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Rigorous Resonant l~d Nonlinear Geometric Optics

J . L . Joly 6 . Metivier, and, J . Rauch

§1. One phase or simple nonlinear waves.
Consider an kxk system of strictly hyperbolic equations

CD 9^u + ̂  A . ( t , x , u ) ^ j / 3 x , ^ f ( t , x , u )

where xeR , u= (u ( t , x ) , . . . , u ( t , x ) ) is (t valued and theJl K

coefficients A , , f are smooth functions of their arguments. The
system is semilinear if the A , do not depend on u and linear if in
addition f does not depend on u.

Ue consider nonlinear generalizations of the familiar
asymptotic solutions of linear geometric optics- These have the
form

( 2 ) u8 - e^^^^CaQd.x) + e a ^ ( t . x ) + . . . 3 .

Here the phase p is real valued smooth solutions of the eikonal
equation with dp nowhere zero.

In the linear theory, the construction of one phase solutions
is in three steps. Equations for the amplitudes a . are derived by
plugging the expansion into the equation and setting the
coefficients of powers of C equal to zero. Solving the resulting
equations and applying Borel's theorem produces a family v

C —<x>asymptotic to the given series. It follows that Lv ~ c .
Standard hyperbolic existence and regularity results then show
that there is a family of exact solutions to Lu^O with u6 - v 6.

Uhen nonlinear problems are considered, expressions like f ( u 6 )
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with u as in ( 1 ) must be considered and this immediately
introduces terms of the form e1 with integer n. The example
f(u)=iJ shows that negative n occur. This creation of overtones
shows that nonlinear problems do not usually have monochromatic
solutions as in ( 1 ) and one is lead to the more general form

( 3 ) u6 - ") ̂ nv(t9x)/e^ ( t , x ) ^ ca, ( t , x ) ^ . . . ] .2Lt u 9 n 1 9 n
n€lN

= V U ( t , x , (>/£)£'"
Li (Tl

meIN

where we have introduced the profiles

( 4 ) U ( t , x , 0 ) a V a_ (t^e11'10m Lj m y n
which are periodic in 0. Single phase expansions of this form
describe the phenomena of creation and interaction of overtones-
Their analysis rests on the theory of stratified solutions which
are conormal with respect to the foliation by the level surfaces
of the phase V (see [JR3, JR5, G ] ) . For quasilinear problems the
first profile is independent of 0 and so is a background state
u ( t , x ) = U ( t , x , 0 ) . The asymptotic solutions are perturbations of
amplitude e and wavelength e about this state.

In both semilinear and quasilinear cases there is a background
linear operator

L ( t , x , D ) = 9. + V A . ( t , x , u ^ ( t , x ) ) a / 3 x . ;"C 2L» J U J

and associated eikonal equation '

( 4 . ) d e t ( L ( t , x , d p ) == 0,

The utility of such results lies in the fact that the
behavior of a family of solutions of solutions of the original
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equation with singular dependence on the parameter c is described
by the leading profile which is a solution of a system of
integrodifferential equations which is not a great deal more
complicated than the original equation. One can search for
explicit solutions, perform analysis of the equation for the
profile, or seek approximate solutions numerically, all without
encountering the difficulty of structures of size e.
§2. Resonance.

For linear problems, when two distinct phases are present one
merely adds the two waves. For nonlinear problems there can be
nontrivial interaction between the waves and in particular new
phases may appear. Such interactions go by the name resonance.

Suppose that waves coexist with phases V , ( t , x ) , j = = l , - . N (and
background state u in the quasilinear case). Considering
nonlinear functions introduces oscillations of the form e
with <X€|M and <x.ys)a < p , . Ue are led to consider expressions ofLi J j
the form L~1 (e10^ ( p / € ) . In the unlikely event that <x. V satisfies
the eikonal equation, such an inversion is described by linear
geometric optics and is of the form ( 1 ) with V replaced by <x. (p.
In this way the.new phase a.p appears in the description of the
solution. This is one aspect of resonance. The other is that the
the waves with distinct phases interact.
§3. Resonance and transversality.

— 1 i <x <p/ €Uhen oc. V does not satisfy the eikonal equation, L ( e ' )
leads to oscillatory integrals with phases which are stationary
only at points of the set

( 5 ) S ^ U t ^ x ) s d e t ( t , x , L ( t , x , d ( « . V ) = = 0 ^
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To see the importance of the size of the set S, we consider a

family of 3x3 semilinear equations,

X^ = 0

(6J X u = 0 X =3^+X ( t , x )9

'•,^^ " ^2 "

For j==l,2 take

(7J u. = a.Ct^e^j^^76 with ^j^j^0-

Then if u "=0 for t<0 we have»j

(8) u^ = X^a^e^V^76).

The stationary points of this oscillatory integral are the set of

points

(9) F = ^(t,x)elR2 : X^(^+p^)==0 ^

It is not difficult to verify that if F is a set of

R^-Lebesgue measure equal to zero (==weak transversality) then u

is o(l) in [ p (R^) for all p<<». Note however that if F containsloo

an integral curve of X then u ==X^ l(a^a^)e l v l+y2' c along that
oo

curve so in particular is not o(l) in L .

It is also not hard to show that if for every integral curve

<J of X , the intersection crnT has one dimensional Lebesgue measure
3

oo _^
zero C=strong transversality), then u -o(l) in ' - • lo^ 1 1 ' ^ "

In the extreme opposite case where FssR, then

u,==X~ (a a )e1 1^ 2 is an oscillatory solution with the new
v-> ^3 Jl j^

phase ^+^" The three phases p , <p , V^^ are resonant.
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examples. For the first two

x - a + a1 t x x - a . - a
2 t x Vt

Then the phases

y^x-t V^x+t V^V^x

are resonant. In fact these are, up scalar multiples, the only
resonant phases for these fields. For example the phases

V^(x-t) =(x+t)2
'2

2

satisfy the strong transversality condition.
The fields

x , = a + x a
I t x

x - a - x a
2 1 x X-B,+aB aeR\o

^> T^ X

have no resonant phases. That is the overdetermined system

x^^o x^=o x^(^+^)=o

has no nontrivial solutions,

Note that the study of the existence of resonances leads to
the study of an overdetermined system of linear partial
differential equations.

Note also that nonlinear interaction of singularities, with
the creation of singularities as in the left hand figure is
generic.

/
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On the other hand, the production of oscillations as in the right
hand figure is nongeneric. For generic systems it will not occur.
Even for systems for which it is possible, generic phases will not
lead to creation.
§4- Form of profiles for interaction.

Next consider system ( 6 ) with incoming states u . ^ U . ( t , x , y . / e )j »j ,j
j = = l , 2 , with U (not to be confused with ( 4 ) ) periodic in the last
variable. Interaction yields np +mp n,meZ as candidate
phases with corresponding sets of stationarity S . There are ann 9 m
infinity of distinct phases to be examined. The sets of
stationarity almost never satisfy uniformity conditions. This
renders somewhat surprising the the fact that asymptotic
expansions can be justified. It renders reasonable the fact that
the errors are rarely better than o ( l ) . Note that nondegenerate
stationary points yield 0(/e) in ( 8 ) while phases without singular

-copoints yield 0(£ ) . However, there are examples without
stationary points for which the errors in the expansion are >ce
with p>0 as small as one wants [ J M R 1 ] .

Next consider the system ( 6 ) with a third incoming wave
u^a,, ( t , x ) e 3̂ in t<0. Several possibilities exist,^ ^ >

i . There is no resonance, and the behavior is
essentially linear.

ii. There is a resonance np +my -a<p with â EL Then u_i ^ <$ «$
will be quasi periodic in V ,<5

iii. There is a resonance ny +m<P ==tp with X V =0 and ip not
1 ^ s.? ŝ  s5 ^>

proportional to V , . Then u- will oscillate with two phases,
u^~U(t,x,V^/c,V/£) .
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iv. There is a resonance ny +m(P ==p +c- Then u will
1 ^ ^? <c>

oscillate with the phases p,, V-.+c, u^U( t , x , y - / e , l / £ ) .
s> ^ 0 v>

These considerations lead us admit almost periodic profiles,

allow more than one phase for each mode, and, add the "constant

phase" 1 as supplementary phase variable.

§5, Asymptotics for the semilinear Cauchy problem-

Consider the semilinear Cauchy problem in one space dimension

with initial data of the form

(10) u^O.x) = h^x) = H ( x , V ( x ) / e ) + o(l) in L^R), .

where H ( x , . ) is a continuous function of x with values in the

almost periodic functions on 1R.

Suppose that V is real valued with dV nowhere zero and let

P . , - . , f t be the solutions of the eikonal equation defined on a

bounded open set Q which is deterministic in the sense that

fin{t<t } is contained in the domain of determinacy of Qn{t<t } for

all t^<t . -

Definition. We say that the weak transversality hypothesis is

satisfied if aeVT and del(L(t,x,d(a.y)) is not identically zero in

ft, then the set 8 in (5) has 1< measure zero. The strong

transversality hypothesis is satisfied if aeR^ and X,(a.p) is not

identically zero then on every j-characteristic curve <r, the set

of points on o such that X , (oc .y )s=0 is a set of one dimensional

measure zero. Here X , = = 9 + X ( t , x ) 9 is the j characteristic.j t x

direction.

(i)Unique continuation for C functions shows that if the equation
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and initial phase ar̂ e real analytic, then the weak transversality
hypothesis is automatically satisfied.

It is not hard to show that for this Cauchy problem the
possibility described in iv. above does not occur and that it is
not necessary to introduce the extra phase 1.

Theorem. If the weak transversality hypothesis holds then, there is

a T>0 and an e >0 such that for all 0 < e < e the semilinear initial

value problem ( 1 ) , ( 1 0 ) has a bounded solution on ftn{0^t<T> the

bound being uniform in e. In addition, there is a profile

U( t , x ,0 , 9 - . . , 0 ) which is a continuous function of t ,x in ft

with values in the almost periodic functions on IK such that

( 1 1 ) u^t.x) = U(t,x,^/c, . . ,fl^/c) + o(l) L^Q) Vp«x>.

If the strong transversality hypothesis is satisfied, then one can

take ?==<»

§6. Averaging operators and the determination of the profile.

A smooth change of dependent variable casts the equation ( 1 )

in the diagonal form

(12) O.+X ( t ,x ;>a )u, == f . ( t ,x ,u) j==l,..,k.
fc ,3 X ,j ,3

For all t ,x, the profile U ( t , x , « ) has its spectrum contained

in the set of <x such that a. <p satisfies the eikonal equation.

Even more is true. Introduce the averaging operators E. on almost

periodic functions of 0€l< by

- 0 f e^-8 if X^e10^) . 0
(13) E .Ce 1 0 - 9 ) = \ 3

[ 0 otherwise

The set of oc such that X , ( e )=0 is a linear space. Denote
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by Y its annihilator in B^. Let d^l denote Lebesgue measure on

Y. Then, for any bounded open set OcY of measure one one has

( 1 4 ) (E U)(9) = lim r^1"1^ f u dfl
r-w J

rO

It follows that Ej maps the almost periodic functions to

themselves and is continuous in L^B^) norm and satisfies E^E
J J"

One then has the following polarization for the profile,

(15) U = (U^, . . ,U^) and. E .̂ - Û , , j-l,..,k.

(Do not confuse with ( 4 ) . ) The profile for the solution of the

Cauchy problem in §5 must satisfy in addition the initial

condition

(16) U(0,x,0) = H(x ,0)

so that (10) will be satisfied. The prescription of U is then

completed by the integrodifferential equation,

(17) ^V^^x^j = Ej^ j ( t^ ,U(t ,x,9))) j=.l,..,k.

where E on the right acts in the 0 variables.

§7. Lifetimes and an application.

The equations for u and for the profile U are nonlinear and

the solutions may blowup. If we assume the strong transversality

hypothesis, the blowup times are related as follows [JMR2].

If the profile equations ( 1 5 ) , ( 1 6 ) , ( 1 7 ) have a solution U

continuous on ftn{o^t^T} with values in the almost periodic
functions

then there is an ^^O-c^] such that for 0 < c < e the solution ue

exists on Qn{t^r}, the family u is bounded in L^ftrKt^T}) and the

relation ( 1 1 ) holds. Conversely if the ue exist and are bounded
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uniformly ftn{0^t^r}, then the profile equation is solvable up to
time T a n d , ( 1 1 ) holds in ftn{t^T}.

The quasilinear version of this lifetime result is also
valid. In that case blowup means blowup of the first derivatives.

There is a nice application of this to gas dynamics whose
history is as follows. Majda, Resales and Schonbek [MRS] studied
the behavior of the profile U in the case of gas dynamics by
approximately solving the system ( 1 5 , 1 6 , 1 7 ) on a computer.

The oscillatory initial data for the solution ue are of the
form u ( 0 , x ) + C H ( x , t p ( x ) / c ) so that sup i Q u ^ O . x ) ) is independent
of e. This suggests that shocks should form in time independent
of e.

The numerical experiments indicated long time existence of
profiles. l^Jhen derivatives started to grow in one component of
U instead of seeing the waves break the steepened wave would
recede and another component would steepen and so on. They
conjectured that the profile equation had nontrivial global smooth
solutions, and shortly thereafter Pego [ P ] showed that there were
in fact explicit smooth solutions periodic in time.

Our results on lifetimes applied to initial data with
profiles given by the Pego profiles show that for any T>0, the
solutions of the gas dynamics equations exist and u and V u

L , X
00are bounded in L ( [ 0 , T ] x R ) uniformly in e. In particular, the

time of shock formation is indefinitely postponed by the resonant
interaction of high frequency wave trains. This conjecture of
[MRS] is therefore rigorously established-
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