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Journées Équations aux dérivées partielles
Forges-les-Eaux, 7 juin–11 juin 2004
GDR 2434 (CNRS)

The radiation condition at infinity for the

high-frequency Helmholtz equation with source

term: a wave packet approach

François Castella

Abstract

We consider the high-frequency Helmholtz equation with a given source term,
and a small absorption parameter α > 0. The high-frequency (or: semi-
classical) parameter is ε > 0. We let ε and α go to zero simultaneously. We
assume that the zero energy is non-trapping for the underlying classical flow.
We also assume that the classical trajectories starting from the origin satisfy
a transversality condition, a generic assumption.

Under these assumptions, we prove that the solution uε radiates in the
outgoing direction, uniformly in ε. In particular, the function uε, when
conveniently rescaled at the scale ε close to the origin, is shown to converge
towards the outgoing solution of the Helmholtz equation, with coefficients
frozen at the origin. This provides a uniform (in ε) version of the limiting
absorption principle.

Writing the resolvent of the Helmholtz equation as the integral in time of
the associated semi-classical Schrödinger propagator, our analysis relies on the
following tools: (i) For very large times, we prove and use a uniform version
of the Egorov Theorem to estimate the time integral; (ii) for moderate times,
we prove a uniform dispersive estimate that relies on a wave-packet approach,
together with the above mentioned transversality condition; (iii) for small
times, we prove that the semi-classical Schrödinger operator with variable
coefficients has the same dispersive properties as in the constant coefficients
case, uniformly in ε.

1. Introduction

We study the asymptotics ε→ 0+ in the following scaled Helmholtz equation, with
unknown wε,

iε αεw
ε(x) +

1

2
∆xw

ε(x) + n2(εx)wε(x) = S (x) . (1)

MSC 2000 : Primary 35Q40; Secondary 35J10, 81Q20.
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In this scaling, both the absorption parameter αε > 0 is small, i.e.

αε → 0+ as ε→ 0,

and the index of refraction n2(εx) is almost constant,

n2(εx) ≈ n2(0).

The competition between these two effects is the key difficulty of the present work.
Note that the limiting case αε = 0+ is actually allowed in our analysis.

In all our analysis, the variable x belongs to Rd, for some d ≥ 3. The index of
refraction n2(x) is assumed to be given, smooth and non-negative1

∀x ∈ Rd, n2(x) ≥ 0, and n2(x) ∈ C∞(Rd). (2)

It is also supposed that n2(x) goes to a constant at infinity,

n2(x) = n2
∞ + O

(
〈x〉−ρ

)
as x→∞, (3)

for some, possibly small, exponant ρ > 02. In the language of Schrödinger operators,
this means that the potential n2

∞−n2(x) is assumed to be either short-range or long
range. Finally, the source term in (1) uses a function S(x) that is taken sufficiently
smooth and decays fast enough at infinity. We refer to the sequel for the very
assumptions we need on the refraction index n2(x), together with the source S (see
the statement of the main Theorem below).

Upon the L2-unitary rescaling

wε(x) = εd/2uε(εx),

the study of (1) is naturally linked to the analysis of the high-frequency Helmholtz
equation,

iεαεu
ε(x) +

ε2

2
∆xu

ε(x) + n2(x)uε(x) =
1

εd/2
S
(x

ε

)
, (4)

where the source term S(x/ε) now plays the role of a concentration profile at the
scale ε. In this picture, the difficulty now comes from the interaction between the
oscillations induced by the source S(x/ε), and the ones due to the semiclassical
operator ε2∆/2 + n2(x). We give below more complete motivations for looking at
the asymptotics in (1) or (4).

The goal of this talk is to prove that the solution wε to (1) converges (in the
distributional sense) to the outgoing solution of the natural constant coefficient
Helmholtz equation, i.e.

lim
ε→0

wε = wout , where wout is defined as the solution to

i0+wout(x) +
1

2
∆xw

out(x) + n2(0)wout(x) = S (x) . (5)

1Our analysis could easily extended to the case where the refraction index is a function that
changes sign. The only really important assumption on the sign of n is n2

∞
> 0. We do not give

further details on this point.
2Here and below we use the standard notation 〈x〉 := (1 + x2)1/2.
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In other words,

wout = lim
δ→0+

(
iδ +

1

2
∆x + n2(0)

)−1

S

= i

∫ +∞

0

exp

(
it

(
1

2
∆x + n2(0)

))
S dt. (6)

It is well-known that wout can also be defined as the unique solution to (∆x/2 +
n2(0))wout = S that satisfies the Sommerfeld radiation condition at infinity (stated
here in d = 3 dimensions of space)

x√
2|x|
· ∇xw

out(x) + in(0)wout(x) = O

(
1

|x|2
)

as |x| → ∞. (7)

The main geometric assumptions we need on the refraction index to ensure the
validity of (5) are twofolds. First, we need that the trajectories of the Hamiltonian
ξ2/2 − n2(x) at the zero energy are not trapped. This is a standard assumption
in this context. It somehow prevents accumulation of energy in bounded regions of
space. Second, it turns out that the trajectories that really matter in our analysis,
are those that start from the origin x = 0, with zero energy ξ2/2 = n2(0). In this
perspective, we need that these trajectories satisfy a transversality condition:
in essence, each such ray can self-intersect, but the self-intersection then has to be
“tranverse” (see assumption (14)). This second assumption prevents accumulation
of energy at the origin.

We wish to emphasize that the statement (5) is not obvious. In particular, if the
transversality assumption (14) is not fullfilled, our analysis shows that (5) becomes
false in general.

The central difficulty is the following. On the one hand, the vanishing absorption
parameter αε in (1) leads to thinking that wε should satisfy the Sommerfeld radi-
ation condition at infinity with the variable refraction index n2(εx) (see (7)).
Knowing that lim|x|→∞ n2(εx) = n2

∞, this roughly means that wε should behave like
exp(i2−1/2n∞|x|)/|x| at infinity in x. On the other hand, the almost constant refrac-
tion index n2(εx) in (1) leads to observe that wε naturally goes to a solution of the
Helmholtz equation with constant refraction index n2(0). Hoping that we may
follow the absorption coefficient αε continuously along the limit ε → 0 in n2(εx),
the statement (5) becomes natural, and wε should behave like exp(i2−1/2n(0)|x|)/|x|
asymptotically. As we see, the strong non-local effects induced by the Helmholtz
equation make the key difficulty in following the continuous dependence of wε upon
both the absorption parameter αε → 0+ and on the index n2(εx)→ n2(0).

2. Motivation

Let us now give some more detailed account on our motivations for looking at the
asymptotics ε→ 0 in (1).

In [BCKP], the high-frequency analysis of the Helmholtz equation with source
term is performed. More precisely, the asymptotic behaviour as ε → 0 of the
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following equation is studied3

iεαεu
ε(x) +

ε2

2
∆xu

ε(x) + n2(x)uε(x) =
1

εd/2
S
(x

ε

)
, (8)

where the variable x belongs to Rd, for some d ≥ 3, and the index of refraction n2(x)
together with the concentration profile S(x) are as before (see [BCKP]). Later, the
analysis of [BCKP] was extended in [CPR] to more general oscillating/concentrating
source terms. The paper [CPR] studies indeed the high-frequency analysis ε→ 0 in

iεαεu
ε(x) +

ε2

2
∆xu

ε(x) + n2(x)uε(x) =

1

εq

∫

Γ

S

(
x− y

ε

)
A(y) exp

(
i

φ(x)

ε

)
dσ(y). (9)

(See also [CRu] for extensions - see [Fou] for the case where n2 has discontinuities).
In (9), the function S again plays the role of a concentration profile like in (8), but the
concentration occurs this time around a smooth submanifold Γ ⊂ Rd of dimension p
instead of a point. On the more, the source term here includes additional oscillations
through the (smooth) amplitude A and phase φ. In these notations dσ denotes the
induced euclidean surface measure on the manifold Γ, and the rescaling exponant q
depends on the dimension of Γ together with geometric considerations, see [CPR].

Both Helmholtz equations (8) and (9) modelize the propagation of a high-
frequency source wave in a medium with scaled, variable, refraction index n2(x)/ε2.
The scaling of the index imposes that the waves propagating in the medium nat-
urally have wavelength ε. On the other hand, the source in (8) as well as (9) is
concentrating at the scale ε, close to the origin, or close to the surface Γ. It thus
carries oscillations at the typical wavelength ε. One may think of an antenna con-
centrated close to a point or to a surface, and emmitting waves in the whole space.
The important phenomenon that these linear equations include precisely lies in the
resonant interaction between the high-frequency oscillations of the source, and
the propagative modes of the medium dictated by the index n2/ε2. This makes one
of the key difficulties of the analysis performed in [BCKP] and [CPR].

A Wigner approach is used in [BCKP] and [CPR] to treat the high-frequency
asymptotics ε → 0. Up to a harmless rescaling, these papers establish that the
Wigner transform f ε(x, ξ) of uε(x) satisfies, in the limit ε → 0, the stationnary
transport equation

0+f(x, ξ) + ξ · ∇xf(x, ξ) +∇xn
2(x) · ∇ξf(x, ξ) = Q(x, ξ), (10)

where f(x, ξ) = lim f ε(x, ξ) measures the energy carried by rays located at the point
x in space, with frequency ξ ∈ Rd. The limiting source term Q in (10) describes
quantitatively the resonant interactions mentioned above. In the easier case of (8),
one has Q(x, ξ) = δ (ξ2/2− n2(0)) δ(x) |Ŝ(ξ)|2, meaning that the asymptotic source
of energy is concentrated at the origin in x (this is the factor δ(x)), and it only carries

3note that we use here a slightly different scaling than the one used in [BCKP]. This a harmless
modification that is due to mere convenience.
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resonant frequencies ξ above this point (due to δ (ξ2/2− n2(0))). A similar but more
complicated value of Q is obtained in the case of (9). In any circumstance, equation
(10) tells us that the energy brought by the source Q is propagated in the whole
space through the transport operator ξ · ∇x + ∇xn

2(x) · ∇ξ naturally associated
with the semi-classical operator −ε2∆x/2 − n2(x). The term 0+f in (10) specifies
a radiation condition at infinity for f , that is the trace, as ε→ 0 of the absorption
coefficient αε > 0 in (8) and (9). It gives f as the outgoing solution

f(x, ξ) =

∫ +∞

0

Q (X(s, x, ξ), Ξ(s, x, ξ)) ds.

Here (X(s, x, ξ), Ξ(s, x, ξ)) is the value at time s of the characteristic curve of ξ ·
∇x+∇xn

2(x) ·∇ξ starting at point (x, ξ) of phase-space (see (13) below). Obtaining
the radiation condition for f as the limiting effect of the absorption coefficient αε in
(8) is actually the second main difficulty of the analysis performed in [BCKP] and
[CPR].

It turns out that the analysis performed in [BCKP] relies at some point on
the asymptotic behaviour of the scaled wave function wε(x) = εd/2uε(εx) that
measures the oscillation/concentration behaviour of uε close to the origin. Simi-
larly, in ([CPR]) one needs to rescale uε around any point y ∈ Γ, setting wε

y(x) :=

εd/2uε(y + εx) for any such y. We naturally have

iεαεw
ε(x) +

1

2
∆xw

ε(x) + n2(εx)wε(x) = S (x) ,

in the case of (8), and a similar observation holds true in the case of (9). Hence
the natural rescaling leads to the analysis of the prototype equation (1). Under
appropriate assumptions on n2(x) and S(x), it may be proved that wε, solution to
(1), is bounded in the weighted L2 space L2(〈x〉1+δ dx), for any δ > 0, uniformly
in ε. For a fixed value of ε, such weighted estimates are consequences of the work
by Agmon, Hörmander, [Ag], [AH]. The fact that these bounds are uniform in ε
is a consequence of the recent (and optimal) estimates established by B. Perthame
and L. Vega in [PV1], [PV2] (where the weighted L2 space are replaced by a more
precise homogeneous Besov-like space). The results in [PV1] and [PV2] actually
need a virial condition of the type 2n2(x) + x · ∇xn

2(x) ≥ c > 0, a condition that
implies our transversality assumption (14). We also refer to the work by N. Burq
[Bu], Gérard and Martinez [GM], T. Jecko [J], as well as Wang and Zhang [WZ], for
(not optimal) bounds in a similar spirit. Under the (weaker) assumptions we make
in the present paper, a (weaker) bound may also be obtained as a consequence of
our analysis. In any case, once wε is seen to be bounded, it naturally possesses a
weak limit w = lim wε in the appropriate space. The limit w clearly satisfies in a
weak sense the equation

(
1

2
∆x + n2(0)

)
w(x) = S(x). (11)

Unfortunately, equation (11) does not specify w = lim wε in a unique way, and it has
to be supplemented with a radiation condition at infinity. In view of the equation

IV–5



(1) satisfied by wε, it has been conjectured in [BCKP] and [CPR] that lim wε

actually satisfies
lim wε = wout,

where wout is the outgoing solution defined before. The present talk answers the
conjecture formulated in these works. It also gives geometric conditions for the
convergence lim wε = wout to hold.

As a final remark, let us mention that our analysis is purely time-dependent.
We wish to indicate that similar results than those in the present talk were recently
and independently obtained by Wang and Zhang [WZ] using a stationary approach.

3. Main result

Our main theorem is the following

Main Theorem
Let wε satisfy iεαεw

ε(x) + 1
2
∆xw

ε(x) + n2(εx)wε(x) = S(x), for some sequence
αε > 0 such that αε → 0+ as ε → 0. Assume that the source term S belongs to
the Schwartz class S(Rd). Suppose also that the index of refraction satisfies the
following set of assumptions

• (smoothness, decay). There exists an exponent ρ > 0, and a positive constant
n2
∞ > 0 such that for any multi-index α ∈ Nd, there exists a constant Cα > 0

with
∣∣∣∂αx
(
n2(x)− n2

∞
) ∣∣∣ ≤ Cα 〈x〉−ρ−|α|. (12)

• (non-trapping condition). The trajectories associated with the Hamiltonian
ξ2/2−n2(x) are not trapped at the zero energy. In other words, any trajectory
(X(t, x, ξ), Ξ(t, x, ξ)) solution to

∂

∂t
X(t, x, ξ) = Ξ(t, x, ξ), X(0, x, ξ) = x,

∂

∂t
Ξ(t, x, ξ) =

(
∇xn

2
)
(X(t, x, ξ)) , Ξ(0, x, ξ) = ξ, (13)

with initial datum (x, ξ) such that ξ2/2− n2(x) = 0, is assumed to satisfy

|X(t, x, ξ)| → ∞, as |t| → ∞.

• (tranversality condition). The tranvsersality condition (14) on the trajecto-
ries starting from the origin x = 0, with zero energy ξ2/2 = n2(0), is satisfied.

Then, we do have the following convergence, weakly, when tested against any func-
tion φ ∈ S(Rd),

wε → wout.

Remark
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The transversality assumption (14) requires that

the set S := {(η, ξ, t) ∈ R2d×]0,∞[ s.t.

X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η, ξ2/2 = n2(0)} (14)

is a smooth submanifold of R2d+1, having a codimension > d + 2.

In other words, zero energy trajectories issued from the origin and passing several
times through the origin x = 0 should be “rare”.

It is possible to prove that codim S ≥ d + 2 in any case. Our assumption thus
means that the extreme case codim S = d + 2 should be avoided.

To give a caricatural example, let us simply say that the flow of the harmonic
oscillator (which is, strictly speaking, not included in our analysis), i.e. the case of a
Hamiltonian H(x, ξ) = ξ2/2+x2/2, gives codim S = d+2. In the case of a harmonic
oscillator with rationally independent frequencies, i.e. H(x, ξ) = ξ2/2 + ω1x

2
1/2 +

· · ·+ ωdx
2
d/2 with (ω1, . . . , ωd) being Q-independent, gives codim S = 0.

The above theorem is not only a local convergence result, valid for test functions
φ ∈ S. Indeed, by density of smooth functions in weighted L2 spaces, it readily
implies the following immediate corollary. It states that, provided wε is bounded in
the natural weighted L2 space, the convergence also holds weakly in this space. In
other words, the convergence also holds globally.

Immediate corollary

With the notations of the main Theorem, assume that the source term S above
satisfies the weaker decay property

‖S‖B :=
∑

j∈Z

2j/2‖S‖L2(Cj) <∞, (15)

where Cj denotes the annulus {2j ≤ |x| ≤ 2j+1} in Rd. Suppose also that the
index of refraction satisfies the smoothness condition of the main Theorem, with the
non-trapping and transversality assumptions replaced by the stronger

• (virial condition) 2
∑

j∈Z

sup
x∈Cj

(x · ∇n2(x))−
n2(x)

< 1. (16)

Then, we do have the convergence wε → wout, weakly, when tested against any
function φ such that ‖φ‖B <∞,

Remark

Here, the decay (15) assumed on the source S is the natural (and optimal) one.
On the more, the above weak convergence holds in the optimal space, as we now
explain.

It is well known that the resolvent of the Helmholtz operator maps the weighted
L2 space L2

(
〈x〉1+δdx

)
to L2

(
〈x〉−1−δdx

)
for any δ > 0 ([Ag], [J], [GM]). It has

been established (in the constant coefficients case) by Agmon and Hörmander [AH]
that this may be improved into the following optimal result: the resolvent of the
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Helmholtz operator sends the weighted L2 space B defined in (15) to the dual
weighted space B∗ defined by

‖u‖B∗ := sup
j∈Z

2−j/2‖u‖L2(Cj). (17)

This has been generalized to the non-constant coefficients case (that are non-compact
perturbations of the constant coefficients case) by Perthame and Vega in [PV1] and
[PV2]. Their work uses the assumption (16). In our perspective, the assumption
(16) is of technical nature, and it may be replaced by any assumption ensuring that
the solution wε to (1) satisfies the uniform bound

‖wε‖B∗ ≤ Cd,n2 ‖S‖B, (18)

for some universal constant Cd,n2 that only depends on the dimension d ≥ 3 and the
index n2.

Proof of the immediate Corollary
Under the virial assumption, it has been established in [PV1] that estimate (18)
holds true. Hence, by density of the Schwartz class in the space B, one readily
reduces the problem to the case when the source S and the test function φ belong
to S(Rd). The main Theorem now allows to conclude.

Needless to say, the central assumptions needed for the theorem are the non-
trapping condition together with the transversality condition. To state the result
very briefly, the heart of our proof lies in proving that under the above assumptions,
the propagator exp (iε−1t (−ε2∆x/2− n2(x))), or its rescaled value
exp (it (−∆x/2− n2(εx))), satisfy “similar” dispersive properties as the free Schrö-
dinger operator exp (it (−∆x/2− n2(0))), uniformly in ε. This in turn is proved
upon distinguishing between small times, moderate times, and very large times,
each case leading to the use of different arguments and techniques.

4. Outline of the proof

Let wε be the solution to iεαεw
ε + 1

2
∆wε + n2(εx)wε = S (x) , with S ∈ S(Rd).

According to the statement of our main Theorem, we wish to study the asymptotic
behaviour of wε as ε → 0, in a weak sense. Taking a test function φ(x) ∈ S(Rd),
and defining the duality product

〈wε, φ〉 :=

∫

Rd

wε(x)φ(x) dx,

we want to prove the convergence

〈wε, φ〉 → 〈wout, φ〉 as ε→ 0.

where the outgoing solution of the (constant coefficient) Helmholtz equation wout is
defined in (5), (6) before.
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4.1. First step: preliminary reduction - the time dependent
approach

In order to prove the weak convergence 〈wε, φ〉 → 〈wout, φ〉, we define the rescaled
function

uε(x) =
1

εd/2
wε
(x

ε

)
. (1)

It satisfies iεαεu
ε + ε2/2 ∆uε + n2(x)uε = 1/εd/2S (x/ε) =: Sε(x), where for any

function f(x) we use the short-hand notation

fε(x) =
1

εd/2
f
(x

ε

)
.

Using now the function uε instead of wε, we observe the equality

〈wε, φ〉 = 〈uε, φε〉. (2)

This transforms the original problem into the question of computing the semiclas-
sical limit ε → 0 in the equation satisfied by uε. One sees in (2) that this limit
needs to be computed at the semiclassical scale (i.e. when tested upon a smooth,
concentrated function φε).

In order to do so, we compute uε in terms of the semiclassical resolvent
(iεαε + (ε2/2)∆ + n2(x))

−1. It is the integral over the whole time interval [0, +∞[
of the propagator of the Schrödinger operator associated with ε2∆/2 + n2(x). In
other words we write

uε =

(
iεαε +

ε2

2
∆ + n2(x)

)−1

Sε

= i

∫ +∞

0

exp

(
it

(
iεαε +

ε2

2
∆ + n2(x)

))
Sε dt. (3)

Now, defining the semi-classical propagator

Uε(t) := exp

(
i
t

ε

(
ε2

2
∆ + n2(x)

))
= exp

(
−i

t

ε
Hε

)
, (4)

associated with the semi-classical Schrödinger operator

Hε := −ε2

2
∆− n2(x), (5)

we arrive at the final formula

〈wε, φ〉 = 〈uε, φε〉 =
i

ε

∫ +∞

0

e−αεt 〈Uε(t)Sε, φε〉 dt. (6)

Our strategy is to pass to the limit in this very integral.
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More precisely, we wish to prove that the quantity associated with the non-
constant coefficients propagator (corresponding to the curved trajectory in the
picture below), namely

〈wε, φ〉 =
i

ε

∫ +∞

0

e−αεt
〈

exp

(
i
t

ε

(
ε2

2
∆ + n2(x)

))
Sε, φε

〉
dt, (7)

is asymptotic to the analogous quantity with coefficients frozen at the origin
(corresponding to the straight line in the picture below), namely

〈wout, φ〉 =
i

ε

∫ +∞

0

〈
exp

(
i
t

ε

(
ε2

2
∆ + n2(0)

))
Sε, φε

〉
dt. (8)

with non−zero speed

T
1

ε−κ

ϕε

spreading
increases with time

"gaussian" Uε (t) S ε

trajectory in the constant
coefficients case

trajectory in the case of
variable coefficients

T0 εtime 

point X(t) of the trajectory
at time 

typical spreading 

initial wave packet, shot from x=0

time

support of the test function
time 

|ξ| =n(0)

ε
t

time θ

4.2. Second step: passing to the limit from (7) to (8)

In order to pass to the limit ε → 0 in (7), we need to analyze the contributions of
various time scales in the corresponding time integral. More precisely, we choose
for the whole subsequent analysis two (large) cutoff parameters in time, denoted by
T0 and T1, and one (small) cutoff parameter θ. We analyze the contributions to the
time integral (7) that are due to the four regions

0 ≤ t ≤ T0ε, T0ε ≤ t ≤ θ, T0ε ≤ t ≤ T1, and t ≥ T1.

We also choose a (small) exponent κ > 0, and we occasionally treat separately the
contributions of very large times

t ≥ ε−κ.

Associated with these truncations, we take once and for all a smooth cutoff function
χ defined on R, such that

χ(z) ≡ 1 when |z| ≤ 1/2, χ(z) ≡ 0 when |z| ≥ 1,

χ(z) ≥ 0 for any z. (9)

To be complete, there remains to finally choose a (small) cutoff parameter in energy
δ > 0. Accordingly we distinguish in the L2 scalar product 〈Uε(t)Sε, φε〉 between
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energies close to (or far from) the zero energy, which is critical for our problem. In
other words, we set the self-adjoint operator

χδ (Hε) := χ

(
Hε

δ

)
.

This object is perfectly well defined using standard functional calculus for self-
adjoint operators. We decompose

〈Uε(t)Sε, φε〉 =
〈
Uε(t) χδ(HεSε, φε

〉
+
〈
Uε(t) (1− χδ) (Hε) Sε, φε

〉
.

Following the above described decomposition of times and energies, we study each
of the subsequent terms:

• The contribution of small times is

Aε :=
1

ε

∫ 2T0ε

0

χ

(
t

T0ε

)
e−αεt 〈Uε(t)Sε, φε〉 dt.

We prove that this term actually gives the dominant contribution in (6), provided the
cutoff parameter T0 is taken large enough. This (easy) analysis essentially boils down
to manipulations on the time dependent Schrödinger operator i∂t + ∆x/2 + n2(εx),
for finite times t of the order t ∼ T0 at most. Indeed, it is readily seen, going back
to the microscopic scale x→ εx and t→ εt, that

Aε =

∫ 2T0

0

χ

(
t

T0

)
e−εαεt

〈
exp

(
it

(
1

2
∆x + n2(εx)

))
S, φ

〉
dt

∼
∫ 2T0

0

χ

(
t

T0

) 〈
exp

(
it

(
1

2
∆x + n2(0)

))
S, φ

〉
dt for any finite T0

∼
∫ +∞

0

〈
exp

(
it

(
1

2
∆x + n2(0)

))
S, φ

〉
dt for T0 large enough

= 〈wout, φ〉.

In view of this result, the main Theorem is proved once it is established
that all other (subsequent) contributions are small. This is the task we now
perform.

• The contribution of moderate and large times, away from the zero
energy, is

Bε :=
1

ε

∫ +∞

T0ε

(1− χ)

(
t

T0ε

)
e−αεt

〈
Uε(t) (1− χδ) (Hε) Sε, φε

〉
dt.

We prove that this term has a vanishing contribution, provided T0 is large enough.
This easy result relies on a non-stationnary phase argument in time, recalling that
Uε(t) = exp(−itHε/ε) and the energy Hε is larger than δ > 0.
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• The contribution of very large times, close to the zero energy is

Cε :=
1

ε

∫ +∞

ε−κ

e−αεt
〈
Uε(t)χδ (Hε) Sε, φε

〉
dt.

We prove that this term has a vanishing contribution as ε → 0. To do so, we
use results proved by X.P. Wang [Wa]: these essentially assert that the operator
〈x〉−s Uε(t)χδ(Hε) 〈x〉−s has the natural size 〈t〉−s as time goes to infinity, pro-
vided the critical zero energy is non-trapping. Roughly, the semiclassical operator
Uε(t)χδ(Hε) sends rays initially close to the origin, at a distance of the order t from
the origin, when the energy is non trapping. Quantitatively, this information allows
us to estimate

∣∣∣
〈
Uε(t)χδ (Hε) Sε, φε

〉∣∣∣ ≤ Cs 〈t〉−s , ∀s ≥ 0,

and the contribution of this scalar product to the above integral vanishes (provided
s is large, and κ is small):

Cε = O(ε−1+sκ), for any s ≥ 0.

Note that the need for considering polynomially large times here (t ≥ ε−κ), stems
from the ε−1 in front of the integral in time that defines Cε.

The most difficult terms are the last two that we describe now.

• The contribution of large times, close to the zero energy is

Dε :=
1

ε

∫ ε−κ

T1

e−αεt
〈
Uε(t)χδ (Hε) Sε, φε

〉
dt.

The treatment of this term is similar in spirit, though much harder, to the analysis
performed in the previous term. Using only information on the localization proper-
ties of Uε(t)χδ (Hε)Sε and φε, we prove that this term has a vanishing contribution,
provided T1 is large enough. To do so, we use ideas of Bouzouina and Robert [BR],
to establish a version of the Egorov theorem that holds true for polynomially large
times in ε.

Roughly, the statement is the following. On the one hand, φε is localised close to
x = 0. On the other hand, the term χδ (Hε) Sε is microlocalised close to x = 0 and
ξ2/2 = n2(x). The Egorov Theorem, in the version of [BR] then asserts that, up to
a remainder term Rε(t, x) (that is quite explicitely estimated), the propagated
quantity Uε(t)χδ (Hε) Sε is microlocalised close to the trajectories, at time t, issued
from x = 0 and ξ2/2 = n2(0). Now, the non-trapping assumption implies that, for
large enough times, such trajectories are away from the origin. As a consequence, up
to the remainder Rε(t, x) again, the scalar product

〈
Uε(t)χδ (Hε) Sε, φε

〉
vanishes

for large times, due to orthogonality of the supports. In other words

Dε ∼
1

ε

∫ ε−κ

T1

〈Rε(t, x), φε〉 dt

IV–12



provided T1 is large enough. Hence, there only remains to estimate the error term
in Egorov’s Theorem. The article [BR] gives the typical estimate

‖Rε(t, x)‖L2(Rd) ≤ CN,δ εN sup
1≤|α|≤N
|x|≤δ

|ξ2/2−n2(x)|≤δ

∣∣∣
∂α

∂(x, ξ)
(X(t, x, ξ), Ξ(t, x, ξ))

∣∣∣,

where the trajectory (X(t), Ξ(t) has been defined in (13), and the initial data (x, ξ)
run over a compact neighbourhood, of size δ, of {x = 0, ξ2/2 = n2(x)}. In other
words, the growth in time of Rε(t, x) is controlled by the growth of the linearized
flow. In general, this term grows exponentially with time, wich is too strong a
growth for our purpose. In our very case however, using the simplecticness of the
flow (X(t), Ξ(t), together with the fact that n2(x) goes to a constant at infinity, it
turns out that the linearized flow has polynomial growth in time, i.e.

sup
1≤|α|≤N
|x|≤δ

|ξ2/2−n2(x)|≤δ

∣∣∣
∂α

∂(x, ξ)
(X(t, x, ξ), Ξ(t, x, ξ))

∣∣∣ ≤ CN,δ tN
2

.

(The exponant N2 here is very probably not optimal). As a consequence, we deduce
the polynomial bound

‖Rε(t, x)‖L2(Rd) ≤ CN εN tN
2

,

from which it follows that

Dε ∼
1

ε

∫ ε−κ

T1

εN tN
2

dt ≤ εN−N2κ → 0,

provided κ is small.

• The contribution of moderate times close to the zero energy is

Eε :=
1

ε

∫ T1

T0ε

(1− χ)

(
t

T0ε

)
e−αεt

〈
Uε(t)χδ (Hε) Sε, φε

〉
dt.

This is the most difficult term: contrary to all preceding terms, it cannot be an-
alyzed using only geometric informations on the microlocal support of the relevant
functions. Indeed, keeping in mind that the function Uε(t)χδ (Hε) Sε is localized on
a trajectory initially shot from the origin, whereas φε stays at the origin, it is clear
that for times T0ε ≤ t ≤ T1, the support of Uε(t)χδ (Hε) Sε and φε may intersect, due
to trajectories passing several times at the origin. This might create a dangerous
accumulation of energy at this point. For that reason, we need a precise evaluation
of the semi-classical propagator Uε(t), for times up to the order t ∼ T1. This is done
using the elegant wave-packet approach of M. Combescure and D. Robert [CRo]
(see also [Ro], and the nice lecture [Ro2]), as we describe now.

Let us take a Gaussian wave packet centered at the point (q, p) in phase space:

ϕεq,p(x) := (πε)−d/4 exp

(
i

ε
p ·
(
x− q

2

))
exp

(
−(x− q)2

2ε

)
.
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It has been proved in [CRo] that, at least for bounded values of time, the propagator
Uε(t) has a quite explicit action on ϕεq,p(x, ξ), namely,

Uε(t)ϕ
ε
q,p(x) = (πε)−d/4 exp

(
i

ε
pt ·
(
x− qt

2

))
exp

(
−Γ(t, q, p)

(x− qt)
2

2ε

)

× exp

(
i

ε
S(t, q, p)

)
PN(t, ε, q, p; (x− qt)/

√
ε)

+ remainder. (10)

This formula states in essence that an intial wave packet centered at (q, p) in phase
space becomes, after propagation through Uε(t), a gaussian wave packet centered at
(qt, pt) = (X(t, q, p), Ξ(t, q, p)), with a new (complex) “variance” Γ(t, q, p) (a d × d
symmetric matrix, that is explicitely computable in terms of the classical flow),
and an additional phase factor S(t, q, p) (an “action”, which is again explicitely
computable in terms of the classical flow). In formula (10), the corrective factor
PN(t, ε, q, p; (x − qt)/

√
ε) is a polynomial of degree 2N in its last variables, that

depends smoothly upon t, ε, q, p, and the remainder term is of size εN , N being
some large integer. The important point in (10) is that the (complex) phase

i

ε
pt ·
(
x− qt

2

)
− Γ(t, q, p)

(x− qt)
2

2ε
+

i

ε
S(t, q, p),

as well as the amplitude PN , are “explicitely” known in terms of classical quantities.
Hence, projecting Sε over the gaussian wave packets, we may write

Eε ≈
1

ε

∫ T1

T0ε

(1− χ)

(
t

T0ε

)〈
Uε(t)χδ (Hε)Sε, φε

〉
dt

=
1

ε
(2πε)−d

∫

R2d

dqdp

∫ T1

T0ε

〈
χδ (Hε)Sε, Uε(−t)ϕεq,p

〉 〈
ϕεq,pφε

〉
dt

and, using (10), we arrive after some computations at a formula of the form (very
roughly)

Eε ≈ ε−(d+2)/2

∫ T1

T0ε

dtdξdη (1− χ)

(
t

T0ε

)
A(t, ξ, η) exp

(
i

Φ(t, ξ, η)

ε

)
. (11)

This formula involves a rather explicit (complex) phase Φ and amplitude A. Our
goal is to prove with the help of (11) that Eε is negligible.

To do so, we wish to apply the stationary phase formula in (11). Since integration
by parts in time will be needed, this step requires some care. Indeed, close to the
lower bound T0ε, integration by parts in time creates diverging factors, due to the
term (1− χ) (t/T0ε) in (11). This is why we now need to further distinguish in
(11) between times T0ε ≤ t ≤ θ (for which one cannot use a pure stationary phase
approach), and later times θ ≤ t ≤ T1.

Times θ ≤ t ≤ T1
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For those times, one may use a stationary phase approach in t, ξ, η, to analyse
the asymptotic behaviour of

E1
ε := ε−(d+2)/2

∫ T1

θ

dt

∫

R2d

dξdη (1− χ)

(
t

θ

)
A(t, ξ, η) exp

(
i

Φ(t, ξ, η)

ε

)
.

It turns out that the stationary set S := {ImΦ = 0, ∇t,ξ,ηΦ = 0} is exactly

S = {(t, ξ, η) ∈]θ, +∞[×R2d such that

ξ2/2 = n2(0), X(t, 0, ξ) = 0, Ξ(t, 0, ξ) = η}.

η

ξ

x=0

Assuming S is a smooth submanifold, we arrive at

E1
ε ∼ ε[codimS−d−2]/2

∫

S

dtdξdη (1− χ)

(
t

θ

)
A(t, ξ, η) exp

(
i

Φ(t, ξ, η)

ε

)
.

Thus, E1
ε vanishes asymptotically provided

codim S > d + 2, i.e. dim S < d− 1.

This is the geometric assumption (14) mentioned previously. Note that, in the case
codim S = d + 2, it is in principle possible to compute the O(1) quantity

lim
ε→0

E1
ε =

∫

S

dtdξdη (1− χ)

(
t

θ

)
A(t, ξ, η) exp

(
i

Φ(t, ξ, η)

ε

)
,

In the case limε→0 E1
ε 6= 0, this observation gives a counterexample to the conver-

gence wε → wout.

For times T0ε ≤ t ≤ θ
For those times, the above argument fails, because one cannot use a stationary

phase argument in time. In this case, one exploits at variance the fact that the
classical trajectory associated with constant coefficients Hamiltonian ξ2/2− n2(0),
is tangent with the classical trajectory associated with non-constant coefficients
Hamiltonian ξ2/2 − n2(x). In other words, one starts doing Taylor expansions in
the phase, in the spirit of [Dsf], as we now explain.

Quantitatively, we write, after some computations

E2
ε := ε−(d+2)/2

∫ θ

T0ε

dt

∫

R2d

dξdη A(t, ξ, η) exp

(
i

Φ(t, ξ, η)

ε

)

= ε−1

∫ θ

T0ε

dt

∫

Rd

dξ Ã(t, ξ) exp

(
i

Φ̃(t, ξ)

ε

)
,

for some new amplitude and phase Ã(t, ξ) and Φ̃, that are computable in terms of A
and Φ. In essence, we have here absorbed ε−d/2 upon making the stationary phase
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argument of the previous step in the variable η only. There remains to absorb the
factor ε−1, that corresponds to the stationary phase argument in time used in the
previous step.

Here, we write, upon rescaling time by t→ εt,

E2
ε = ε−1

∫ θ

T0ε

dt

∫

Rd

dξ Ã(t, ξ) exp

(
i

Φ̃(t, ξ)

ε

)

=

∫ θ/ε

T0

dt

∫

Rd

dξ Ã(εt, ξ) exp

(
i t

Φ̃(εt, ξ)

εt

)
.

The difficulty now is to get integrability in the new time variable t, close to infinity.
This is obtained upon exploiting the fact that εt ≤ θ is a small parameter, and
writing the Taylor expansion

Φ̃(εt, ξ)

εt
=
(
∂tΦ̃
)

(0, ξ) + O(θ) = ξ2/2 + O(θ),

where the second equatlity stems from an explicit computation. As a consequence,
as time t becomes large, while εt remains O(θ), we have the standard dispersive
estimate ∫

Rd

dξ Ã(εt, ξ) exp

(
i t

Φ̃(εt, ξ)

εt

)
= O(t−d/2),

from which it follows that

E2
ε =

∫ θ/ε

T0

dt

∫

Rd

dξ Ã(εt, ξ) exp

(
i t

Φ̃(εt, ξ)

εt

)
= O(T

−d/2+1
0 ),

is a negligible term as T0 is large enough.
This ends our analysis.
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