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PREPARATION THEOREMS FOR SYSTEMS

NiLs DENCKER

University of Lund

1. INTRODUCTION
The Malgrange preparation theorem is a useful tool in analysis. It is a generalization of
the Weierstrass’ preparation theorem to C* functions as follows: if f(¢,z) € C°(R x R¢)
satisfies

(1.1) 0 = £(0,0) = 8,f(0,0) = --- = 87" £(0,0) and 8"f(0,0) # 0,

then we can factor

(1.2) Ft,2) = c(t, z) (" + @no1(2)t" ™ + -+ as(2)t + ao(z))

near (0,0), where ¢(0,0) # 0 and a;(0) =0, 0 < j < n. The condition (1.1) means that
f(t,0) = (t)t",

where ¢(0) # 0. A possible generalization of this result to matrix valued functions, is to
replace (1.1) by

(1.3) 0= F(0,0) = 8,F(0,0) = --- =87 ' F(0,0) and |3]F(0,0)| #0,

where F(t,z) € C* is N X N matrix valued, and |F| is the determinant. Then we should
obtain (1.2) with matrix valued ¢(¢,z) and a;(z), satisfying |c(¢,z)| # 0 and a;(0) = 0,
Vj. In the case when n = 1 in (1.3), this was proved in [1]. But the condition (1.3) is
too restrictive, since it does not cover the cases when F(t,z) = (f;(¢,2)d;x) is diagonal,

with diagonal elements f; satisfying (1.1) with different n (in which case we can use the
Malgrange preparation theorem). More generally, we assume that

(1.4) F(t,0) = C(t) zn:tjm,

where |C(0)| # 0, and ; is orthogonal projection on C¥, such that mjm; = §;rm; and
E;'l_—.o 7; = Idn. This includes condition (1.3), and is equivalent to

1. c¥N =P mdF
(1.5) J@O m&F(0,0)]

where Ex = [y, <; Ker &/ F(0,0). This condition is invariant under left multiplication of
F by elliptic systems. Assuming (1.5), we show in Theorem 2.5 that

(1.6) F(t,z) = C(t,z) (Z thm; + i tjAj(x)>,
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near (0,0), where C(t,z) and A;(z) are C* functions satisfying |C(0,0)| # 0 and A4;(0) =
0, 0 £ j < n. Since we are allowed to make row operations, we obtain that A;(z)r; =0
when 7 > k. The orthogonal projections 7 are uniquely determined in (1.6).

Now condition (1.5) is also too restrictive, for example, it is not satisfied for the poly-

nomials
n ) n—1 .
Zt"ﬂ'j + ZtJAJ'(.’L'),
i=0 =0

when Aj(z)my = 0 for j > k, and A;(0) # 0 for some j. But such systems always satify
the condition

(1.7) O™ (det F')(0,0) # 0,

for some m, thus the determinant does not vanish of infinite order. In Theorem 3.3,
we show that condition (1.7) is sufficient for a preparation of F' on the form (1.6), with
orthogonal projections {7;} on C¥, such that 7;mx = ;57 and E?:o 7; = Idy. We
obtain that A;(z) satisfies Aj(z)my =0 when j > k, and

(18) AJ'(O)Z Z 7r,~A_,~(0)7rk.

1<j<k

The projections 7 and matrices 4;(0) are uniquely determined by (1.8). The rank of the
projections 7 are determined by the elementary divisors of the Taylor expansion of F\(t,0)
at t = 0, but the projections themselves are harder to compute, except for 7y and m; (see
Remark 3.4).

By allowing right multiplication by elliptic systems, i.e. column operations, we may
also obtain that mxAj(z) = 0 when j > k, and A4;(0) = 0 when (1.8) holds (see Propo-
sition 3.5). By duality, we obtain the corresponding results for right preparation of F, i.e.
left preparation of F*, in Theorem 4.2. We also prove the generalization of Malgrange’s
division theorem in Theorems 3.6 and 4.3. The method of proof follows in part Mather
[6], with the improvements of Hérmander 2, Section 7.5]. Observe that, since the proofs
of Malgrange [3] use commutative algebra, they are not directly applicable here.

2. LEFT PREPARATION

In what follows, let m; be (complex) orthogonal projections in CV, 0 <j < n, such that
E?:o 7; = Idy and mjmg = §jkmi. This means that 7 = m;, Vj. Put

(2.1) P(t,A) = Z thr; + Z ti A;,

0<j<n 0<j<n

with A = (Ao,...,An—1), where A; € Ly = L(CN,CV) is a complex N x N matrix
satisfying

(2.2) Aj7rk =0 when ] > k.

Let |A;| = det A; be the determinant of A;, and let ||A|| = > . ||4;||, where [[4;]] is the
matrix norm. We are going to divide matrix valued analytic functions with such matrix

valued polynomials. Let w be an open set in C, let G(t) be analytic in @ with values in
Ly, and assume |P(t,A)| # 0 on Ow € C'. Then

(2.3) G(t) = Qt)P(t,A)+ R(t) te€w,
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where

(2.4) Q(t) = (2mi)™! /a G(s)P(s,A) (s —t)'ds tew

is analytic in w, and

(2.5) R(t) = (2mi)™! /a G(s)P(s,A)™'(P(s,A) — P(t,A))(s —t) "1 ds
is a polynomial of degree n — 1 in t. We find that

(2.6) R(t)mp = (2mi)~" / G(s)P(s,A)~ ((s* — tF)m + Z(sj —t)A;me) (s —t) "t ds
i i<k

is a polynomial of degree < k in t. The remainder R(t) is uniquely determined by this

condition, if R(¢)P(t,A)~! is analytic when ¢t ¢ w.

Let V C ®;=_01 Ln be the set of A = (Ao,...,An—1) satisfying (2.2), let my = Rankn;
and m = 3, .o, J - mj. Since Ax = 3, Agmj, Ag lies in a subspace of (complex)
dimension 7, ;m;N of Ln. This implies that V = CmN =~ R?mN since we have
2 0<k<j<n My = Z;;lj -mj = m. We obtain the following division theorem on R.
PROPOSITION 2.1. Let F(t) € S(R) have values in L. Then we can find Q(t,A,F) €
C>*(RxV)and R;j(A,F) € C®(V),0<j <n, with values in Ly and depending linearly
on F(t), such that R;(A)my =0 when j > k, and

n—1
(27)  F(t)=Q(t,A,F)P(t,A)+ > t'R;j(A,F) when |A|<1, teR.
=0

We also get global estimates on all the derivatives of @ and R;. The proof of Propo-
sition 2.1 follows the proof of [2, Lemma 7.5.4]. Thus, first we show that we may divide

bounded analytic functions by P(¢,A) in a strip containing R, with uniform bounds. Then,
we get the result by a Fourier decomposition of F.

REMARK 2.2. If F(t,z) € S(R x R"™) depends on parameters z, then Q(¢t,A, F(-,z)) €
C®(R xV xR") and Rj(A, F(-,z)) € C>®°(V x R"). In fact, by linearity and continuity,
we may differentiate directly on F.

Next, we shall compute some invariants. Let F(t) be a C° function on R with values
in Ly. Put E_; = C" and

(2.8) Exv= () Kerd/F(0), k>0.
0<j<k

ProPOSITION 2.3. If
(2.9) cN = G}O.Ima{F(O)lEj_l,
J::

then it follows that E, = {0}. We find that the spaces Ex, 0 < k < n, and condition (2.9)
are invariant under left multiplication of F' by elliptic systems.

PROOF: Assume that C(t) is elliptic, then Ker CF(0) = Ker F(0). Now, we have by
Leibniz’ rule

k o (R pe j
BF(CF)(0) = ; 9; ' C(0)9] F(0),

i=0
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so by induction we obtain

n Ker 3!CF(0) = < m Kerath(O)) NKer 0¥ (CF)(0) = ﬂ Ker 8! F(0),

0<j<k 0<ji<k 0<i<k

which gives the invariance of Ej, Vk. We also obtain that

(2.10) Im af(CF)(0)|E — C(0) Im 85 F(0)

Er_1

Since |C(0)| # 0, this gives the invariance of condition (2.9).
It remains to prove that dim E,, = 0. Let m; = dim E§, so that m_; = N. Then, we
find

dim (Im o F(0)

) = dim Ex_; — dim (Kerath(O)

) =Mkg_1 — Mg.

Ex_1 Er_1

Thus we find from (2.9) that

N< Z(mk_l —mg) =N —m,.
Jj=0

This means that m,, < 0, which proves the result. i

PROPOSITION 2.4. Let CN = E_; DEyD--- D E, = {0}, and let 7} be the orthogonal
projection on E,ﬂ- (\Ek-1, for 0 < k < n. Then it follows that 7jmy = k7, and

k
(2.11) @Imﬂ'j =E¢, 0<k<n.
=0

In particular, we obtain Py ;c, Imm; = CV, which implies E?:o 7 = Idn.
PROOF: Clearly, Ker 7y = (Imm )t = E; G)E;c"_l, 1)
Im7; CEj_ 1 CEx CKerm if j>k.

Thus, m¢7; = 0 when j > k, and by taking adjoints we obtain this when 7 < k, which
implies 77y = 6;k7k.
By taking orthogonal complements, we find that (2.11) is equivalently to

k
(2.12) n Kermj =Ex 0<k<n.
i=0

We find Kerng = Fy @ Ei‘l = FEy. Assume by induction that (2.12) holds for some k > 0.
Then we find that

ﬂ Ker Ty = Ek m(Ek+1 &) E]'CL) = Ek+1,
0<j<k+1

since Exyq C Ey, thus by induction we obtain (2.12) for all k. Since E, = {0} we find
that Z?:o 7j is bijective, and since (Z?:o m;)? = Z?:o 7j, it is equal to the identity.

Now, we can state the following generalization of the Malgrange preparation theorem.
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THEOREM 2.5. Let F(t,z) be a C™ function of (t,z) in a neighborhood of the origin
of R x R%, with values in Ly, and assume that

N .
(2.13) cl = J@Olma{F(o,O) -

where E_; = CN and E; = ﬂ0<j<k Ker G{F(0,0). Let 7 be the orthogonal projection
on E,'CL () Ex—1 for 0 < k < n. Then, we may factor
n . n—1 )
(2.14) F(t,z) = C(t, x)(Zth,- +) t’A,-(x)) = C(t,z)P(t,A(z))
=0

J=0 J=

near (0,0), where C(t,z) and A;(z) are C* functions with values in Ly, satisfying
Aj(z)my =0, § > k. We also find |C(0,0)] # 0 and Aj(0) = 0,0 < j <n. IfFis
real (matrix) valued, we may choose C and A;j real (matrix) valued (and the projections
7y are real).

This is proved by using Proposition 2.1 and Remark 2.2, to divide F(¢, z) by the polyno-
mials P(t,A). Then, we use the implicit function theorem, to choose A(z) € C* making
the remainder } . t'R;j(A(z),F) = 0.

Proposition 2.3 and (2.13) imply that E, = {0}. Thus, we obtain from Proposition 2.4
that m;mg = §xm, and 3, m; = Idn. Since (2.14) implies

F(t,0) = C(¢,0) En:tjvrj,

i=0
we obtain from Proposition 2.3 that the condition (2.13) is necessary for the prepara-
tion (2.14).
EXAMPLE 2.6. Let F(t,z) be a C* function of (¢,z) with values in Ly, and assume that

|07 F(0,0)]£0 and & F(0,0)=0, 0<j<n.
Then we obtain from Theorem 2.5

F(t,z) = C(t,2)(t"ldn + Y t14;(x)),

0<j<n

where C(t,z) and Aj(z) are C™ functions with values in Ly, |C(0,0)| # 0 and A;(0) =0,
0 < j < n. (The case when n = 1 was proved in [1, Theorem A.3].)

3. THE PREPARATION THEOREM

The condition (2.13) in Theorem 2.5 is still too restrictive. In fact, the systems P(¢, A(z))
in (2.14) do not satisfy condition (2.13) when A(0) # 0, but will be acceptable normal forms
when A(z) € V, i.e. Aj(z)m =0 for § > k. As before, we assume that 7; is orthogonal
projection in C¥, 0 < j < n, such that E?:o n; = Idy and m7m; = é;;m;. First, we
consider the necessary condition for such a preparation.
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PROPOSITION 3.1. Let F(t) € C*°(R) with values in L, and assume that
n n—1 .
(3.1) F(t) =C(%) (Z tmj + Zt’AJ) = C(t)P(t,A)
=0 =0

where |C(0)| # 0 and Ajm; = 0 when j > k. Then it follows that
(3.2) 0" (det F)(0) # 0,
for some m. We also find

(3.3) E,= () KerdfF(0)={0}.
0<k<n

PROOF: Since the spaces Fy are invariant under multiplication from left by elliptic systems
by Proposition 2.3, we may replace F(t) by P(t,A) in (3.3). Now 8FP(0,A) = k!(m + As),
where Ay = 3, ; Ak7j. Thus, we find that Ker 0} F(0) = Kerm,. By induction we have

n n n

ﬂ Ker(mj + 4j) = ( ﬂ Kerﬂj) NKer(mx + Ax) = ﬂ Kerr;,
j=k j=k+1 j=k

for 0 < k < n, which proves (3.3). It is also clear that condition (3.2) is invariant under
multiplication by elliptic systems. By a (constant) orthogonal base change, we may assume
that

k-1 k
Immy ={(z1,...,28) 1 2; #0 = ZRankm- <j< ZRankﬂ',-}, 0<k<n.
1=0 =0

Since P(t,A)r, = (t* + 35, ¥ A;)mr we find that

n
Z k'my
k=0

8™ (det P)(0,A) =

#0,

if m = )7, j - Rank;, which proves (3.2). I
The factorization (3.1) is not unique, according to the following

EXAMPLE 3.2. Let

Pi(t) = ((t) i) — t1dy +40

t2 0 2
Pz(t) = ¢ 1 = To +1 Up) + tBl
and Q(t) = (i —(_)1 ) Then we have Q(t)P;(t) = P(t), and |Q(t)| = 1. Since Bymy = 0,
it is clear that P;(t) and P;(t) are on the form (2.1)-(2.2).

Now we are ready to state the main preparation theorem.
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THEOREM 3.3. Let F(t,z) be a C* function of (t,z) in a neighborhood of the origin
of R x RY with values in Ly, and assume that

(3.4) 0;"(det F)(0,0) #0 and 08f(det F)(0,0)=0, 0<Ek<m.

Then we may factor
(3.5) F(t,z) = C(t, ) (Z thr; + z_: tjAj($)> = C(t,z)P(t,A(z))

near (0,0), where m; is orthogonal projection in CN,0 < j < n, such that TjTg = ;57 and
> i—omj = Idn. Here C(t,z) and A;(x) are C* functions with values in Ly, satisfying
|C(0,0)| # 0, Aj(z)rx =0 when j > k and

(3.6) Aj(0)= > mA;(0)m,

i<j<k
which implies Ag(0) = 0. The projections 7 and matrices Aj(0) are uniquely determined
by the condition (3.6), and it follows that m = } . j-Rank7; in (3.4). If F is real (matrix)
valued, we may choose C(t,z), nx and A;(z) real (matrix) valued.

Theorem 3.3 is proved by reducing to the case of Theorem 2.5. Since condition (2.13)

is necessary for that preparation, and is invariant under left multiplications, we must also
multiply F' from the right. Then, we have to be careful not to destroy the normal form
P(t,A(z)).
REMARK 3.4. The rank of the projections 7 are determined by the elementary divisors
of the Taylor expansion of F(t,0) at t = 0. In fact, let dx be the determinant factors
for 1 < k < N, i.e. the greatest common divisor of the minors of order k of the Taylor
expansion. Then ex = di/dr—;1 are the elementary divisors, and Rank7; is the number
of k such that e is divisible by #/ but not by t/*! (see [8, § 85]). The projections =; are
harder to compute, except for j =1, 2, since in these cases Kerny = Ker F(0,0), and

Kermy N Ker 7, = Ker [&F(O, 0)| — CN /Im F(0,0) = Coker F(0,0)| .

Ker F(0,0)

By multiplication from right with invertible matrices, i.e. column operations, we may
also obtain that 7xBj(z) = 0 when j > k, and B(0) = 0 in (3.5), according to the following

PROPOSITION 3.5. Assume that m; are orthogonal projections in CN 0 <j < n, such
that mjmp = §jxmk and Y _o 7 = Idn. Let

(3.7) P(t,A(z)) = thwj + 2_: t7 A;(z)

—0

where Aj(z) are C* functions with values in L, satisfying Aj(z)m, =0 for j > k. Then
we may find C(t,z) € C* with values in L, such that |C(t,z)| # 0 and

(3.8) P(t,A(z))C(t,z) = P(t,B(z)),

where 7y Bj(z) = Bj(z)mx = 0 when j > k. At the points o where A;j(zo) satisfies (3.6),
Vj, i.e. mpAj(zo) = 0 when k > j, we obtain that Bi(zo) = 0, Vk. When P(t,A) is real
(matrix) valued, we may take C(t,z) and Bj(z) real (matrix) valued.

We also obtain the following generalization of the division theorem.
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THEOREM 3.6. Let F(t,z) satisfy the hypothesis in Theorem 3.3. If G(t,z) is a C*®
function in a neighborhood of (0,0) with values in L, then we can write

(3.9 G(t,2) = Q. )F(t,2) + 3 P Ry(2)

=0

near (0,0). Here Q(t,z) and Rj(x) are C* functions with values in Ly, satisfying
Rj(z)ry = 0 when j > k, for the projections 7y in Theorem 3.3. If condition (2.13)
also is satisfied, then 7y is the orthogonal projection on Ekl (VEx-1 for 0 < k < n, where
E_1 = C" and Ex = y;<; Ker 8/ F(0,0), k > 0.

PRrROOF: By Theorem 3.3, we may assume that

F(t,z) = thﬂ'j + Z_:tjAj(:II) = P(t,A(z)),

=0

where Aj(z)my = 0 when j > k. Since it is no restriction to assume G(t,z) € C§°, the
statement follows from Proposition 2.1 and Remark 2.2, with Q(¢, z) = Q(¢, A(z), G(+, z))
and Rj(z) = R;(A(z),G(-,z)) in (2.7). When F(t, z) satisfies (2.13) also, we find that =
is the orthogonal projection on Ei- () Ex-1.

4. RIGHT PREPARATION

In Theorems 2.5 and 3.3, we have only done left preparation of matrix valued functions.
By taking transposes we also obtain the corresponding results for right preparation. We
first examine what condition we get on F, when (2.13) holds for F*. Let F(t) be a C*
function on R with values in Ly, put E*, = CV, and

(4.1) E;= () Kerd/F*(0), k>0.
0<;i<k
Let Fi be the mapping
(4.2) Fr: CN>w+— 0fF0)w  (mod I;_,) k>0,

where I_; = {0}, and
L= P md/F(0), k>0
0<j<k

PROPOSITION 4.1. The condition

(4.3) CcV = P mofF*(0)
k=0

E;_,
is equivalent to

(4.4) {0}= () KerF,

0<k<n

and implies

(4.5) cV= P mofF(0).
0<k<n
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We find that condition (4.4) and the spaces Ir = Byc;<x Im3!F(0), 0 < k < n, are
invariant under right multiplication of F' by elliptic systems.

PROOF: We have by duality that
i
(4.6) L= ImagF(0)=( N KeragF*(O)) = (E}*.
0<5<k 0<5<k

Let 71 be the orthogonal projection on Iy NI, = (E})* N E}f_,, then we find Ker F}, =
Ker 70 F(0) and

(4.7) ImOFF*(0)|  =ImaFF*(0)mi = (Kerm0EF(0))™.

i
Ek-—l

By Proposition 2.3, condition (4.3) is invariant under multiplication of F' by invertible sys-
tems from right, and it is equivalent to (4.4) by (4.7). We also obtain from Proposition 2.3
that the spaces E} = I;- are invariant under right multiplication of F' by invertible systems.
Since condition (4.3) implies E}, = {0} by Proposition 2.3, we obtain (4.5). §

Now we obtain from Theorems 2.5 and 3.3 the following result.

THEOREM 4.2. Let F(t,z) be a C* function of (t,z) in a neighborhood of the origin
of R x R? with values in Ly satisfying (3.4). Then we may factor

(4.8) F(t,z) = (E tim; + X_: th,-(x)) C(t,z) = P(t,A(z))C(t, )

i=0
near (0,0), where 7 ; is orthogonal projection in CV,0 < j <n, such that 7Tk = 6;kTk and

Y i=o™; = Idy. Here C(t,z) and Aj(z) are C* functions with values in Ly, satisfying
|C(0,0)| # 0, 7y Aj(z) =0 when j > k, and

(4.9) 4;(0) = ) miA;(0)m,

1>)5>k
which implies Ag(0) = 0. The projections 7y and matrices A;(0) are uniquely determined
by condition (4.9), and m = }_.j - Rankw; in (3.4). If also condition (4.4) is satisfied,
we find that A;(0) = 0, 0 < j < n, and 7 is the orthogonal projection on Iy (\Ii-, for
0<k<n,wherel_; ={0}, Ix = @ycjci Im &I F(0,0). If F is real (matrix) valued, we
may choose C, 7y and Aj real (matrix) valued.

It is clear that condition (3.4) is necessary for the preparation (4.8), and condition (4.4)
is necessary when A(0) = 0. We also obtain the following version of the division theorem
from Theorem 3.6 by duality.

THEOREM 4.3. Let F(t,x) satisfy the hypothesis in Theorem 4.2. If G(t,z) is a C™
function in a neighborhood of (0,0) with values in Ly, then we can write

(4.10) G(t,2) = F(t,2)Q(2) + 3 9 Ry(2)
7=0

near (0,0). Here Q(t,z) and Rj;(x) are C* functions with values in Ly, satisfying
mxRj(z) = 0 when j > k, for the projections 7y in Theorem 4.2.
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