contraction. From this, also using (S) iii), the theorem follows. But, by (S)
i), ii)

||∇Φu0(v)||(I) ≤ C A+ C ||∇f(v)||
L2
I L

2N/N+2
x

.

But |∇f(v)| ≤ C |∇v| |v|4/N−2, so Hölder gives that this is

≤ C A+ C ||v||4/N−2
S(I) ||∇v||W (I) ≤ C A+ C a4/N−2 b.

By (Sob), ||Φu0(v)||S(I) ≤ δ + C a4/N−2 b. We then choose b = 2AC, a so that
C a4/N−2 ≤ 1

2 , so that ||∇Φu0(v)||W (I) ≤ b. If we now set δ = a
2 , C a4/N−2−1 b ≤ 1

2
(which is possible if N < 6). We obtain ||Φu0(v)||S(I) ≤ a. The contraction property
is similar and the Theorem follows. �

Remark. Because of (S), (Sob), ∃ δ̃ s.t. if ||u0||Ḣ1 < δ̃, the hypothesis of the Theo-
rem holds for I = (−∞,+∞). Moreover, given u0 ∈ Ḣ1, ∃ I s.t. ||eit∆ u0||S(I) ≤ δ, so
the Theorem applies on I. Note also that if u(1), u(2) are solutions of (CP) on I (u ∈
C(I; Ḣ1), ∇u ∈ W (I), the integral equation holds with u(1)(t0) = u(2)(t0), t0 ∈ I),
then u(1) ≡ u(2) on I. This is because we can partition I into Ij’s s.t. ||u(i)||S(Ij) ≤ a,
||∇u(i)||W (Ij) ≤ b ; choosing t0 ∈ Ij0 using the uniqueness of the fixed point in Ij0
and then induction on j, our claim follows. Thus, there exists a maximal interval
I = I(u0) = (−T−(u0), T+(u0)) where the solution u ∈ C(I ′, Ḣ1) ∩ {∇u ∈ W (I ′)},
∀ I ′ b I, I ′ 6= I, is defined. We call I the maximal interval of existence. For t ∈ I
we have E(u(t)) = E(u0).

Standard blow-up criterion
If T+(u0) < +∞, we must have ||u||S[0,T+(u0)) = +∞. If not, M = ||u||S[0,T+(u0)) <∞.

For ε > 0, to be chosen, partition [0, T+(u0)) =
γ(ε,M)
∪
j=1

Ij, so that ||u||S(Ij) ≤ ε. If
Ij = [tj, tj+1), using the integral equation and the proof of the Theorem above, we
have

sup
t∈Ij
||u(t)||Ḣ1 + ||∇u||W (Ij) ≤ C ||u(tj)||Ḣ1 + C ||u||4/N−2

S(Ij) ||∇u||W (Ij).

If C ε4/N−2 ≤ 1
2 we can show inductively that

sup
t∈[0,T+(u0))

||u(t)||Ḣ1 + ||∇u||W ([0,T+(u0)) ≤ C(M).

Choose now (tn) ↑ T+(u0) and show, again using the integral equation, that for
n large, ||ei(t−tn)∆ u(tn)||S(tn,T+(u0)) ≤ δ

2 (on [tn, T+(u0)), u(t) = ei(t−tn)∆ u(tn) +∫ t
tn
ei(t−t

′)∆ f(u) dt′). But then, for same ε0 > 0 we have

||ei(t−tn)∆ u(tn)||S(tn,T+(u0)+ε0) ≤ δ
which, by the Theorem contradicts the definition of T+(u0).
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Scattering
If T+(u0) = +∞ and M = ||u||S(0,+∞) < ∞ then u scatters at +∞. In fact, by the
integral equation, as before we show that sup

t∈[0,+∞)
||u(t)||Ḣ1 + ||∇u||W (0,+∞) ≤ C(M).

But then, since
u(t) = eit∆ u0 +

∫ t
0
ei(t−t

′)∆ f(u) dt′

and if we set u+
0 = u0+

∫∞
0 e−it

′∆ f(u) dt′, so that by (S), u+
0 ∈ Ḣ1 and u(t)−eit∆ u+

0 =
eit∆
∫∞
t e−it

′∆ f(u) dt′ → 0 in Ḣ1 as t→ +∞ from iii), so that we get scattering.
We now turn to a perturbation theorem which is an important step in what

follows. The proof sketched in our original paper is incorrect. We are indebted to
M. Visan and X. Zhang for pointing this out and suggesting the use of fractional
derivatives to give a correct proof.

Perturbation Theorem
Let I = [0, L), L ≤ +∞, let ũ be defined on RN × I be such that

sup
t∈I
||ũ(t)||Ḣ1 ≤ A , ||ũ||S(I) ≤M , ||∇ũ||W (I) <∞

verify in the sense of the integral equation
i ∂tũ+ ∆ũ+ f(ũ) = e

and let u0 ∈ Ḣ1 be s.t. ||u0 − ũ(0)||Ḣ1 ≤ A′. Then ∃ ε0 = ε0(M,A,A′) s.t. if
0 < ε ≤ ε0 and

||∇e||
L2
IL

2N/N+2
x

≤ ε , ||eit∆ [u0 − ũ(0)]||δ(I) ≤ ε ,

then ∃ ! solution u on RN × I, s.t.
||u||S(I) ≤ C(A′, A,M) and sup

t∈I
||u(t)− ũ(t)||Ḣ1 ≤ C(A,A′,M)(A′ + ε+ ε′)

where ε′ = εβ for some β > 0.
In the proof it suffices to give a priori estimates for u, assuming that it exists.

The (CP) theory gives the rest. We will need 2 new ingredients:

(F )
∥∥∥∥ ∫ t

0
ei(t−t

′)∆ h(t′) dt′
∥∥∥∥
Lqt L

r
x

≤ C||h||
Lq̃
′
t L

r̃′
x

(Foschi [6], 2003, Vilela [32], 2007) holds, provided
1
q

+ 1
q̃

= N

2

[
1− 1

r
− 1
r̃

]
and 1

q
< N

(1
2 −

1
r

)
,

1
q̃
< N

(1
2 −

1
r̃

)
,

1
q

+ 1
q̃
< 1 , N − 2

r
<
N

r̃
,
N − 2
r̃

<
N

r
·

Notice that (q, r) = (2(N + 2)
N − 2 ,

2(N + 2)
(N − 2) ), (q̃, r̃) = (2, 2N

N − 2) verify the condi-

tions. For 0 < α < 1, α near 1, let 1
r

= N − 2
2(N + 2) + α

N
so that

||f ||
L

2(N+2)/(N−2)
x

≤ C||Dαf ||Lrx ,
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and with q = 2(N + 2)
N − 2 we have

||f ||S(I) ≤ C ||Dαf ||LqI Lrx ≤ C ||∇f ||W (I)

and, by interpolation,

||Dαf ||LqI Lrx ≤ C ||f ||
(1−α)
S(I) ||∇f ||

α
W (I).

Set q̃ = 2, 1
r̃

= N2 − 2(α− 1)N − 4α
2N(N + 2) , so that 1

r̃′
= 1
r

+ 2
(N + 2) . Note then that,

for α close to 1, (F ) is verified. By interpolation we have ||Dαeit∆[u0− ũ(0)]||LqI Lrx ≤
C(A′) ε′, ε′ = ε(1−α). Moreover, by Hölder,

|| |u|4/N−2 Dαu||
Lq
′
I L

r̃′
x
≤ ||u||4/N−2

S(I) ||D
αu||LqI Lrx .

The second ingredient is the chain rule and Leibniz rule for fractional derivatives
([19], 93]): in this case,

||Dα
[
f(ũ+ w)− f(ũ)

]
||
Lq̃
′
t L

r̃′
x
≤ C
[
||ũ||4/n−2

S + ||w||4/N−2
S

]
||Dαw||Lqt Lx

+ C||w||s
[
||ũ||(6−N)/N−2

S + ||w||6−N/N−2
S

][
||Dαũ||Lqt Lrx + ||Dαw||Lqt Lrx

]
.

To carryout the proof, we write u = ũ + w, so that the equation for w is i∂tw +
∆w = f(ũ + w) − f(ũ) − e, w|t=0 = u0 − ũ(0). Note that by the integral equation
for ũ, splitting into sub-intervals we obtain ||∇ũ||W (I) ≤ M̃ = M̃(M,A), so that,
by interpolation, ||Dαũ||LqI Lrx ≤ M1 = M1(M,A). We then split I =

J
∪
j=1

Ij, J =
J(M,A, η) so that on each Ij we have ||Dαũ||LqIj Lrx ≤ η, η > 0 to be chosen. Let
Ij = [aj, aj+1], a0 = 0, aJ+1 = L. By the integral equation on Ij

w(t) = ei(t−aj)∆ w(aj) +
∫ t
aj
ei(t−t

′)∆ [f(ũ+ w)− f(ũ)] dt′ +
∫ t
aj
ei(t−t

′)∆ e(t′) dt′.

By (F ) (and (Sob) and (S)) we have

||Dαw||LqIj Lrx ≤ ||D
α ei(t−aj)∆ w(aj)||LqIj Lrx + C ε0 + C ||Dα[f(ũ+ w)− f(ũ)]||

Lq̃
′
Ij
Lr̃′x

≤
(
||Dα ei(t−aj)∆ w(aj)||LqIjLrx + C ε0

)
+ C η4/N−2 ||Dαw||LqIjLrx

+ C ||Dαw||(N+2)/N−2
LqIj
Lrx

.

Thus, if C η4/N−2 ≤ 1
3 , we get

||Dαw||Lq
Ij L
r
x

≤ 3
2 γj + C̃ ||Dαw||(N+2)/(N−2)

LqIj
Lrx

,

where
γj =

[
||Dα ei(t−aj)∆ w(aj||Lqt Lrx + C ε0

]
.

Note that η depends only on N . From this a standard continuity argument shows
that there exists C0 = C0(C̃) s.t. if γj ≤ C0, we have

a) ||Dαw||LqIjLrx ≤ 3γj. b) C̃ ||Dαw||(N+2)/N2
LqIj
Lrx

≤ 3γj .
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Hence, ||Dαw||LqIjLrx ≤ 3[||Dα ei(t−aj)∆ w(aj)||Lqt Lrx + C ε0]. To continue in the itera-
tion, put t = aj+1 in the integral formula, apply ei(t−aj+1)∆ to obtain:

ei(t−aj+1)∆ w(aj+1) = ei(t−aj)∆ +
∫ aj+1

aj
ei(t−t

′)∆[f(ũ+ w)− f(ũ)] dt′

+
∫ aj+1

aj
ei(t−t

′)∆ e(t′) dt′.

By the same argument we get:

||Dα ei(t−aj+1)∆ w(aj+1)||Lqt Lrx ≤ ||D
α ei(t−aj)∆ w(aj)||Lqt Lrx

+ C ε0 + C η4/N−2 ||Dαw||LqIj Lrx + C̃ ||Dαw||LqIj Lrx .

Again, taking η small we see that γj+1 ≤ 10γj provided γj ≤ C0. Recall that by
assumption we have γ0 ≤ ε′0 + C ε0. Iterating, γj ≤ 10j(ε′0 + C ε0), if γj ≤ C0. If we
have 10J+1 (ε′0 + C ε0) ≤ C0, this always holds. Repeating the argument we obtain

||Dαw||LqI Lrx ≤ 3(J + 1) 10(J+1) (ε′ + C ε),
for ε0 small. Hence, by Sobolev ||w||S(I) ≤ C(ε′+ε). The rest of the argument follows
similarly.

Some useful corollaries:

Corollary 1. Let K ⊂ Ḣ1 be s.t. K is compact. Then ∃T+
K , T−K s.t. ∀u0 ∈ K,

T+(u0) ≥ T+
K , T−(u0) ≥ T−K .

Choose M = 1, Ã = sup
u0∈K
||u0||Ḣ1 , A = C(Ã) as in (CP), ε0 = ε0(1, A, 1) as in

Perturbation Theorem, ε1 ≤ min(ε0, 1). Cover K by balls B(u0,j, ε1), 1 ≤ j ≤ J
(compactness of K). Consider T̃+

j , T̃
−
j s.t. ||uj||S[−T̃−j ,T̃

+
j ] ≤ 1 and T+ = min

1≤j≤J
T+
j ,

T− = min
1≤j≤J

T−j . Then, if u0 ∈ B(u0,j, ε1) for some j, the solution exists in [−T−, T+]
by Perturbation Theorem.

Corollary 2. Let ũ0 ∈ Ḣ1, ||ũ0||Ḣ1 ≤ A, ũ solution in (−T−(ũ0), T+(ũ0)). If u0,n →
ũ0 in Ḣ1, then T−(ũ0) ≥ lim inf T−(u0,n) ; T+(ũ0) ≤ lim inf T+(u0,n) and ∀ t ∈
(−T−(ũ0), T+(ũ0)) we have un(t)→ ũ(t).

In fact, if I ′ ⊂⊂ I = (−T−(ũ0), T(ũ0)), sup
t∈I′
||ũ(t)||Ḣ1 ≤ C(A, I ′), ||ũ||S(I′) ≤

M . Apply the Perturbation Theorem with u = un, u0 = u0,n on I ′. If ε0 =
ε0(M,C(A, I ′), 1) and n is so large that ||u0,n − ũ0||Ḣ1 ≤ 1, ||eit∆[u0,n − ũ0]||S ≤ ε0,
we have un exists on I ′ and sup

t∈I′
||un(t)− ũ(t)||Ḣ1 ≤ C(A,M){||u0,n− ũ0||βḢ1}, β > 0,

so the claim follows.
From now on we concentrate on the focusing case, i ∂tu+ ∆u+ |u|4/N−2 u = 0,

u|t=0 = u0 ∈ Ḣ1.

We start out with a review of Glassey’s blow-up result: assume that∫
|x|2 |u0(x)|2 dx <∞, u0 ∈ Ḣ1,

E(u0) < 0, I = (−T−(u0), T+(u0)).
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Let y(t) =
∫
|x|2 |u(x, t)|2 dx. A calculation shows that y′′(t) = 8

∫
|∇u(x, t)|2 −

|u(x, t)|2∗ dx (the same calculation also gives y(t) < ∞, ∀ t ∈ I). Since E(u(t)) =
E(u0) < 0, 1

2
∫
|∇u(t))|2−|u(t)|2∗ = E(u(t))+( 1

2∗−
1
2)
∫
|u(t)|2∗ ≤ E(u(t)) = E(u0) <

0, y′′(t) < 16E(u0) < 0. But, since y ≥ 0, I cannot be infinite. The next step is to
establish some variational estimates. Recall that W (x) = (1 + |x|2

N(N−2))
−(N−2)/2 is a

stationary solution of (CP), ∈ Ḣ1 and solves the elliptic equation

∆W + |W |4/N−2 W = 0.
W ≥ 0 and is radially decreasing. By the invariances of the equation,

Wθ0,λ0,x0(x) = eiθ0λ
N−2/2
0 W (λ0(x− x0))

is still a solution. Aubin and Talenti (76) gave the following variational charac-
terization of W : let CN be the best constant in the Sobolev embedding ||u||L2∗ ≤
CN ||∇u||L2 . Then ||u||L2∗ = CN ||∇u||L2 , u 6≡ 0⇔ u = W(θ0,λ0,x0) for some (θ0, λ0, x0).
Note that by the elliptic equation,

∫
|∇W |2 =

∫
|W |2∗ . Also CN ||∇W || = ||W ||L2∗

so that C2
N ||∇W ||2 =

( ∫
|∇W |2

)(N−2)/N
. Hence,

∫
|∇W |2 = 1

CNN
. Moreover

E(W ) = (1
2 −

1
2∗ )
∫
|∇W |2 = 1

NCNN
·

Lemma. Assume that ||∇v|| < ||∇W || and that E(v) ≤ (1 − δ0)E(W ), δ0 > 0.
Then ∃ δ = δ(δ0, N) s.t.

i) ||∇v||2 ≤ (1− δ) ||∇W ||2

ii)
∫
|∇v|2 − |v|2∗ ≥ δ ||∇v||2

iii) E(v) ≥ 0.

Proof. Let f(y) = 1
2 y −

C2∗

2∗ y
2∗/2, y = ||∇v||2. Note that f(0) = 0, f(y) > 0 for y

near 0, y > 0 and that f ′(y) = 1
2 −

C2∗
N

2 y2∗/2−1, so that f ′(y) = 0 iff y = y0 = 1
CNN

=
||∇W ||2. Also, f(y0) = 1

NCNN
= E(W ). Since 0 ≤ y < yc, f(y) ≤ (1− δ0) f(yc) and f

is non negative and strictly increasing between 0 and yc, and f ′(yc) 6= 0, we obtain
0 ≤ f(y), y ≤ (1− δ) yc = (1− δ)||∇W ||2. This shows (i), (iii). For (ii), note that∫

|∇v|2 − |v|2∗ ≥
∫
|∇v|2 − C2∗

N

( ∫
|∇v|2

)2∗/2

=
∫
|∇v|2

[
1− C2∗

N

( ∫
|∇v|2

)2/(N−2)]
≥
∫
|∇v|2

[
1− C2∗

N (1− δ)2/(N−2)
( ∫
|∇W |2

)2/(N−2)]
=
∫
|∇v|2[1− (1− δ)2/(N−2)]

which gives (iii). �

Remark. If ||∇u0|| < ||∇W ||, E(u0) ≥ 0.

From this static Lemma, we obtain dynamic consequences.
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Corollary (Energy trapping). Let u be a solution of (CP) with maximal interval
I, ||∇u0||2 < ||∇W ||2, E(u0) < E(W ). Choose δ0 > 0 s.t. E(u0) ≤ (1 − δ0)E(W ).
Then, for each t ∈ I, we have for δ̄ = δ̄(δ0),

i) ||∇u(t)||2 ≤ (1− δ)||∇W ||2, E(u(t)) ≥ 0

ii)
∫
|∇u(t)|2 − |u(t)|2∗ ≥ δ

∫
|∇u(t)|2

iii) (Coercivity and uniform bound)
E(u(t)) ' ||∇u(t)||2 ' ||∇u0||2 ,

with comparability constants which depend only on δ0.

Proof. From the continuity of the flow, conservation of energy and the previous
Lemma. �

Remark. Let u0 ∈ Ḣ1, E(u0) < E(W ) but ||∇u0||2 > ||∇W ||2. If δ0 is chosen so
that E(u0) ≤ (1 − δ0)E(W ), we can conclude, in the same way that

∫
|∇u(t)|2 ≥

(1 + δ)
∫
|∇W |2, t ∈ I.

But then, notice that:∫
|∇u(t)|2 − |u(t)|2∗ =2∗E(u0)−

2
(N − 2)

∫
|∇u(t)|2

≤2∗E(W )− 2
(N − 2)

1
CNN
− 2δ

(N − 2)
1
CNN

= −2δ
(N − 2)CNN

< 0 .

Hence, if
∫
|x|2 |u0(x)|2 dx <∞, Glassey’s proof shows that I cannot be finite. If u0

is radial, u0 ∈ L2, using “local virial identities” one can see that the some holds. We
now turn to the next step in the proof:

Concentration - Compactness Procedure
We now turn to the proof of the positive result in Theorem A. Recall that by the
coercitivity-uniform bound estimate, if E(u0) < E(W ), ||∇u0||2 < ||∇W ||2, if δ0
is s.t. E(u0) ≤ (1 − δ0)E(W ), E(u(t)) ' ||∇u(t)||2 ' ||∇u0||2, t ∈ I, and that if
||∇u0||2 < ||∇W ||2, we have E(u0) ≥ 0. It now follows from (CP) that if ||∇u0||2 <
||∇W ||2 and E(u0) ≤ η0, η0 small, then I = (−∞,+∞) and u scatters. Hence by
considering G = {E : 0 < E < E(W ): if ||∇u0||2 < ||∇W ||2 and E(u0) < E,
then ||u||S(I) < ∞} and Ec = supG, we find Ec with η0 ≤ Ec ≤ E(W ) s.t. if
||∇u0||2 < ||∇W ||2 and E(u0) < Ec, then I = (−∞,+∞) and u scatters, and Ec
is optimal with this property. Theorem A is the assertion Ec = E(W ). Assume
then Ec < E(W ) and we will reach a contradiction. Note that if 0 ≤ E < Ec,
||∇u0||2 < ||∇W ||2 and E(u0) < E, then ||u||S(I) < ∞, while if Ec < E < E(W ),
∃u0 s.t. ||∇u0||2 < ||∇W ||2, Ec ≤ E(u0) ≤ E < E(W ) and ||u||S(I) = +∞. We will
use a concentration-compactness argument to deduce some consequences of this that
will eventually lead to a contradiction.

Proposition 1. There exists u0,c ∈ Ḣ1, ||∇u0,c||2 < ||∇W ||2, with E(u0,c) = Ec(<
E(W )) s.t. if uc is the corresponding solution then ||uc||S(I) = +∞.
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Proposition 2. For any uc as in Proposition 1, with (say) ||uc||S(I+) = +∞ (I+ =
I ∩ [0,+∞)), there exist x(t) ∈ RN , λ(t) ∈ R+, t ∈ I+ such that

K =
{
v(x, t) : 1

λ(t)(N−2)/2 uc

(
x− x(t)
λ(t) , t

)
: t ∈ I+

}
has compact closure in Ḣ1.

The proof of Propositions 1 and 2 uses the coercitivity and uniform bound es-
timates, in conjunction with the “profile decomposition” of Keraani ([20], 2001),
which describes the defect of compactness in the estimate

||eit∆ u0||S ≤ C ||u0||Ḣ1 ,

which combines Strichartz (S) (i) with Sobolev (Sob). This is based on the “improved
inequality” (N = 3)

||h||L6(R3) ≤ C ||∇h||1/3L2(R3) ||∇h||
2/3
Ḃ0

2,∞
,

where Ḃ0
2,∞ is the standard Besov space (see [7]).

Theorem (Profile decomposition, Keraani 2001). Let {v0,n} ∈ Ḣ1, ||v0,n||Ḣ1 ≤ A,
||eit∆v0,n|| ≥ δ > 0. Then, there exists a subsequence of {v0,n} and {V0,j}∞j=1 in Ḣ1

and triples (λj,n;xjn ; tj,n) ∈ R+ × RN × R, with
λj,n
λj′,n

+ λj′,n
λj,n

+ |tj,n − tj
′,n|

λ2
j,n

+ |xj,n − xj
′,n|

λj,n
−−−→
n→∞

∞ , j 6= j′

(the triple is orthogonal), s.t.

i) ||V0,1||Ḣ1 ≥ α0(A) > 0.

ii) If V `j = eit∆ V0,j, then we have, for each J

v0,n =
J∑
j=1

1
λ
N−2/2
j,n

V `j

(
x− xj,n
λj,n

,
tj,n
λ2
j,n

)
+ wJn ,

where lim infn→∞ ||eit∆ wJn ||S −−−→
J→∞

0, and for each J ≥ 1 we have:

(iii a) ||∇v0,n||2 =
J

Σ
j=1
||∇V0,j||2 + ||∇wjn||2 + o(1), as n→∞

and

(iii b) E(v0,n) =
J

Σ
j=1

E(V `j (− tj,n
λ2
j,n

)) + E(wJn) + o(1)

as n→∞.

Lecture 2
In order to apply Keraani’s Theorem to our non-linear problem, we need the notion
of a “non-linear profile” : let v0 ∈ Ḣ1, v = eit∆v0, {tn} a sequence with lim

n→∞
tn =

t̄ ∈ [−∞,+∞]. We say that u(x, t) is a non linear profile associated with (v0, {tn})
if ∃ an interval I with t ∈ I (if t = ±∞, I = [a,+∞), (−∞, a] respectively) such
that u is a solution of (CP) on I and lim

n→∞
||u(−, tn)−v(−, tn)||Ḣ1 = 0. There always
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exists a non-linear profile: if t ∈ (−∞,+∞) we solve (CP) with data at t = v(x, t).
If t = +∞ (say), we solve integral equation

u(t) = eit∆ v0 +
∫ ∞
t

ei(t−t
′)∆ f(u) dt′,

in RN × [tn0 ,+∞), where n0 is so large that ||eit∆ v0||S(tn0 +∞) < δ. Then, u(tn) −
v(tn) =

∫∞
tn
ei(t−t

′)∆ f(u) dt′, which → 0 in Ḣ1, since ∇f(u) ∈ L2
(t>tn0 ) L

2N/N+2
x . It is

easy to see that if u(1), u(2) are non-linear profiles associated to (v0, {tn}) in I 3 t,
then u(1) = u(2) on I. Hence, there exists a maximal interval of existence I for the
non-linear profile. Clearly, near finite end points of I, the S norm is infinite. These
concepts are used in the following:

Proposition 3. Let {z0,n} ∈ Ḣ1, ||∇z0,n||2 < ||∇W ||2 and E(z0,n)→ Ec(< E(W )),
||eit∆ z0,n||S(−∞,+∞) ≥ δ > 0. Let (V0,j)∞j=1 be as in the profile decomposition. Assume
that one of

a) lim inf
n→∞

E(V `1 (− t1,n
λ2

1,n
)) < Ec

or

b) lim inf
n→∞

E(V `1 (− t1,n
λ2

1,n
)) = Ec

and for sn = − t1,n
λ2

1
, after passing to a subsequence so that sn → s̄ ∈ [−∞,+∞]

and E(V `1 (−sn)) → Ec, and if U1 is the non-linear profile associated to
(V0,1, {sn}) then I = (−∞,+∞), ||U1||S(−∞,+∞) <∞.

Then, (after passing to a subsequence) if zn solves (CP) for (z0,n), ||zn||S(−∞,+∞) <
∞, for n large. (In fact it is uniformly bounded in n.)

We will first assume Proposition 3, use it to prove Propositions 1, 2, then prove
Proposition 3.

Proof of Proposition 1. Find u0,n ∈ Ḣ1,
∫
|∇u0,n|2 <

∫
|∇W |2, E(u0,n) → Ec,

||eit∆ u0,n||S(−∞,+∞) ≥ δ, ||un||S(In) = +∞, In a maximal interval. Since Ec < E(W ),
for n large E(u0,n) ≤ (1 − δ0)E(W ). By energy trapping, ∃ δ̄ s.t. ||∇un(t)||2 <

(1− δ̄)||∇W ||2, t ∈ In. Fix J ≥ 1 and apply the profile decomposition to {u0,n}. We
have

(†) ||∇u0,n||2 =
J∑
j=1
||∇V0,j||2 + ||∇wJn ||2 + o(1),

(‡) E(u0,n) =
J∑
j=1

E
(
V `j

(
− tj,n
λ2
j,n

))
+ E(wJn) + o(1).

For n large, we have, from (†) that ||∇wJn ||2 ≤ (1 − δ̄2)||∇W ||2 and ||∇V0,j||2 ≤
(1− δ̄2)||∇W ||2, 1 ≤ j ≤ J . Hence, for n large E(wJn) ≥ 0, E(V `j (− tj,n

λ2
j,n

))) ≥ 0. Thus,
E(V `1 (− t1,n

λ2
1,n

)) ≤ E(u0,n)+o(1) by (‡), so that lim
n→∞

E(V `1 (− t1,n
λ2

1,n
)) ≤ Ec. Assume first

that we have strict inequality. Then Proposition 3 a) gives a contradiction for large
n. Thus, lim infn→∞E(V `1 (sn)) = Ec. Let U1 be the non-linear profile associated to
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(V0,1, {sn}). The first observation is that V0,j = 0, j > 1. Indeed, by (‡) and the
facts that E(u0,n) → Ec, E(V `1 (sn)) → Ec (after passing to a subsequence), we see
that E(wJn)→ 0, E(V `j (− tj,n

λ2
j,n

))→ 0, j = 2, . . . , J , But then, by coercitivity, we see
that

J∑
j=2

∥∥∥∥∇V `j (− tj,n
λ2
j,n

)∥∥∥∥2 + ||∇wJn ||2 → 0 .

But, ||∇V `j (− tj,n
λ2
j,n

)||2 = ||∇V0,j||2, establishing the claim, and in addition showing
that ||∇wJn || → 0, so that

u0,n = 1
λ
N−2/2
1,n

V `1

(
x− x1,n

λ1,n
, sn

)
+ wJn .

Renormalize, setting v0,n = λ
N−2/2
1,n u0,n(λ1,n(x+x1,n)), which has the same properties

as u0,n, and so that

v0,n = V `1 (sn) + w̃Jn , ||∇w̃Jn || → 0 .

Let I1 = max int of U1. By definition of non-linear profile, E(U1(sn)) = E(V `1 (sn))+
o(1) = Ec+o(1), ||∇U1(sn)||2 = ||∇V `1 (sn)||2 +o(1) = ||∇V1,0||2 +o(1) = ||∇u0,n||2 +
o(1) < ||∇W ||2 for n large. Now fix s̄ ∈ I1, so that E(U1(s̄)) = E(U1(sn)) →
Ec, so that E(U1(s̄)) = Ec. Also, ||∇U1(sn)||2 < ||∇W ||2 for n large, so that, by
energy trapping, ||∇U1(s̄)||2 < ||∇W ||2. If ||U1||S(I1) <∞, Proposition 3 b) gives a
contradiction. Hence ||U1||S(I1) = +∞, we take uc = U1. �

Proof of Proposition 2. (by contradiction) Let u(x, t) = uc(x, t). If not, ∃ η0 > 0,
{tn}∞n=1, tn ≥ 0 s.t. ∀λ0 ∈ R+, x0 ∈ RN we have (after rescaling)

(∗)
∥∥∥∥ 1
λ

(N−2)/2
0

u
(
x− x0

λ0
, tn

)
− u(x, tn)

∥∥∥∥
Ḣ1
≥ η0 , n 6= n′.

After passing to a subsequence, tn → t̄ ∈ [0, T+(u0)], so that t̄ = T+(u0) by continuity
of the flow. We can also assume, by (CP) that ||eit∆ u(tn)||S(0,+∞) ≥ δ. We now
apply the profile decomposition to v0,n = u(tn). We have E(u(t)) = E(u0) = Ec <

E(W ), ||∇u0||2 < ||∇W ||2, so that ||∇u(t)||2 ≤ (1 − δ̄). ||∇W ||2, t ∈ I+. But then
lim infn→∞E(V `1 (− t1,n

λ2
1,n

)) ≤ Ec.. If we have strict inequality, Proposition 3 a) gives a
contradiction. Hence we have equality and as before V0,j, j = 2, . . . , J , are all 0 and
||∇wJn || → 0. Thus, we have

u(tn) = 1
λ
N−2/2
1,n

V `1

(
x− x1,n

λ1,n
,− t1,n

λ2
1,n

)
+ wJn

||wJn ||Ḣ1 → 0. We next claim that sn = − t1,n
λ2

1,n
must be bounded. In fact, if t1,n

λ2
1,n
≤

−C0, C0 a large positive constant, for n large we have ||eit∆wJn ||S(−∞,+∞) ≤ δ2 and∥∥∥∥ 1
λ
N−2/2
1,n

V `1

(
x− x1,n

λ1,n
,
t− t1,n
λ2

1,n

)∥∥∥∥
S(0,+∞)

≤ ||V `1 ||S((C0,+∞)) ≤
δ

2

for C0 large, a contradiction.

I–11



If, on the other hand t1,n
λ2

1,n
≥ C0, C0 large positive, for n large, we have

∥∥∥∥ 1
λ
N−2/2
1,n

V `1

(
x− x1,n

λ1,n
,
t− t1,n
λ2

1,n

)∥∥∥∥
S(−∞,0)

≤ ||V `1 ||S((−∞,−C0)) ≤
δ

2 ·

Thus, for n large, ||eit∆ u(tn)||S(−∞,0) ≤ δ, so that (CP) gives ||u||S(−∞,tn) ≤ 2δ.
But tn ↑ T+(u0), a contradiction. Hence | t1,n

λ2
1,n
| ≤ C0, so that, after passing to a

subsequence t1,n
λ2

1,n
→ t0 ∈ (−∞,+∞). But then by (∗), wJn → 0 gives for n 6= n′,

both large∥∥∥∥ 1
(λ0)N−2/2

1
(λ1,n)N−2/2V

`
1

(
x− x0 λ0 − x1,n

λ1,n
,− t1,n

λ2
1,n

)

− 1
(λ1,n′)N−2/2 V

`
1

(
x− x1,n′

λ1,n′
,− t1,n

′

λ2
1,n′

)∥∥∥∥
Ḣ1
≥ η0

2

for all λ0, x0. After changing variables this gives, for all λ0, x̃0 that∥∥∥∥( λ1,n′

λ0 λ1,n′

)(N−2/2)
V `1

(
λ1,n′y

λ0 λ1,n′
+ xn,n′ − x̃0 ,−

t1,n
(λ1,n)2

)
− V `1

(
y,

t1,n′

λ2
1,n′

)∥∥∥∥
Ḣ1
≥ η0

2 ·

Choosing now λ0, x̃0 suitably this is a contradiction since t1,n′
λ2

1,n′
→ t0, t1,nλ2

1,n
→ t0. �

Proof of Proposition 3. Assume first that lim inf E(V `1 (− t1,n
λ2

1,n
)) = Ec. Fix J ≥ 1 and

note that as in the proof of Proposition 1, we have V0,j = 0, j > 1, and ||∇wJn || → 0.
Moreover, if v0,n = λ

(N−2)/2
1,n z0,n(λ1,n(x + x1,n)), w̃n = λ

N−2/2
1,n wJn(λ1,n(x + x1,n)),

we have ||∇w̃n|| → 0, v0,n = V `1 (sn) + w̃n, with ||∇v0,n||2 < ||∇W ||2, E(v0,n) →
Ec < E(W ). By definition of the non-linear profile, ||∇(V `1 (sn) − U1(sn))|| → 0,
so that v0,n = U1(sn) + ˜̃wn, ||∇ ˜̃wn|| → 0. From this we see that E(U1) = Ec <
E(W ) and so, by energy-trapping sup

t∈I
||∇U1(t)||2 < ||∇W ||2. Since ||∇ ˜̃wn|| → 0

the Perturbation Theorem gives this case, under assertion b). Assume next that
lim inf E(V `1 (− t1,n

λ2
1,n

)) < Ec and passing to a subsequence that limE(V `1 (− t1,n
λ2

1,n
)) <

Ec. We next show that lim inf E(V `j (− tj,n
λ2
j,n

)) < Ec, j = 2, · · · , J . In fact, ||∇z0,n||2 =
J

Σ
j=1
||∇V0,j||2+||∇wJn ||2+o(1) and since E(z0,n)→ Ec < E(W ), for n large E(z0,n) ≤

(1 − δ0)E(W ). Since ||∇z0,n||2 < ||∇W ||2, energy trapping gives that ||∇z0,n||2 ≤
(1 − δ̄)||∇W ||2. Thus, for all n large E(V `j (− tj,n

λ2
j,n

)) ≥ 0, E(wJn) ≥ 0. Coercitivity
shows that E(V `1 (−sn)) ≥ C α0 = ᾱ0 > 0, for n large. Then, E(z0,n) ≥ ᾱ0 +
J

Σ
j=2

E(V `j (− tj,n
λ2
j,n

))+o(1), so our claim follows from E(z0,n)→ Ec. Next, note that if Uj

is the non-linear profile associated to (V0,j, {− tj,nλ2
j,n
}) (after passing to a subsequence

in n) then Uj exists for all time and ||Uj||S(−∞,∞) < ∞, 1 ≤ j ≤ J . In fact, for
n large, E(V `j (− tj,n

λ2
j,n

)) < Ec, so E(Uj) < Ec by definition of non-linear profile.
Moreover, ||∇V `j (− tj,n

λ2
j,n

)||2 ≤ ||∇z0,n||2 + o(1) ≤ (1− δ̄)||∇W ||2 + o(1), so by energy
trapping we have ||∇Uj(t)|| < ||∇W ||, ∀ t ∈ Ij. But then, by definition of Ec,
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Ij = (−∞,+∞), ||Uj||S(−∞+∞) <∞. Next, note that ∃ j0 s.t. for j ≥ j0 we have

||Uj||2S(−∞,+∞) ≤ C||∇V0,j||2 .
In fact, J fixed, choosing n large we have

J∑
j=1
||∇V0,j||2 ≤ ||∇z0,n||2 + o(1) ≤ 2||∇W ||2.

Hence, for j ≥ j0, ||∇V0,j|| ≤ δ̃, δ̃ so small that ||eit∆ V0,j||S(−∞,+∞) ≤ δ, which shows
that ||Uj||S(−∞,+∞) ≤ 2δ, supt ||Uj(t)||Ḣ1 + ||∇Uj||W (−∞,+∞) ≤ C||V0,j||Ḣ1 . But then,
||Uj||S(−∞,+∞) ≤ C||V0,j||Ḣ1 as desired. Next, for ε0 > 0, to be chosen, define

Hn,ε0 =
J(ε0)∑
j=1

1
λ
N−2/2
j,n

Uj

(
x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)
.

Then ||Hn,ε0||S(−∞,+∞) ≤ C0 uniformly in ε0, for n ≥ n(ε0):

||Hn,ε0||
2(N+2)/(N−2)
S(−∞,+∞) =

∫∫ [ J(ε0)∑
j=1

1
λ

(N−2)/2
j,n

Uj

(
x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)]2(N+2)/(N−2)

≤
J(ε0)∑
j=1

∫∫ ∣∣∣∣ 1
λ

(N−2)/2
j,n

Uj

(
x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)∣∣∣∣2(N+2)/(N−2)

+ Cj(ε0)
∑
j 6=j′

∫∫ ∣∣∣∣ 1
λ

(N−2)/2
j,n

Uj

(
x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)∣∣∣∣·
·
∣∣∣∣ 1
λ

(N−2)/2
j′,n

Uj′
(
x− xj′,n
λj′,n

,
t− tj′,n
λ2
j′,n

)∣∣∣∣(N+6)/(N−2)
= I + II .

For n large, II → 0 by orthogonality of (λj,n, xj,n, tj,n). Thus, for n large II ≤ I.
But

I ≤
j0∑
j=1
||Uj||2(N+2)/(N−2)

S(−∞,+∞) +
J0(ε)∑
j=j0+1

||Uj||2(N+2)/(N−2)
S(−∞,+∞)

≤
j0∑
j=1
||Uj||2(N+2)/(N−2)

S(−∞,+∞) + C
J0(ε)∑
j=j0+1

||∇V0,j||2(N+2)/(N−2)

≤
j0∑
j=1
||Uj||2(N+2)/(N−2)

S(−∞,+∞) + C sup
j>j0

||∇V0,j||(2
(N+2)
N−2 −2)

J(ε0)∑
j>j0

||∇V0,j||2 ≤
C0

2 ·

Define now Rn,ε0 = |Hn,ε0|4/(N−2) Hn,ε0 −
J(ε0)
Σ
j=1
|Ũj,n|4/(N−2) Ũj,n, where

Ũj,n(x, t) = 1
λ

(N−2)/2
j,n

Uj

(
x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)
.

We then have ||∇Rn,ε0||L2
tL

2N/(N−2)
x

→ 0 as n → +∞. This uses orthogonality,
||Uj||S(−∞,+∞) < ∞, ||∇Uj||W (−∞,+∞) < ∞. Let now ũ = Hn,ε0 , e = Rn,ε0 . Choose
now J(ε0) so large that for n large ||eit∆wJ(ε0)

n ||S(−∞,+∞) ≤ ε0
2 . Note that by the

profile decomposition and the definition of non-linear profile, we have, for n large
z0,n = Hn,ε0(0) + w̃J(ε0)

n
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where ||eit∆w̃J(ε0)
n ||S ≤ ε0. Also, arguments as above show also that sup

t
||∇Hn,ε0(t)||

≤ C̃0 uniformly in ε0, for n large and ||∇w̃J(ε0)
n || ≤ 2||∇W ||. Now choose ε0 <

ε0(C0, C̃0, 2||∇W ||) as in Perturbation Theorem, and n so large that
||∇Rn,ε0||L2

tL
2N/N−2 ≤ ε0.

Then the Perturbation Theorem gives us Proposition 3 a). �

An important Corollary of the above arguments is (Keraani [20], 2001, Bahouri-
Gérard [1],1999).

Lemma. There exists a function g : (0, Ec]→ [0,+∞), g ↓ s.t. ∀u0 with ||∇u0||2 <
||∇W ||2 and E(u0) ≤ Ec − η, then ||u||S(−∞,+∞) ≤ g(η).

Proof. If not, ∃ η0 > 0 and a sequence u0,n s.t. ||∇u0,n||2 < ||∇W ||2, E(u0,n) ≤ Ec−η0
and ||un||S(−∞,+∞) → +∞. For n large we must have ||eit∆u0,n||S(−∞,+∞) ≥ δ. But
if we now apply the proof of Proposition 3, case a), we reach a contradiction. �

Remark. In the profile decomposition, if all the v0,n are radial the V0,j can be
chosen radial and xn,j = 0. We can then repeat our procedure restricted to radial
function and conclude the analogs of Propositions 1, 2 with uc radial, x(t) ≡ 0.

Remark. Because of the continuity of u(t), t ∈ I in Ḣ1, in Proposition 2 we can
construct λ(t), x(t) continuous in [0, T+(u0)), with λ(t) > 0 for each t ∈ [0, T+(u0)).
To see this, first one can construct piecewise constant (with small jump) λ1(t),
x1(t) so that the corresponding set K1 is contained in K̃1 = {w(t) solution of (CP )
with initial data in K̄, t ∈ [0, t0], t0 small}. It is clear that K̃1 is compact. We can
then construct continuous λ2(t), x2(t) s.t. K2 is contained in the precompact set
{λ−(N−2)/2

0 w((x− x0)λ−1
0 ), w ∈ K̃1, 1

2 ≤ λ0 ≤ 2, |x0| ≤ 1}.

We now turn to further properties of critical elements.

Lemma. Let uc be as in Proposition 2, with T+(u0) < ∞. (After scaling we can
assume T+(u0) = 1). Then ∃C0 = C0(K) > 0 s.t. λ(t) ≥ C0(K)1/2

(1−t)1/2 .

Proof. Consider tn ↑ 1, u0,n = 1
λ(tn)N−2/2 u(x−x(tn)

λ(tn) , tn). We know that ∃C0 = C0(K̄)
s.t. T+(u0,n) ≥ C0. Note that u(x, tn) = λ(tn)N−2/2 u0,n(λ(tn)x + x(tn)), hence by
uniqueness in (CP), for tn + t < T+(u0) = 1, we have

u(x, t+ tn) = λ(tn)N−2/2 un(λ(tn)x+ x(tn), λ2(tn)t).
Hence, tn + t ≤ 1 for all 0 < λ2(tn)t ≤ C0. With t = C0

λ2(tn) , we get tn + C0
λ2(tn) ≤ 1 or

λ2(tn) ≥ C0
(1−tn) as desired. �

Lemma. Let uc be a critical element as in Proposition 2, with T+(u0) = +∞.
Then, there is a (possibly different) critical element vc, with a corresponding λ̃, and
A0 > 0, with λ̃(t) ≥ A0 > 0, for t ∈ [0, T+(v0,c)).

Proof. Recall that E(uc) = Ec ≥ η0. By a previous remark, ∃ tn, tn ↑ +∞ s.t.
λ(tn)→ 0, or the result holds for uc. After possibly redefining {tn}c0n=1, we can assume
that λ(tn) ≤ inf

[0,tn]
λ(t). By compactness of K̄, w0,n(x) = 1

λ(tn)N−2/2uc(x−x(tn)
λ(tn) , tn)→ w0
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in Ḣ1. Hence, E(w0) = Ec ≥ η0 > 0. Moreover, ||∇w0||2 < ||∇W ||2 by the
corresponding property of uc and energy trapping (Ec < E(W )). Let w(x, τ),
τ ∈ (−T−(w0), 0] be the corresponding solution of (CP). If T−(w0) < ∞, we
let vc(x, t) = w̄(x,−t) and Proposition 2, and the previous lemma, give the re-
sult. If T−(w0) = +∞, let wn(x, τ) be the solution of (CP) with data w0,n, τ ∈
(−T−(w0,n), 0]. By semicontinuity we have lim inf T−(w0,n) = +∞ and for every
τ ∈ (−∞, 0], wn(x, τ)→ w(x, τ) in Ḣ1. By uniqueness in (CP), for 0 ≤ tn + τ

λ(tn)2 ,
we have wn(x, τ) = 1

λ(tn)N−2/2uc
(
x−x(tn)
λ(tn) , tn + τ

λ(tn)2

)
. Define now τn = −λ(tn)2 tn.

Note that lim infn(−τn) = lim infn(λ(tn)2 tn) = +∞. In fact, if −τn → −τ0 <

∞, wn(x,−τn) = 1
λ(tn)N−2/2uc(x−x(tn)

λ(tn) , 0) would converge to w0(x,−τ0) in Ḣ1, with
λ(tn)→ 0, a contradiction to E(w0) 6= 0, so w0 6≡ 0. Hence, for all τ ∈ (−∞, 0], for
n large we have 0 ≤ tn+ τ

λ(tn)2 ≤ tn. Note also that we must have ||w||S(−∞,0) = +∞.
Otherwise, by The Perturbation Theorem we would have, for n large, T−(w0,n) =
+∞, ||wn||S(0,∞) ≤M , which contradicts ||uc||S(0,+∞) = +∞. Fix τ ∈ (−∞, 0], n so
large that tn + τ

λ(tn)2 ≥ 0 and λ(tn + τ
λ(tn)2 ) is defined. Then,

1
λ(tn + τ

λ(tn)2 )(N−2)/2 uc

(x− x(tn + τ
λ2(tn))

λ(tn + τ
λ2(tn))

, tn + τ

λ2(tn)

)

= 1
λ̃n(τ)(N−2)/2

, wn

(
x− x̃n(τ)
λ̃(τ)

, τ
)
∈ K ,

with
λ̃n(τ) =

λ(tn + τ
λ(tn)2 )

λ(tn)
≥ 1 , x̃n(τ) = x(tn + τ

λ2(tn)
)− x(tn)

λ̃(tn)
.

Since 1
λ
N/2
n

~v(x−xn
λn

) −−−→
n→∞

~̃v in L2 with either λn → 0 or ∞ or |xn| → ∞ implies
that ~̃v ≡ 0, we can assume, after passing to a subsequence that λ̃n(τ) → λ̃(τ),
1 ≤ λ̃(τ) < ∞ x̃n(τ) → x̃(τ) ∈ RN . But then, 1

λ̃(τ)N−2/2 w
(
x−x̃(τ)
λ̃(τ) , τ

)
∈ K̄ as

desired. �

We now conclude the proof of Theorem A, by establishing:

Theorem (Rigidity Theorem). Let u0 ∈ Ḣ1, E(u0) < E(W ), ||∇u0||2 < ||∇W ||2.
Let u be the corresponding solution of (CP) with maximal interval

I = (−T−(u0), T+(u0)).
Assume ∃λ(t) > 0, defined for t ∈ [0, T+(u0)) s.t.

K =
{
v(x, t) = 1

λ(t)N−2/2 u
(

x

λ(t) , t
)
, t ∈ [0, T+(u0))

}
has compact closure in Ḣ1. Assume that if T+(u0) < ∞, λ(t) ≥ C0(K)1/2

(T+−t)1/2 and if
T+(u0) = +∞, λ(t) ≥ A0 > 0. Then we must have T+(u0) = +∞, u0 = 0.

Proof. Case 1 : T+(u0) < +∞ so that λ(t) → +∞ as t → T+(u0). Fix ϕ radial,
ϕ ∈ C∞0 , ϕ ≡ 1 on |x| ≤ 1, suppϕ ⊂ {|x| < 2} set ϕR(x) = ϕ( x

R
).

Define yR(t) =
∫
|u(x, t)|2 ϕR(x)dx, t ∈ [0, T+). A classical computation shows

that
y′R(t) = 2 Im

∫
ū∇u∇ϕR .
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Note that ∇ϕR = 1
R
∇ϕ( x

R
) is supported in R ≤ |x| ≤ 2R. Then,

|y′R(t)| ≤ C̃N
( ∫
|∇u|2

)1/2( ∫ |u|2
|x|2
)1/2
≤ C̃N

( ∫
|∇u|2

)
≤ C̃N ||∇W ||

where we have used Hardy’s inequality and energy trapping. Next, we will show
that, for all R > 0,

lim
t↑T+(u0)

∫
|x|≤R
|u(x, t)|2 dx = 0 .

In fact, u(x, t) = λ(t)N−2/2v(λ(t)x, t), where v is compact. Then,∫
|x|<R
|u(x, t)|2 dx =λ(t)−2

∫
|y|<Rλ(t)

|v(y, t)|2 dy

=λ(t)−2
∫
|y|<εTλ(t)

|v(y, t)|2 dy + λ(t)−2
∫
εRλ(t)≤|y|≤Rλ(t)

|v(y, t)|2 dy

=A+B,

where ε > 0 is at our disposal. By Hölder, we have

A ≤ λ(t)−2(εRλ(t))N−2/N ||v(t)||2L2∗ ≤ C ε2 R2 ||∇W ||2

which, for fixed R is small with ε

B ≤ λ(t)−2 (Rλ(t))N−2/N ||v(t)||2L2∗(|y|≥εRλ(t)) −−−→
t→T+

0

by the compactness of v, since λ(t) ↑ +∞.
Now, using that |y′R(t)| ≤ C and the fundamental theorem of calculus, we have

yR(0) ≤ lim
t↑T+

yR(t) + C T+(u0) = C T+(u0) .

Letting R → ∞, we conclude that u0 ∈ L2. Fix now ε > 0 and choose α so small
that ∫ T+(u0)

T+(u0)−α
|y′R| ≤ C α ≤

ε

2
for all R > 0. By invariance of the L2 norm (and this is a fundamental point here),
we have:

||u0||2L2 = ||u(T+(u0)− α)||2L2 .

For α fixed as above, choose R so large that

||u(T+(u0)− α)||2L2 ≤ ||u(T+(u0)− α)||2L2(|x|<R) + ε

2 .

We then have

||u0||2L2 ≤ yR(T+(u0)− α) + ε

2 ≤ lim
t↑T+
−

t∫
T+(u0)−α

y′R + ε

2 ≤ ε .

Since this is true for each ε > 0, ||u0||L2 = 0, which contradicts T+ <∞. This ends
the proof in Case 1. �
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Lecture 3
To conclude the proof of Theorem A, we need to treat the

Proof. Case 2 : T+(u0) = +∞, λ(t) ≥ A0 > 0.
Note first that the compactness of K̄, together with λ(t) ≥ A0 > 0 gives that
∀ ε > 0, ∃R(ε) > 0 s.t. ∀ t ∈ [0,∞), we have∫

|x|>R(ε)

|∇u|2 + |u|2∗ + |u|
2

|x|2
≤ ε .

In fact, since u(x, t) = λ(t)N−2/2 v(λ(t)x, t) a change of variables shows that the
integral equals ∫

|y|>R(ε)λ(t)

|∇v|2 + |v|2∗ + |v|
2

|y|2
≤

∫
|y|>A0R(ε)

≤ ε

for R(ε) large by the compactness of K̄.
To continue with the proof, pick δ0 s.t. E(u0) < (1 − δ0)E(W ). Then, ∃R0 > 0

s.t. for R > R0, t ∈ [0,∞) we have (if ||∇u0|| 6= 0)∫
|x|<R

|∇u|2 − |u|2∗ ≥ Cδ0||∇u0||2.

In fact, by our coercitivity estimate we have, for all t ∈ [0,∞),
∫
|∇u|2 − |u|2∗ ≥

Cδ0||∇u0||2, but, by the first claim, we can make the tails smaller than Cδ02 ||∇u0||2.
Next, choose ψ ∈ C∞0 , radial, with ψ(x) = |x|2 for |x| ≤ 1, ψ(x) ≡ 0 for |x| ≥ 2.
Define

zR(t) =
∫
|u(x, t)|2 R2 ψ

(
x

R

)
dx.

The computations that we used in Glassey’s blow-up proof to yield the “virial iden-
tity” now give:

z′R(t) = 2R Im
∫
ū∇u∇ψ

(
x

R

)
,

z′′R(t) = 4
∑
`,j

Re
∫
∂x`xjψ

(
x

R

)
· ∂x`u · ∂xj ū−

1
R2

∫
∆2ψ
(
x

R

)
|u|2 − 4

n

∫
∆ψ
(
x

R

)
|u|2∗ .

From these formulas, we deduce:

|z′R(t)| ≤C R
∫

|x|≤2R

|u| |∇u| ≤ C R2
( ∫
|x|≤2R

|u|2

|x|2
)1/2( ∫

|∇u|2
)1/2

≤C R2
∫
|∇u|2 ≤ Cδ0R2||∇W ||2.

On the other hand,

z′′R(t) ≥8
[ ∫
|x|≤R

|∇u|2 − |u|2∗
]
− C̃N

[ ∫
R≤|x|≤2R

|∇u|2 + |u|
2

|x|2
+ |u|2∗

]
,

which, for R large is bounded below by C̃δ0,N ||∇u0||2. Integrating in t, we obtain

z′R(t)− z′R(0) ≥ C̃δ0,N t ||∇u0||2,
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|z′R(t)− z′R(0)| ≤ 2Cδ0R2 ||∇u0||2,
which is a contradiction for large t. �

Remark. In the defocusing case, for N = 3, 4, 5, this approach (in a simplifed form
since the variational estimates are not needed) provides an alternative proof of the
result of Bourgain, Tao for radial functions in the defocusing case.

Corollary (focusing case). u0 ∈ Ḣ1, radial, E(u0) < E(W ), ||∇u0||2 < ||∇W ||2,
N = 3, 4, 5. Then I = (−∞,+∞), ||u||S(−∞,+∞) < ∞, ∃u±0 ∈ Ḣ1 s.t. ||u(t) −
eit∆u±0 ||Ḣ1 −−−−→

t→±∞
0. Also, if E(u0) ≤ (1− δ0)E(W ), ||u||S(−∞,+∞) ≤ g(δ0).

Remark. The result admits the following strengthening: if u0 ∈ Ḣ1 is s.t. ∀ t ∈
(−T−(u0), T+(u0)) we have ||∇u(t)||2 ≤ ||∇W ||2 − δ0, for some δ0 > 0, then I =
(−∞,+∞) and ||u||S(−∞,+∞) <∞. For a detailed proof, see the arguments in [18].

This remark and our Theorem A have consequences for the concentration of finite
time blow-up solutions (see [17] for the details of the proof):

Corollary. Let u0 ∈ Ḣ1 be radial (no size restriction). Assume T+(u0) <∞ and
sup

t∈[0,T+(u0))
||∇u(t)|| <∞ (type II blow-up). Then, for all R > 0 we have:

lim sup
t↑T+(u0)

∫
|x|≤R
|∇u(t)|2 ≥

∫
|∇W |2,

N = 3, 4, 5.

Remark. For N ≥ 4, u0 radial, T+(u0) < ∞, u not a finite blow-up solution of
type II, one can show that if

∫
|∇u(tn)|2 → +∞, then ∀R > 0,

∫
|x|<R
|∇u(tn)|2 →

+∞. For N = 3 this is likely false, in light of examples like those of P. Raphael [24]
for N = 2, which should give a radial solution, blowing-up on a sphere.

We now turn our attention to the non-linear wave equation (NLW).
∂2
t u−∆u = ±|u|4/N−2 u , x ∈ RN , t ∈ R
u|t=0 = u0 ∈ Ḣ1

∂tu|t=0 = u1 ∈ L2 .

Here the − sign corresponds to the defocusing case, the + sign to the focusing
case. The problem is energy critical because if u(x, t) is a solution, λ > 0, then
uλ(x, t) = 1

λN−2/2 u(x
λ
, t
λ
) is also a solution and the norm in Ḣ1 × L2 of the initial

data remains unchanged.
The defocusing case has been studied for many years, going back to work of

Struwe (radial)[29], Grillakis (general)[12], Shatah-Struwe [27, 26], Bahouri-Shatah
[2], Kapitansky [14], Bahouri-Gérard [1], Ginibre-Velo [10], Ginibre-Soffer-Velo [9],
etc. (mid to late 80’s, mid 90’s). The energy here is

E((u0, u1)) = 1
2

∫
|∇u0|2 + 1

2

∫
(u1)2 ∓ 1

2∗
∫
|u0|2

∗

which is constant in time, with − in the focusing case, and + in the defocusing case,
1
2∗ = 1

2−
1
N

. In the defocusing case, Shatah-Struwe and Bahouri-Shatah showed that
for any data (u0, u1) ∈ Ḣ1 × L2 we have global well-posedness and scattering in
the energy space. In the focusing case, this does not hold. In 1974, H. Levine [22]
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showed (by obstruction) that if (u0, u1) ∈ Ḣ1 × L2, u0 ∈ L2, E((u0, u1)) < 0, there
is always break-down in finite time. Very recently (2007) Krieger-Schlag-Tataru [21]
have constructed explicit radial examples which break-down in finite time. Also,
W (x) = (1 + |x|2

N(N−2))
−(N−2)/2 solves the elliptic equation ∆W + |W |4/N−2W = 0 ,

W ∈ Ḣ1, is radial and so W (x, t) = W (x) solves (CP) with data (W, 0), globally iin
time, but does not scatter. We now turn to our study in the focusing case.

Theorem B. Assume that E((u0, u1)) < E((W, 0)).

i) If
∫
|∇u0|2 <

∫
|∇W |2, we have g.w.p., scattering.

ii) If
∫
|∇u0|2 >

∫
|∇W |2, there is break-down in finite time.

The condition
∫
|∇u0|2 =

∫
|∇W |2 is not compatible withE((u0, u1)) < E((W, 0)).

Note that no radial assumption is made in the Theorem, which has been proved for
3 ≤ N ≤ 5.

The general scheme of the proof follows the approach we described for (NLS). To
describe the proof, I will start out by a review of the local Cauchy problem. Consider
first the linear wave equation

∂2
tw −∆w = h in RN × R
w|t=0 = w0 ∈ Ḣ1(RN)
∂tw|t=0 = w1 ∈ L2(RN)

whose solution is given by

w(x, t) = cos(t
√
−∆)w0 + (−∆)−1/2 sin(t

√
−∆w1 +

∫ t
0

sin((t− t′)
√
−∆)√

−∆
h(t′) dt′ .

Let S(t)(w0, w1) = cos(t
√
−∆)w0+(−∆)−1/2 sin(t

√
−∆)w1. The relevant Strichartz

estimates for us are:

sup
t
||(w(t), ∂tw(t))||Ḣ1×L2

+ ||D1/2w||
L

2(N+1)/N−1
t L

2(N+1)/N−1
x

+ ||∂tD−1/2w||
L

2(N+1)/N−1
t L

2(N+1)/N−1
x

+ ||w||
L

2(N+1)/N−2
t L

2(N+1)/N−2
x

+ ||w||
L

(N+2)/N−2
t L

2(N+2)/N−2
x

≤ C
{
||(w,w1)||Ḣ1×L2 + ||D1/2h||

L
2(N+1)/N+3
t L

2(N+1)/N+3
x

}
.

We then define
|| ||S(I) = || ||

L
2(N+1)/N−2
I L

2(N+1)/N−2
x

and
|| ||W (I) = || ||

L
2(N+1)/N−1
I L

2(N+1)/N−1
x

.

We also need the Leibniz and chain rules for fractional derivatives ([19], 1993) in the
following form: if F (0) = F ′(0) = 0, F ∈ C2 and for all a, b we have |F ′(a + b)| ≤
C{|F ′(a)|+ |F ′(b)|} and |F ′′(a+ b)| ≤ C{|F ′′(a)|+ |F ′′(b)|}, we have, for 0 < α < 1:

||DαF (u)||Lpx ≤ C||F
′(u)||Lp1

x
||Dαu||Lp2

x
,

1
p

= 1
p1

+ 1
p2
,
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||Dα(F (u)− F (v))||Lpx ≤ C
[
||F ′(u)||Lp1

x
+ ||F ′(v)||Lp1

x

]
||Dα(u− v)||Lp2

x

+ C
[
||F ′′(u)||Lr1x + ||F ′′(v)||Lr1x

]
·
[
||Dαu||Lr2x + ||Dαv||Lr2x

]
· ||u− v||Lr3x ,

1
p

= 1
r1

+ 1
r2

+ 1
r3
,

1
p

= 1
p1

+ 1
p2
·

Using these estimates and the argument in the study of (CP) for (NLS), one
obtains (see also [26]):

Theorem. If (u0, u1) ∈ Ḣ1 × L2, ||(u0, u1)||Ḣ1×L2 ≤ A, 0 ∈ I, ∃ δ(A) > 0 s.t. if
||S(t)(u0, u1)||S(I) ≤ δ, ∃ ! solution of (CP) on RN×I, with (u, ∂tu) ∈ C(I; Ḣ1×L2),
||D1/2u||W (I) + ||∂tD1/2u||W (I) <∞, ||u||S(I) ≤ 2δ, ||u||

L
N+2/N−2
I L

2(N+2)/N−2
x

<∞, and
we have Lipschitz continuity dependence on the data (3 ≤ N ≤ 5).

Corollary. ∃ δ̃ > 0 s.t. if ||(u0, u1)||Ḣ1×L2 ≤ δ̃, the hypothesis is verified for I =
(−∞,+∞). Moreover, given (u0, u1) ∈ Ḣ1×L2, ∃ I 3 0 s.t. the hypothesis is verified
on I.

We say that u solves (CP) for (u0, u1) on I 3 0 if (u1, ∂tu) ∈ C(I; Ḣ1 × L2),
D1/2u ∈ W (I), u ∈ S(I), (u, ∂tu)|t=0 = (u0, u1) and u solves the appropriate in-
tegral equation. It is easy to obtain uniqueness and one can then define a max-
imal interval of existence I = (−T−(u0, u1), T+(u0, u1)). One also has the stan-
dard blow-up criterion: if T+(u0, u1) < ∞, then ||u||S(0,T+(u0,u1)) = +∞. Also,
if T+(u0, u1) = +∞ and ||u||S(0,+∞) < ∞, u scatters at +∞, i.e. ∃u+

0 , u
+
1 ∈

Ḣ1 × L2 s.t. ||(u(t), ∂t(u))− S(t)(u+
0 , u

+
1 )||Ḣ1×L2 → 0. Note that for t ∈ I, we have

E((u(t), ∂tu(t))) = E((u0, u1)). It turns out that there is another very important
conservation law in the energy space. This will be crucial for us, in order to be able
to treat non-radial data. It says that, for t ∈ I, we have∫

∇u(x, t) · ∂tu(x, t) dx =
∫
∇u0 · u1

(conservation of momentum).
Finally, we mention that Foschi’s estimates [6] also hold for the wave equation.

One can then prove the analogue of the Perturbation Theorem for (NLS), for (NLW)
and all its corollaries.

We conclude these remarks on (CP) by mentioning the finite speed of propagation
property. Recall that if R(t) is the forward fundamental solution for the linear wave
equation, we can write the solution of the linear Cauchy problem (for T > 0) as

w(t) = ∂tR(t) ∗ w0 +R(t) ∗ w1 −
∫ t

0
R(t− s) ∗ h(s) ds .

The finite speed of propagation states that

suppR(−, t) ⊂ B̄(0, t), supp ∂tR(t) ⊂ B̄(0, t).

Thus, if

suppw0 ⊂ cB(x0, a), suppw1 ⊂ cB(x0, a), supph ⊂ c
[
∪

0≤t≤a
B(x0, a− t)× t

]
,
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w ≡ 0 on ∪
0≤t≤a

[B(x0, t) × t)]. This has consequences for solutions of (NLW). If

(u0, u1), (u′0, u′1) are data s.t. (u0, u1) = (u′0, u′1) on B(x0, a), then, the correspond-
ing solutions agree on ∪

0≤t≤a
[B(x0, t)× (t)]∩RN × (I ∩ I ′). This is because, for each

u, if we define u(n+1)(x, t) = S(t)(u0, u1) +
∫ t

0
sin((t−s

√
−∆)√

−D f(u(n)(s)) ds, u0(x, t) =
S(t)(u0, u1), we have un → u, u′n → u′ and they agree on the required set, by in-
duction. Typical applications of this are: suppu0 ⊂ B(0, b), suppu1 ⊂ B(0, b), then
u(x, t) ≡ 0 on {(x, t) : |x| > b + t, t ≥ 0, t ∈ I}. Similar statements hold for t < 0.
Thus, one can approximate solutions by regular, compactly supported solutions. The
next step is to obtain energy trapping, coercivity and uniform bounds, by variational
arguments, as in the case of (NLS). Recall thatWθ0,λ0,x0(x) = eiθ0 λ

(N−2)/2
0 .W (λ0(x−

x0)) and that Aubin-Talenti showed that if CN is the best constant in the Sobolev
embedding (||u||L2∗ ≤ CN ||∇u||) then ||u||L2∗ = CN ||∇u||, u 6≡ 0 ⇔ u = Wθ0,λ0,x0 .
Moreover, we showed that ||∇W ||2 = 1

CNN
, and if E(W ) = 1

2 ||∇W ||
2 − 1

2∗ ||W ||
2∗
L2∗ ,

E(W ) = 1
NCnN

. Using our t−independent variational estimates we obtain:

Energy trapping. — If u is a solution of (NLW), with max int I, (u, ∂tu)|t=0 =
(u0, u1) ∈ Ḣ1 × L2 and for δ0 > 0, E((u0, u1)) ≤ (1 − δ0)E((W, 0)), ||∇u0||2 <
||∇W ||2, then ∀ t ∈ I we have: ∃ δ̄ = δ̄(δ0) s.t.

i) ||∇u(t)||2 ≤ (1− δ̄)||∇W ||2

ii)
∫
|∇u(t)|2 − |u(t)|2∗ ≥ δ̄

∫
|∇u(t)|2

iii) E(u(t)) ≥ 0 (and hence E((ut), ∂tu)) ≥ 0)

iv) E((u(t), ∂tu(t))) ' ||(u(t), ∂tu(t))|2
Ḣ1×L2 ' ||(u0, u1)||2Ḣ1×L2 , with comparabil-

ity constants depending on δ0.

Also, as in the case of (NLS) we have: if E((u0, u1)) ≤ (1− δ0 E((W, 0)); ||∇u0||2 >
||∇W ||2, then, for t ∈ I we have ||∇u(t)||2 ≥ (1 + δ̄)||∇W ||2.

We next turn to the proof of ii) in Theorem B. We will show it in the case when
||u0||L2 < ∞. The general case follows by using, in addition, localization and finite
speed of propagation. We know that, in the situation of ii),∫

|∇u(t)|2 ≥ (1 + δ̄)
∫
|∇W |2 , t ∈ I

E((W, 0)) ≥ E((u(t), ∂tu(t))) + δ̃0 .

Then,
1
2∗
∫
|u(t)|2∗ ≥ 1

2

∫
(∂tu(t))2 + 1

2

∫
|∇u(t)|2 − E((W, 0)) + δ̃0

or ∫
|u(t)|2∗ ≥ N

N − 2

∫
(∂tu(t))2 + N

N − 2

∫
|∇u(t)|2 − 2∗E((W, 0)) + 2∗ δ̃0 .
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Let y(t) =
∫
|u(t)|2, so that y′(t) = 2

∫
u(t)∂tu(t), y′′(t) = 2

∫
{(∂tu)2 − |∇u(t)|2 +

|u|2∗(t)}. Then,

y′′(t) ≥ 2
∫

(∂tu)2 + 2N
N − 2

∫
(∂tu)− 2∗E((W, 0))

+ ˜̃δ0 + 2N
N − 2

∫
|∇u(t)|2 − 2

∫
|∇u(t)|2

= 4(N − 1)
(N − 2)

∫
(∂tu)2 + 4

(N − 2)

∫
|∇u|2 − 4

(N − 2)

∫
|∇W |2 + ˜̃δ0

≥ 4(N − 1)
(N − 2

∫
(∂tu)2 + ˜̃δ0 .

If I ∩ [0,+∞) = [0,+∞), ∃ t0 > 0 s.t. y′(t0) > 0 and y′(t) > 0, ∀t > t0. For t > t0
we have:

y′′(t) y(t) ≥ 4(N − 1)
(N − 2)

∫
(∂tu)2

∫
u2 ≥

(
N − 1
N − 2

)
y′(t)2

or
y′′(t)
y′(t) ≥

(
N − 1
N − 2

)
y′(t)
y(t)

or
y′(t) ≥ C0 y(t)(N−1)/N−2 , t > t0 .

But since (N−1)
N−2 > 1 this leads to finite time blow-up, a contradiction.

We now turn to the proof of i) in Theorem B. We repeat the “concentration-
compactness” procedure, replacing Keraani’s work with the work of Bahouri-Gérard
([1], 1999) on high frequency approximation to solutions of the linear wave equation.
We then obtain Ec, with 0 < η0 ≤ Ec ≤ E((W, 0)) with the property that if
E((u0, u1)) < Ec, ||∇u0||2 < ||∇W ||2, we have I = (−∞,+∞), ||u||S(−∞,+∞) < ∞
and Ec is optimal with this property. i) is the assertion Ec = E((W, 0)). If not,
Ec < E((W, 0)), which will lead to a contradiction. Exactly as in the (NLS) case we
have:

Proposition 1. ∃ (u0,c, u1,c) ∈ Ḣ1×L2, with ||∇u0,c||2 < ||∇W ||2, E((u0,c, u1,c)) =
Ec and s.t. for the solution uc of (CP), with max int I, we have ||uc||S(I) = +∞.

Proposition 2. For any uc as in Proposition 1, s.t. (say) ||uc||S(I+) = +∞, ∃x(t) ∈
RN , λ(t) ∈ R+, t ∈ I+ s.t.

K =
{
v(x, t) =

( 1
λ(t)N−2/2 uc

(
x− x(t)
λ(t) , t

)
,

1
λ(t)N/2 ∂t uc

(
x− x(t)
λ(t) , t

))}
has compact closure in Ḣ1 × L2.

Remark. x(t), λ(t) can be taken continuous. Moreover, if T+ < ∞, λ(t) ≥ C0(K)
(T+−t)

(same proof as (NLS)). Also, if T+ = +∞, by possibly changing uc, we can find one
for which λ(t) ≥ A0 > 0.

One can also show:

Lemma. ∃ g : (0, Ec] → [0,∞), g ↓ s.t. ∀(u0, u1) with E((u0, u1)) ≤ Ec − η,
||∇u0||2 < ||∇W ||2, we have ||u||S(−∞,+∞) ≤ g(η).

I–22



To proceed further, we need specific features of the problem. We now will develop
some further properties of critical elements, specific to (NLW). We start out with
some further consequences of the finite speed of propagation.

Lemma. Let (u0, u1) ∈ Ḣ1 × L2, ||(u0, u1)||Ḣ1×L2 ≤ A. If for some M > 0, ε > 0,
0 < ε < ε0 = ε0(A), we have:∫

|x|≥M
|∇u0|2 + |u1|2 + |u0|2

|x|2
≤ ε ,

then for 0 < t < T+(u0, u1) we have∫
|x|≥ 3

2 M+t
|∇u(t)|2 + |∂tu(t)|2 + |u(t)|2∗ + |u(t)|2

|x|2
≤ Cε .

Proof. Choose ψM ≡ 1, |x| ≥ 3
2 M , ψM ≡ 0, |x| ≤ M , |∇ψM | ≤ C

M
. Let u0,M =

ψMu0, u1,M = ψMu1. Because of our assumption, ||(u0,M , u1,M)||Ḣ1×L2 ≤ Cε. If ε0 is
so small that Cε0 < δ, then uM solves (CP) in

I = (−∞,+∞)and sup
t∈(−∞,+∞)

||(uM(t), ∂tuM(t)||Ḣ1×L2 < 2Cε.

But by finite speed, uM = u for |x| ≥ 3
2 M + t, t > 0, t ∈ I. �

Lemma. Let uc be a critical element as in Proposition 2, with T+((u0, u1)) < ∞.
(Assume without loss of generality that T+((u0, u1)) = 1). Then, ∃ x̄ ∈ RN s.t.

suppuc(−, t), ∂tuc(−, t) ⊂ B(x̄, 1− t) , 0 < t < 1 .

Proof. We first show, for each t, 0 < t < 1, that there is a ball B1−t, of radius (1− t)
s.t. supp∇u, supp ∂tu ⊂ B1−t. If not, for a fixed t, ∃ε0 > 0, η0 > 0 s.t. ∀x0 ∈ RN
we have ∫

|x−x0|≥(1+η0)(1−t)
|∇u(t)|2 + (∂tu(t))2 ≥ ε0 > 0 .

Choose a sequence tn ↑ 1. Recall that λ(tn) ≥ C0(K)
1−tn . We claim that, given R0 > 0,

M > 0, for n large we have∫
|x+ x(tn)

λ(tn) |≥R0
|∇u(x, tn)|2 + |∂tu(x, tn)|2 + |u(x, tn)|2

|x|2
≤ ε0

M
·

Indeed, let

~v(x, t) = 1
λ(t)N/2

(
∇u(x− x(t)

λ(t) , t), ∂tu(x− x(t)
λ(t) , t)

)
which is compact inL2(RN)N+1

. Then ∫
|x+ x(tn)

λ(tn) |≥R0

|∇u(x, tn)|2 + |∂tu(x, tn)|2 =
∫

|y|≥λ(tn)R0

|~v(y, tn)|2

and the claim follows from the compactness of K̄, λ(tn) ↑ +∞. (The proof for the
term |u(x,tn)|2

|x|2 follows from a similar argument). From this claim and the previous
Lemma, used backward in time, we conclude that ∀ t ∈ [0, tn] we have∫

|x+ x(tn)
λ(tn) |≥

3
2R0+(tn−t)

|∇u(x, t)|2 + |∂tu(x, t)|2 ≤ ε0 .
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But if R0 is so small that (1 + η0)(1− t) ≥ 3
2 R0 + (tn− t), we reach a contradiction,

proving the claim.
The next step is to show that |x(t)

λ(t) | ≤ M , 0 ≤ t < 1. If not, ∃ tn ↑ 1 s.t. |x(tn)
λ(tn) | ↑

+∞. Fix a ball B(x0, 1) s.t. supp∇u0, u1 ⊂ B(x0, 1). For a fixed R0 > 0, ε0 > 0
given, the previous argument shows that, for n large,∫

|x+ x(tn)
λ(tn) |≥

3
2R0+(tn)

|∇u0|2 + |u1|2 ≤ ε0 .

But, if |x(tn)
λ(tn) | → +∞, B(x0, 1) ⊂ {|x+ x(tn)

λ(tn) | ≥
3
2 R0 + tn}, for n large, so that ∇u0,

u1 are identically 0, contradicting T+ = 1. Let now tn ↑ 1 and choose a subsequence
s.t. −x(tn)

λ(tn) → x̄. The same argument shows that for 0 < t < tn, n large we have∫
|x+ x(tn)

λ(tn) |≥
3
2R0+(tn−t)

|∇u(x, t)|2 + |∂tu(x, t)|2 ≤ ε0 .

Letting n→∞ we obtain∫
|x−x̄|≥ 3

2 R0+(1−t)

|∇u(x, t)|2 + |∂tu(x, t)|2 ≤ ε,

so that supp∇u(−, t), ∂tu(−, t) ⊂ B(x̄, 1− t). If −x(tn)
λ(tn) → x̄, −x(tn′ )

λ(tn′ )
→ x̄′, x 6= x′ and

we choose 1−t so small that (1−t) < |x−x′|, we must have ∇u(−, t), ∂tu(−, t) ≡ 0,
which contradicts coercivity, T+ = 1. �

Remark. After translation we can take x̄ = 0.

Lecture 4

We next turn to a fundamental result that is crucial in the treatment of non-radial
solutions.

Theorem (Orthogonality for critical elements). Let (u0,c, u1,c) be as in Propositions
1,2, λ(t), x(t) continuous, λ(t) > 0. Assume that either T+((u0,c, u1,c)) < +∞ or
T+((u0,c, u1,c)) = +∞, λ(t) ≥ A0 > 0. Then∫

∇u0,c · u1,c = 0 .

Note that in the radial case this is automatic. We first sketch the proof in the
case T+ <∞. We need a further linear estimate.

Lemma (Trace Theorem). Let
∂2
tw −∆w = h ∈ L1

t L
2
x,

w|t=0 = w0 ∈ Ḣ1,
∂tw|t=0 = w1 ∈ L2.

I–24



Then, for |α| ≤ 1
4 , we have:

sup
t

∥∥∥∥∇w( x1 − αt√
1− α2

, x′,
t− αx1√

1− α2

)∥∥∥∥
L2(dx,dx′)

+ sup
t

∥∥∥∥∂tw( x1 − αt√
1− α2

, x′,
t− αx1√

1− α2

)∥∥∥∥
L2(dx,dx′)

≤ C
{
||w0||Ḣ1 + ||w1||L2 + ||h||L1

t L
2
x

}
Proof. It suffices to consider v(x, t) = U(t)f , where v̂(ξ, t) = eit|ξ|f̂(ξ) and prove

sup
t

∥∥∥∥v(x1 − αt1√
1− α2

, x′,
t− αx1√

1− α2

)∥∥∥∥
L2(dx,dx′)

≤ C||f ||L2 .

Note that
v(x, t) =

∫
eix1ξ1 eix

′·ξ′ eit
√
ξ21+|ξ′|2 f̂(ξ1, ξ

′) dξ1 dξ
′,

so that

v
(
x1 − αt√

1− α2
,x′,

t− αx1√
1− α2

)
=
∫
eix1(ξ1−α|ξ|)/

√
1−α2

e−iαt ξ1/
√

1−α2
e−iαtξ1/

√
1−α2

eit|ξ|/
√

1−α2
eix
′ξ′ f̂(ξ) dξ1dξ

′

=
∫
eix1(ξ1−α|ξ|)/

√
1−α2

eix
′·ξ′ ĝt(ξ) dξ1 dξ

′ ,

where ĝt(ξ) = e−iαtξ1/
√

1−α2
f̂(ξ), so that ||gt||L2 = ||f ||L2 . If we now let η1 = ξ1−α|ξ|√

1−α2 ,
η′ = ξ′ and compute |dη

dξ
| = (1−αξ1‖ξ|)√

1−α2 ' 1 for |α| ≤ 1
4 , we see that the estimate

follows from Plancherel. �

If u is a solution of (CP) with maximal interval I, I ′ b I, recall that u ∈
L

(N+2)/N−2
I′ L2(N+2)/N−2

x , 4
N−2 + 1 = N+2

N−2 , so that |u|4/N−u u ∈ L1
I′ L

2
x. Hence, the

conclusion of the previous lemma holds, provided the integrations are restricted to
( x1−αt√

1−α2 , x
′, t−αx1√

1−α2 ) ∈ RN × I ′.

Idea of the proof of Theorem 5 when T+((u0, u1)) = 1. Assume that∫
∂x1(u0,c) · u1,c = γ > 0.

Recall that suppuc, ∂t uc ⊂ B(0, 1 − t), 0 < 0 < 1. For convenience, set u(x, t) =
uc(x, 1 + t), −1 ≤ t < 0, supported in B(0, |t|). For 0 < α < 1

4 we consider the
Lorentz transformation

zα(x1, x̄, t) = u
(
x1 − αt√

1− α2
, x′,

t− αx1√
1− α2

)
and fix our attention on −1

2 ≤ t < 0. In that region, the Lemma above and the
remark following it, together with the support property of u, show that zα is in the
energy space and solves our equation. An easy calculation shows that supp zα(−, t) ⊂
B(0, |t|), zα 6≡ 0, so that T+ = 0 is the final time of existence for zα. A long
calculation shows that

lim
α↓0

E(zα(−1
2), ∂t zα(−1

2))− E((u0,c, u1,c))
α

= −γ
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and that, for some t0 ∈ [−1
2 ,−

1
4 ],
∫
|∇zα(t0)|2 <

∫
|∇W |2, for α small. But, since

E((u0,c, u1,c)) = Ec, for α small this contradicts the definition of Ec, since the final
time of existence is finite. �

Comments on the proof of Theorem 5 when T+ = +∞ (λ(t) ≥ A0 > 0). The finite-
ness of the energy of zα is now unclear, because of the lack of the support prop-
erty. We then do a renormalization. We first rescale uc and consider uR(x, t) =
R(N−2)/2 uc(Rx,Rt) for R large, and for α small

zα,R(x1, x̄, t) = uR

(
x1 − αt√

1− α2
, x̄,

t− αx1√
1− α2

)
.

We assume, as before, that
∫
∂x1u0,c · u1,c = γ > 0. We then prove (by integration

in t0 ∈ (1, 2)) that if h(t0) = θ(x) zα,R(x1, x̄, t0), with θ a cut-off function, for some
α1 small and all R sufficiently large, we have, for some t0 ∈ (1, 2) that

E((h(−, t0), ∂th(−, t0)) < Ec −
1
2 γ α1

and ∫
|∇h(t0)|2 <

∫
|∇W |2 .

We then let v be the solution of (CP), with data h(−, t0) at t = t0. By our properties
of critical elements, we know that ||v||S(−∞,+∞) ≤ g(1

2 γ α1), for all R large. But,
since ||uc||S(0,+∞) = +∞, we have that ||uR||L2(N+1)/N−2

[0,1]
−−−→
R→∞

∞, by rescaling. But,
by finite speed of propagation, we have that v = zα,R on a large set, and after a
change of variables to undo α1, we reach a contradiction. The details of the argument
are lengthy. �

To finish the proof of Theorem B, we are reduced to:

Theorem (Rigidity Theorem). Assume that E((u0, u1)) < E((W, 0)),
∫
|∇u0|2 <∫

|∇W |2, u the solution of (CP) with I+ = [0, T+). Assume that

a)
∫
∇u0 u1 = 0.

b) ∃x(t), λ(t) > 0, t ∈ [0, t+) s.t.

K =
{
v(x, t) =

( 1
λ(t)N−2/2 u

(
x− x(t)
λ(t) t

)
,

1
λ(t)N/2 ∂tu

(
x− x(t)
λ(t) , t

))}
has compact closure in Ḣ1 × L2.

c) x(t), λ(t) are continuous, if T+ = 1 (scaling) λ(t) ≥ C0(K)
1−t , suppu, ∂tu ⊂

B(0, 1− t), when T+ = +∞, x(0) = 0, λ(0) = 1, λ(t) ≥ A0 > 0.

Then, T+ = 1 cannot happen and if T+ = +∞, (u0, u1) = (0, 0).

Clearly the rigidity theorem gives us the contradiction with establishes Theo-
rem B, i).
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Proof of the Rigidity Theorem
Case 1 : T+ = +∞, λ(t) ≥ A0 > 0, x(0) = 0, λ(0) = 1, x(t), λ(t) continuous.
Assume (u0, u1) 6= (0, 0). By our variational estimates we have

sup
t>0
||(∇u, ∂tu)(t)||L2 ≤ CE ,

where E((u0, u1)) = E > 0. We also have∫
|∇u(t)|2 − |u(t)|2∗ ≥ Cδ̄

∫
|∇u(t)|2 , t > 0

1
2

∫
(∂tu(t))2 + 1

2

∫
|∇u(t)|2 − |u(t)|2∗ ≥ Cδ̄E

where δ̄ = δ̄(δ0), E((u0, u1)) ≤ (1 − δ0)E((W, 0)). A change of variables, the com-
pactness of K̄ and λ(t) ≥ A0 < 0 now give: given ε > 0, ∃R0(ε) s.t. for all 0 ≤ t <∞,
we have ∫

|x+ x(t)
λ(t) |≥R0(ε)

|∂tu|2 + |∇u|2 + |u|
2

|x|2
+ |u|2∗ ≤ εE .

We next need some algebraic identities:

Lemma. Let r(R) = r(t, R) =
∫
|x|≥R
{|∇u|2 + |∂tu|2 + |u|2∗ + |u|2

|x|2} dx. We have, if

φ ∈ C∞0 (B2), φ ≡ 1 on |x| ≤ 1, φR(x) = φ( x
R

), ψR(x) = xφ( x
R

):

i) ∂t
( ∫

ψR∇u · ∂tu
)

= −N2

∫
(∂tu)2 + N − 2

2

[ ∫
|∇u|2 − |u|2∗

]
+O(r(R))

ii) ∂t
( ∫

φR u ∂tu
)

=
∫

(∂tu)2 −
∫
|∇u|2 +

∫
|u|2∗ +O(r(R))

iii) ∂t
( ∫

ψR

{1
2 |∇u|

2 + 1
2(∂tu)2 − 1

2∗ |u|
2∗
})

= −
∫
∇u ∂tu+O(r(R)).

The proof of the case T+ = +∞ is based on 2 Lemmas.

Lemma 1. ∃ ε1 > 0, C > 0 s.t. if 0 < ε < ε1, ∃R0(ε) s.t. if R > 2R0(ε), ∃ t0 =
t0(R, ε) with 0 < t0 ≤ C R s.t. ∀ 0 < t < t0 we have |x(t)

λ(t) | < R − R0(ε) and
|x(t0)
λ(t0) | = R−R0(ε).

Remark. In the radial case, x(t) ≡ 0, so a contradiction follows directly from
Lemma 10. This is the analogue of the virial identity proof for NLS. In the non-
radial case we also need:

Lemma 2. ∃ ε2 > 0, R1(ε) > 0, C0 > 0 s.t. if R > R1(ε), for 0 < ε < ε2, we have
t0(R, ε) ≥ C0R

ε
.

From Lemma 1 and Lemma 2 we have: for 0 < ε < ε1, R > 2R0(ε), t0(R, ε) ≤ C R,
while for 0 < ε < ε2, R > R1(ε), t0(R, ε) ≥ C0R

ε
. This is a contradiction for ε small.

Proof of Lemma 1. If not, since x(0) = 0, λ(0) = 1, both x(t), λ(t) continuous, we
have ∀ 0 < t < C R (C large) that |x(t)

λ(t) | < R − R0(ε). Let zR(t) =
∫
ψR∇ · ∂tu +

(N2 − α)
∫
φRu ∂tu. Then, z′R(t) = −α

∫
(∂tu)2 − (1 − α)[

∫
|∇u|2 − |u|2∗ ] + 0(r(R)).
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But, for |x| > R, 0 < t < C R we have |x + x(t)
λ(t) | ≥ R0(ε), so that |r(R)| ≤ C̃ εE

and so, for ε small, α = 1
2 , z′R(t) ≤ −

˜̃C E
2 . Also, |zR(t)| ≤ C1RE. Integrating in t, we

obtain: C R
˜̃C E

2 ≤ 2C1 RE, a contradiction for C large. �

Proof of Lemma 2. For 0 ≤ t ≤ t0, set

yR(t) =
∫
ψR

{1
2 (∂tu)2 + 1

2 |∇u|
2 − 1

2∗ |u|
2∗
}
.

We have for |x| > R, |x+ x(t)
λ(t) | > R0(ε) so that, since

∫
∇u0 u1 = 0, y′R(t) = O(r(R))

and hence
|yR(t0)− yR(0)| ≤ C̃εEt0.

But,
|yR(0)| ≤ C̃ R0(ε)E +O(Rr(R0(ε))) ≤ C̃E{R0(ε) + εR}

and
|yR(t0)| ≥

∣∣∣∣∣
∫

|x+ x(t0)
λ(t0) |≤R0(ε)

∣∣∣∣∣−
∣∣∣∣∣

∫
|x+ x(t0)

λ(t0) |>R0(ε)

∣∣∣∣∣ .
In the first integral, |x| ≤ R, so that ψR(x) = x. The second integral is bounded by
MRεE so that

|yR(t0| ≥
∣∣∣∣∣
∫
|x+ x(t0)

λ(t0) |≤R0(ε)
x
[1
2 (∂tu)2 + 1

2 |∇u|
2 − 1

2∗ |u|
2∗
]∣∣∣∣∣−MRεE.

The integral equals

−x(t0)

λ(t0)

∫
|x+ x(t0)

λ(t0) |≤R0(ε)

1
2 (∂tu)2(t0) + 1

2 |∇u|
2(t0)

− 1
2∗ |u|

2∗(t0) +
∫

|x+ x(t0)
λ(t0) |≤R0(ε)

(
x+ x(t0)

λ(t0)

){ }

=−x(t0)
λ(t0)

∫ {1
2 (∂tu)2 + 1

2 |∇u|
2 − 1

2∗ |u|
2∗
}

+ x(t0)
λ(t0)

∫
|x+ x(t0)

λ(t0) |≤R0(ε)

{ }

+
∫
|x+ x(t0)

λ(t0) |≤R0(ε)

(
x+ x(t0)

λ(t0)

){ }
.

The absolute value of the first term equals (R−R0(ε))E. The last two are bounded
by C̃(R−R0(ε)) εE + C̃ R0(ε)E. Thus,

|y(t0| ≥ (R−R0(ε))E(1− C̃ ε)−M RεE − C̃ R0(ε)E ≥
E R

4
for ε small, R large. Thus,

C̃ εE t0 ≥
E R

4 − C̃ E(R0(ε) + εR)

which yields the lemma for ε small, R large. �
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We next turn to:
Case 2 : T+ = 1, λ(t) ≥ C0(K)

1−t , suppu, ∂tu ⊂ B(0, 1− t). In this case we cannot
use the conservation of the L2 norm as in the case of (NLS) and a new approach is
needed.

The first step is:

Lemma 3. λ(t) ≤ C1(K)
1−t ·

Proof. If not, ∃ tn ↑ 1 s.t. λ(tn)(1−tn) ↑ +∞. Let z(t) =
∫
x·∇u·∂tu+(N2 −α)

∫
u ∂tu,

0 < α < 1. This is defined for 0 < t < 1 and
z′(t) = −α

∫
(∂tu)2 − (1− α)

∫
|∇u|2 − |u|2∗·

By our variational estimates E((u0, u1)) = E > 0 and sup
0<t<1
||(∇u, ∂tu)(t)|| ≤ C E.

Also, z′(t) ≤ −CαE, 0 < t < 1. From the support properties, we easily see that
lim
t↑1

z(t) = 0, so that, integrating in t, z(t) ≥ CαE(1−t). We will show that z(tn)
1−tn → 0,

yielding a contradiction. We know that
∫
∇u ∂tu = 0, 0 < t < 1. Hence,

z(tn)
(1− tn)

=
∫
(x+ x(tn)

λ(tn))∇u · ∂tu
(1− tn)

+
(
N

2 − α
) ∫ u ∂tu

(1− tn)
·

Note that, for ε > 0 given, we have∫
|x+ x(tn)

λ(tn) |≤ε(1−tn)

∣∣∣∣x+ x(tn)
λ(tn)

∣∣∣∣|∇u(tn)| |∂tu(tn)| ≤ C εE(1− tn)

and similarly for
∫

|x+ x(tn)
λ(tn) |≤ε(1−tn)

|u(tn)| |∂tu(tn)|. Next we show that |x+ x(tn)
λ(tn) | ≤ 2(1−

tn). If not, B(−x(tn)
λ(tn) , (1− tn))∩B(0, 1− tn) = ∅, so that

∫
B(−x(tn)

λ(tn) ,(1−tn))
|∇u(tn)|2 = 0,

while ∫
|x+ x(tn)

λ(tn) |≥(1−tn)

|∇u(x, tn|2 dx =
∫

|y|≥λ(tn)(1−tn)

∣∣∣∣∇u(y − x(tn)
λ(tn)

, tn

)∣∣∣∣2 dy

λ(tn)N
−−−→
n→∞

0

by λ(tn)(1− tn)→ +∞, compactness of K̄. Arguing similarly for ∂tu(tn), we obtain
that E((u(tn), ∂tu(tn)))→ 0, a contradiction. But,

1
(1− tn)

∫
|x+ x(tn)

λ(tn) |≥ε(1−tn)

∣∣∣∣x+ x(tn)
λ(tn)

∣∣∣∣ |∇u(x, tn)| |∂tu(x, tn)|

≤3
∫
|x+ x(tn)

λ(tn) |≥ε(1−tn)
|∇u(x, tn)| |∂tu(x, tn)|

= 3
λ(tn)N

∫
|y|≥ε(1−tn)λ(tn)

∣∣∣∣∇u(y − x(tn)
λ(tn)

, tn

)∣∣∣∣ ∣∣∣∣∂tu(y − x(tn)
λ(tn)

tn)
∣∣∣∣ dy −−−→n→∞ 0,

by compactness of K̄, (λ(tn)(1 − tn)) → 0. Arguing similarly (using Hardy) for∫ u·∂tu
(1−tn) , we conclude the proof. �

Proposition. In this case we have (T+ = 1) suppu, ∂tu ⊂ B(0, 1 − t) and K =
((1− t)N/2(∇u((1− t)x, t), ∂tu((1− t)x, t)) is compact in L2(RN)N+1.
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Proof.
{
~v(x, t) = (1 − t)N/2(∇u((1 − t)(x − x(t)), t), ∂tu((1 − t)(x − x(t)), t)

}
has

compact closure since C0(K) ≤ (1 − t)λ(t) ≤ C1(K) and if K̄ is compact, K1 =
{λN/2 ~v(λx) : ~v ∈ K, C0 ≤ λ ≤ C1} has K̄1 compact. Let now ṽ(x, t) = (1 −
t)N/2(∇u((1 − t)x, t), ∂tu((1 − t)x, t)), so that ṽ(x, t) = ~v(x + x(t), t). Since
supp~v(−, t) ⊂ {x : |x − x(t)| ≤ 1} and E > 0, the fact that {~v(−, t)} is com-
pact ⇒ |x(t)| ≤ C. But, if K2 = {~v(x + x0, t) : |x0| ≤ C}, then K̄2 is compact,
giving the Proposition. �

At this point, because of the lack of the L2 conservation law, we cannot go further
and a new idea is needed. Following Giga-Kohn [8] in the parabolic case and Merle-
Zaag [23] in the hyperbolic case

(
(∂2
t −∆)u − |u|p−1 u = 0, 1 < p < 4

N−1 + 1
)
, we

introduce self-similar variables. We set: y = x
1−t , s = log 1

1−t , 0 < t < 1 and define

w(y, s; 0) = (1− t)N−2/2 u(x, t) = e−s(N−2)/2 u(e−s y, 1− e−s) ,

which is defined for 0 ≤ s < ∞, suppw(−, s; 0) ⊂ {|y| ≤ 1}. We also consider,
for δ > 0, uδ(x, t) = u(x, t + δ) and the corresponding w. In other words, we set
y = x

1+δ−t , s = log 1
1+δ−t and

w(y, s; δ) = (1 + δ − t)N−2/2 u(x, t) = e−s(N−2)/2 u(e−s y, 1 + δ − e−s)

which is defined for 0 ≤ s ≤ − log δ, with suppw(−, s, δ) ⊂ {|y| ≤ e−s−δ
e−s

= 1−t
1+δ−t ≤

1− δ}. The w solve, in their domain,

∂2
s w = 1

ρ
div(ρ∇w−ρ(y·∇w) y)−N(N − 2)

4 w+|w|4/N−2 w−2y·∇ ∂sw−(N−1) ∂sw ,

where ρ(y) = (1− |y|2)−1/2.
The elliptic part of this operator degenerates. In fact, 1

ρ
div(ρ∇w−ρ(y ·∇w)y) =

1
ρ

div(ρ(I − y ⊗ y)∇w), which is elliptic for |y| < 1 and degenerates when |y| = 1.
This new equation gives us a new set of formulas. The reason for introducing δ > 0
is that, on suppw(−, s, δ), (1 − |y|2) ≥ δ, so we stay away from the degeneracy.
Bounds on w (obvious):

∫
B1
|w|2∗ + |∇w|2 + |∂sw|2 ≤ C, w ∈ H1

0 (B1) and hence∫
B1

|w|2
(1−|y|2)2 ≤ C. All these bounds are uniform in δ, s.

We introduce an energy, which will provide a Liapunov function for v :

Ẽ(w(s)) =
∫
B1

{1
2 (∂sw)2 + |∇w|2 − (y · ∇w)2

}
dy

(1− |y|2)1/2

+
∫
B1

{
N(N − 2)

8 w2 − (N − 2)
2N |w|2∗

}
dy

(1− |y|2)1/2

which is finite for δ > 0. Our new formulas are (0 < s1 < s2 < log 1/δ)

i) Ẽ(w(s2))− Ẽ(w(s1)) =
s2∫
s1

∫
B1

(∂sw)2

(1− |y|2)3/2 dy ds (Ẽ ↑).
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ii)
1
2

∫
B1

[
∂sw · w)− (1 +N)

2 w2
] ∣∣∣∣ dy

(1− |y|2)1/2

∣∣∣∣s2
s1

=−
s2∫
s1

Ẽ(w(s)) ds+ 1
N

s2∫
s1

∫
B1

|w|2∗

(1− |y|2)1/2

+
s2∫
s1

∫
B1

{
(∂sw)2 + ∂sw · y · ∇w + ∂sw · w|y|2

(1− |y|2)

}
dy

(1− |y|2)1/2 ·

iiii) lim
s→log 1

δ

Ẽ(w(s)) = E = E(u0, u1), so that Ẽ(w(s)) ≤ E, for 0 ≤ s < log 1
δ
.

Our first improvement is (δ > 0) :
Lemma.

1∫
0

∫
B1

(∂sw)2

(1− |y|2) dy ds ≤ C log 1
δ
·

Proof. We notice that

−2
∫ (∂sw)2

(1− |y|2) = d

ds

{ ∫ [1
2(∂sw)2 + 1

2 (|∇w|2 − (y · w)2) + (N − 2)N
8 w2

− (N − 2)
2N |w|2∗

]
(− log(1− |y|2) dy

}
+
∫ [

log(1− |y|2) + 2
]
y · ∇w ∂sw

−
∫

log(1− |y|2)(∂sw)2 − 2
∫

(∂sw)2 .

We integrate between 0 and 1 and drop the next to last term by sign. One finishes
by (C-S), support of w(−, s, δ). �

Corollary.
1∫

0

∫
B1

|w|2∗

(1− |y|2)1/2 ≤ C
(

log 1
δ

)1/2

Ẽ(w(1)) ≥ −C log
(1
δ

)1/2
.

Proof. The first estimate follows from ii), iii) above, C-S and the Lemma. Note
that (CS) give the 1

2 power. The second estimate follows from i) and the fact that
1∫
0
Ẽ(w(s)) ds ≥ −C

(
log 1

δ

)1/2
, which follows from the definition of Ẽ and the first

bound. �

Our second improvement is:
Lemma.

(log 1
δ

)3/4∫
1

∫
B1

(∂sw)2

(1− |y|2)3/2 ≤ C
(

log 1
δ

)1/2
.
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Proof. Use i), iii) and the second bound in Corollary. Note that the upper limit of
integration is not important in the bound. It is chosen for the subsequent applica-
tions. �

Corollary. ∃s̄δ ∈ (1, (log 1
δ
)3/4) s.t.∫ s̄δ+(log 1
δ

)1/8

s̄δ

∫
B1

(∂sw)2

(1− |y|2)3/2 ≤
C

(log 1
δ
)1/8 ·

Proof. Split (1, (log 1
δ
)3/4) into disjoint intervals of length (log 1

δ
)1/8. Their number

is (log 1
δ
)5/8 and 5

8 −
1
8 = 1

2 . Note the length → +∞, the bound → 0. �

Now it is not hard to see that, since s̄δ ∈ (1, (log 1
δ
)3/4), if s̄δ = − log(1 + δ − t̄δ),

| (1−t̄δ)
(1+δ−t̄δ)

− 1| ≤ C δ1/4 → 0, which is the point of our choice of (log 1
δ
)3/4. From

this and the compactness of K̄, one can find w∗(y, s) which solves our self-similar
equation in s ∈ [0, S], which is a limit of w(y, s̄δj + s, δj) as δj → 0, in C([0, S]; Ḣ1

0 ×
L2). The estimate in the corollary shows that w∗ is independent of s. Moreover,
the coercivity of u shows that w∗ 6≡ 0. Thus, w∗ ∈ H1

0 (B1), solves the (degenerate)
elliptic equation: (ρ(y) = (1− |y|2)−1/2), 1

ρ
div(ρ∇w∗ − ρ(y · ∇w∗)y)− N(N−2)

4 w∗ +
|w∗|4/N−2 w∗ = 0. We next show that w∗ satisfies the additional (crucial) estimates:∫

B1

|w∗|2∗

(1− |y|2)1/2 +
∫
B1

[|∇w∗|2 − (y · ∇w∗)2]
(1− |y|2)1/2 <∞ .

Indeed, for the first estimate, it is enough to show that∫ s̄δj+S
s̄δj

∫
B1

|w(y, s; δj)|2
∗

(1− |y|2)1/2 dy ds ≤ C for j large .

But this follows from ii) above once more, together with the choice of s̄δj (Corollary)
and (C-S). The proof of the second estimate is similar, using the first one, iii) and
the formula for Ẽ.

The conclusion of the proof is obtained by showing that a w∗ in H1
0 (B1), solving

the degenerate elliptic equation, with the additional bounds, must be 0. To do
this, we will use unique continuation. Recall that for |y| ≤ 1 − η0, η0 > 0, the
linear operator is uniformly elliptic, with smooth coefficient and the non-linearity
is critical. An argument going back to Trudinger [31] shows that w∗ is bounded on
|y| ≤ 1 − η0, for each η0 > 0. Hence, if we show that w∗ ≡ 0 near |y| = 1, the
standard unique continuation principle [13] will show that w∗ ≡ 0. Near |y| = 1, our
equation is modelled by (in variables z ∈ RN−1, r ∈ R, r > 0 near r = 0)

r1/2 ∂r(r1/2 ∂rw
∗) + ∆z w∗ + |w∗|4/N−2 w = 0 .

In these variables, our information is w∗ ∈ H1
0 ((0, 1]× (|z| < 1)) and the additional

estimates are: ∫ 1

0

∫
|z|<1
|w∗(r, z)|2∗ dr

r1/2 dz <∞,∫ 1

0

∫
|z|<1
|∇z w∗(r, z)|2

dr

r1/2 dz <∞ .

We now take advantage of the degeneracy of the equation. We “desingularize”
the problem by writting r = a2, setting v(a, z) = w∗(a2, z), so that ∂a v(a, z) =
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2a ∂rw∗(r, z) = 2r1/2 ∂rw
∗(r, z). Our equation becomes ∂2

av + ∆zv + |v|4/N−2 v = 0,
0 < a < 1, |z| < 1 and our bounds are:∫ 1

0

∫
|z|<1
|∇zv(a, z)|2 da dz =

1∫
0

∫
|z|<1

|∇zw∗(r, z)|2
dr

r1/2 dz <∞

and ∫ 1

0

∫
|z|<1
|∂av(a, z)|2 da

a
dz =

∫ 1

0

∫
|z|<1
|∂rw∗(r, z)|2 dr dz <∞ ,

and v ∈ H1
0 ((0, 1]×B1). But, from the additional bound we see that “∂av(a, z)|a=0 =

0”. One then extends v by 0 to a < 0 and checks that the extension is an H1

solution to the same equation. By Trudinger’s argument, it is bounded. But, since
it vanishes for a < 0, by unique continuation [13], v ≡ 0. Hence w∗ ≡ 0, reaching
our contradiction.
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