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ON POLES OF SCATTERING MATRICES
FOR SEVERAL CONVEX BODIES

MITSURU IKAWA
Department of Mathematics, Osaka University

Toyonaka, Osaka 560, Japan

1. Introduction. We shall consider scattering for the wave equation by obstacles. Let
0 be a bounded open set in R3 with smooth boundary F. We set

^^R3-^,

and assume that Q is connected. Consider the following acoustic problem:

( Du = —— - A^ = 0 in 0 x (-00, oo),

(1-1) u=0 on F x (-00,00),
Qu

^,0)=/i(^), -^(,.,0)=/2Gr).

We denote by S{z} the scattering matrix for this problem. The scattering matrix S{z}
is an /^(^(.S^-valued function analytic in {z\ 1m z < 0} and meromorphic in the whole
complex plane C. It is known that the correspondance from obstacles to scattering matrices

0 ̂  S{z)

is one to one. Thus, we may say all the informations of obstacles are contained in scattering
matrices. One of the most interesting and important problems of scattering theory is to find
concrete relationships between geometry of obstacles and analytic properties of scattering
matrices.

Our actual problems are around the following question:
How the distribution of poles of scattering matrices relates to the geometry of obstacles?
Concerning this question, the following conjecture is fundamental:

MODIFIED LAX-PHILLIPS CONJECTURE. When 0 is trapping, there is a positive constant
a such that the scattering matrix S{z) has an infinite number of poles in {z\Q < Imz <^ a}.

Hereafter, we say that MLPC( abbreviation of the modified Lax-Phillips conjecture) is
valid for obstacle 0, when there is a > 0 such that the scattering matrix S(z) correspond-
ing to 0 has an infinite number of poles in {z\ Im z < a}.

Remark that, if 0 is nontrapping, the scattering matrix S(z) has only a finite number
of poles in {z\ 1m z <, a} for all a > 0. Thus, if the above conjecture is true, the existence
of such a becomes a characterization of trapping obstacles by means of the distribution of
poles of scattering matrices. But, we may say that the above conjecture remains essentially
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open. Namely, at the present time there are only a few examples for which is proved its
validity.

To my best knowledge, the examples for which is proved the validity of MLPC are ob-
stacles consisting of two convex bodies. Here we would like to mention about the difference
of geometry of the domains outside of two strictly convex bodies and of more than two.

For an obstacle 0 consisting of two strictly convex bodies, the number of primitive
periodic rays in Q is only one. On the other hand, for 0 consisting of more than two, there
are generally an infinite number of primitive periodic rays in ^. The infiniteness of the
primitive periodic rays makes the problem difficult, that is, this fact makes us impossible
to use the methods in Ikawa[4] and Gerard[3] that work well for two strictly convex bodies.
In order to get informations about poles it is necessary to controle the complexity comming
from the infiniteness of primitive periodic rays, but we cannot do it for general obstacles
consisting of several strictly convex bodies. Here, we apply the methods of ergodic theory
in [2, 12, 13] to controle the complexity of the geometry of periodic rays, but we can do it
only for obstacles consisting of several small balls.

Now we shall state the main theorem. Let Pj, j == 1,2, • • • , £ , be points in R3. We set
for e > 0

Oe == U^O,,,, 0^ = {x, \x - P,\ < 6).

Now we have

THEOREM 1. Suppose that

(A.I) any triple of Pj ^s does not lie on a straight line.

Then, there is CQ > 0 such that, for any 0 < e < Co, the modified Lax and Phillips
conjecture is valid for Oe-

We considered in [8] the same problem and showed that MLPC for several small balls
requiring some additional conditions, which restrict the configuration of the centers of
balls. Grace of the result in [9] we can remove the additional conditions.

The plan of the proof of Theorem 1 is as follows: With the aid of a general theorem for
several strictly convex bodies, we reduce the validity of MLPC to the verification of the
existence of singularities of a function determined by the geometry of the periodic rays
in 0. It is also known that the function has a close relation wih a zeta function of the
dynamical system in Q. Thus it suffices to check the existence of poles for the zeta function
of the dynamical system. But it seems us also difficult to check the existence of poles of
zeta functions in general. If we restrict 0 to the ones consisting of small balls, we can get
a singularity of the zeta function. Indeed, when the bodies are small the dynamical system
in n can be approximated by that of a graph, whose zeta function is much easier to treat.

2. A general theorem for several strictly convex bodies and reduction of the
problem.

First we present a theorem in [6] without proof.
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Let Oy, j == 1,2, • • • ,L, be bounded open sets with smooth boundary Fj satisfying

(H.I) every Oj is strictly convex,
(H.2) for every .;ij2,j3 C { 1 , 2 , - - . ,L}3 such that ^ ^ ji, if / ^/ ' ,

(convex hull of (5^"and 0^) n O^ = <^.

We set

(2.1) 0=U^Oj, f t = R 3 - 0 and F == 9ft.

Denote by 7 an oriented periodic ray in ft, and we shall use the following notations:

d^ : the length of 7,
T^ : the primitive period of 7,
i^ : the number of the reflecting points of 7,
Py : the Poincare map of 7.

We define a function PD^) (5 € C) by

(2.2) F^OO = ^(-i)^r^jj - p^i-1/^^
7

where the summation is taken over all the oriented periodic rays in ft and \I — P^\ denotes
the determinant of I — P-y.

Concerning the periodic rays in ft we have

(2.3) #{7; periodic ray in ft such that cLy < r} < e^

and

(2.4) \I-P-i\ ̂ e201^,

where OQ and a\ are positive constants depending on 0. The estimates (2.3) and (2.4)
imply that the right hand side of (2.2) converges absolutely in {s 6 C; Re 5 > ao — ^i}-
Thus FD^S) is well defined in {s 6 C; Re 5 > ao — ai), and holomorphic in this domain.

Now we have

THEOREM 2.1. Let 0 be an obstacle given by (2.1) satisfying ( H . I ) and (H.2). If Fo{s)
cannot be prolonged analytically to an entire function, then MLPC is valid for 0.

The proof is based on the trace formula due to Bardos, Guillot and Ralston[l]. The
essential part of the proof is given in [8, Section 2].

Now we consider the relationship between the function PD^) and the zeta function of
symbolic flows. We introduce some notations of symbolic flows.
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Let A = (A(z,j))i j=i^2,—,L be a zero-one L x L matrix. We set

EA = U = (• • • ,^-1,^1, • • •) ; ^ € {1,2, • • • , £ } and A(^--n) = 1 for all j}.

Denote by a A the shift transformation defined by

(^AOj^+i.

For r € <7(SA) we define varn r and \\r\\oo by

varn r = sup {jr(^) - r(^)|; ^, ̂  € S^ and ^j = ̂ j for - n <, j <, n},

|H|oo=sup{|r(0|;^eEA}.

We set for 0 < 0 < 1

|H|<, = sup varn r/^", ||| r \\\e = max{||r||oo. |H|e},
n l̂

^(S^)={reC'(EA);|||r|||,<cK)}.

Let r(^,5) be a ^(EA)— valued holomorphic function of 5 defined in a domain of C,
and define Z^s) by

00 i
Z(5)==exp[^^ ^ exp5nr(^5)

1 n=i n ̂ $=$

where
^^(^ ̂ ) - ̂ (^ ̂  + r^A^ ̂  + ... + r(<^-1^ .).

Note that Z(s) is nothing but the zeta function €(^('55)) ln the sense of Parry[16, Section
3], and we call Z{s) the zeta function of a symbolic flow (EA? ^A) associated to r(*, s).

Now consider relationships between SA and bounded broken rays in the outside of Oj^s
satisfying (H.I) and (H.2). We take the matrix A == (A(i,j))ij=i.... ,L as

<2-5) ^"t;; :̂ i.
As was shown in [5], if we denote by { • • • , /-.i, /o^i? • • • } the reflection order of a broken
ray in Q which repeats reflections on the boundary F infinitely many times in the both
directions, { • • • , /-i, I Q ^ I I ^ • • • } belongs to EA. Conversely, for each element of ^ £ EA
there exists a unique broken ray with the reflection order ^. Note that a periodic ray in 0
corresponds to a periodic element ^ 6 SA? that is, a^ = ̂  for some n. We set

/(Q=|XoXi|

where Xj denote the j-th reflection point of the broken ray corresponding to <^.
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Denote by Ai(^) and \2^) the eigenvalues of P^ greater than 1, and by /^((Q, I = 1,2,
the principal curvatures at XQ of the wave front of the phase function y^Q defined in [5,
Section 5], where i = (^o, • • • , ̂ n-i). Then we have

n

(2.6) MOW = II(1 + ̂ O^iOXi + A^O^(^O).j=i
It is easy to check that

(2.7) Ai(OA2(Q > e071 (c>0) .

Since the other eigenvalues of P^ are Aj^and A^, it holds that

(2.8) AiA2 - \I- P^\ |< G(Ai + A2) for all 7.

Define g(^) for an periodic element ^ by

<?(0 = ~| iog(i + /(0^i(0)(i + /(0^(0).
Then 5r(<^) can be extended to a function in ^(E^). Define ((s) by

( °° 1 \
C(.) = exp ^ - ̂  expSn{-sf^ + g^) + TTZ-) .

\n=l n a^ I

The estimates (2.7) and (2.8) imply that both Fo{s) and ((5) converge absolutely for Re s
large. Denote by VQ the abscissa of convergence of C(5)? that is,

I/Q = inf{^; (^(.s) converges absolutely for Re 5 > i/}.

Then it holds that for Re s > i/o

7 oo .
— iog c(.) = E:: E •<?re^) ̂ P (^(-^(o + ̂ (o + ̂ ))"=i ^$=$

=E E ^^(-l)" exp (5^(0) exp (-^/(Q).
n=l ^$=$

Obviousely we have

5n(0=^, n=^ , (^^(O-^^exp^O.

Taking account of the number of elements ^ € SA corresponding to 7, we have

^/(O „E ^nJ^; ̂ y

n
^6(7)

— ^.^
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where the summation is taken over all ^ corresponding to 7. By using the relations

Sn^) = d^ n = i^ (Xi^Wr^2 = exp5^(0.

we have

(2.9) F^)-(_^iogC(,))

= ̂  ̂ (-imj - P^|-1/2 - (AlA^)-1/2} exp(-^).
7

Since |J - P^l-i/2 - (A:^)-172 |< (^(A^)-1/2 (Ai + A2)-1 the left hand side of
(2.9) absolutely converges in Re s ^ z/o — c/2. Therefore the singularities of FD^S) and

—— log ^(5) coincide in {5; Re s >_ VQ — c/2}. Namely, if we can show the existence of poles
ds

of —— log C,(s) in {s\ Re s > i/o — c/2}, we get the existence of poles of FI)(S\
ds

3. On the proof of Theorem 1.
In order to show the existence of singularities of the zeta function associated to Oe

for small e, we have to consider singular perturbations of symbolic flows. We present a
theorem on singular perturbation of symbolic flows, which is the main result of [9].

Assume that a zero-one L x L matrix A satisfies

(3.1) AN > 0 for some positive integer TV,

that is, all the entries of the matrix A^ are positive. Let B = [5(z,j)]i^=i^,... ,L be another
zero-one L x L matrix. For a pair i^j € {1,2, • • • ,£}, we denote i —> j when there is a

B
sequence ^ i , ^ - ' * * ^p such that B(%i ,z) = 1, B{zq^.\^iq) = 1 for q = 1,2, - • • ,p — 1 and
B(j^ip) = 1. We assume on B the following:

There is 1 < K < L such that

(3.2)
(3.3)

(3.4)

and

B(iJ) = 0 for all j if i > K + 1,

i —> i for all 1 < i < K^
B

i —> j implies j —> i if i^j < K
B B

(3.5) B(ij) == 1 implies A(%j) == 1.

Let /e? he are functions with parameter e >, 0 satisfying

(3.5) /„ he € ^(EJO for all 0 < e < 61,
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where e\ is a positive constant, and let k 6 ̂ (E^[) satisfy

(3.6) ^ f W = O i f ^ , ^ ) = l
UK)>O if BK,,&)=0.

Suppose that

(3.7) |||/, -/o||k I l l ^ - ^ o l l l ^ - ^ o o as e -> 0.

For 0 < e < £1, we define zeta function Z(^; £) by

00 1
(3.8) Z(5; £) = exp ^ - ̂  exp (5nr($, 5; 5))

\n=i n ̂ =(

where

(3.9) r(^ ^; e) = ̂ /,(0 + ̂ (0 + fc(Q log 6.

Concerning the existence of singularities of Z(5;e) we have

THEOREM 3.1. Suppose that (3.1)^(3.7) are satisfied, and that

(3.10) 0 < 2-1'
(3.11) /o(0>0 for all ^ € E^,
(3.12) /^o(0 if B(^)=l.

Then there exist ^o G R, 25 a neighborhood of SQ in C and CQ > 0 such that, for every
0 < e < €o, Z{s\ e) is meromorphic in D andit has a pole s^ in D with

s€ ~~^ S0 as e ~^ 0-

Theorem 3.1 is the main theorem of [9], which is an improvement of [7]. As we mentioned
in Introduction, the improvement by Theorem 3.1 on the existence of pole for zeta functions
permits us Theorem 1.

Next, we shall explain how to apply Theorem 3.1 to Fo(s) corresponding to Og, which
will be denoted by F^^s).

Suppose that Pj, j = 1,2, • • • , £ , satisfy the condition (A.I). We choose as matrix
A == [A(i,j)]ij=i^,—,L the one defined by (2.5), which satisfies (3.1) for N = 2.

Set
^max ==max|PiPj|

i^j

and

m^ m, i\ ! 1 if 1^1=c^-'( ) ^^)=^ o ^ \p-p-\<d( U II (J iJ j j <, Umax'
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By changing the numbering of the points if necessary, we may suppose that

B(iJ) = 0 for all j if i > K + 1,

^(^j) = 1 f011 some j if i < K.

holds for some 2 < K <: L. Obviously (3.13) shows the symmetry of matrix B, and this
implies that the matrix B satisfies the condition (3.2)^(3.5).

Remark that (A.I) implies (H.2) for Oe when e is small.
We denote /(<0, ^(Q and ('(,§) associated to Oe by /e(0, ffe(0 and Ce^) respectively.

Note that the 6 of ^(SA) to which /e, ^ belong decreases to zero as e tends to zero.
Therefore, if we consider only small e, we may suppose that (3.10) is satisfied. It is easy
to see that, by setting /o(0 = |P$o-P$ih

(3.14) |log6| \\\f^fo\\\e^0 as 6^0.

Of course, /o satisfies the condition (3.11). From the relationship between the curvatures
of the wave fronts of incident and reflected waves we have

2 Off} 9
^ = -(cos -^-r1 + 0(1), ^(0 = - + 0(1)

C Zt 0

where O(^) = ZP^P^P^. Thus we have immediately

III^O-Ooge+ilog^cos6^))!!!,-^ as e -^ 0.

Then, by setting </e(0 = fife(0 - logs and go(0 = ? log(i cos e^) we have

(3.15) 111^ - go\\\e -^ 0 as e-^ 0.

Define Jfc(0 by
fc(0=l-/o(0/dmax.

By putting s ' = s — (loge + v^'l^V^max we have

-•S/e + 9e + V^ITF = -S'fe + he + k log £,

where
h, = ̂  + y^T 7T fc + (log £ + V^l TT)^——^ .

^inax

Evidently it follows from (3.14) that

ho = <7o + V^TTTA:,

hence we have
MO = ^o(0 for ^ satisfying B(<^i) == 1.
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Thus, ho satisfies (3.12). Then, he^hs^k satisfy the conditions required in Theorem 3.1.
Let Z(^;e) be the zeta function defined by (3.8) with these /^,/^,fc. Note that we have
the relation

CeO) = Z(S - (log € + V^lTO/dmax;^.

On the other hand, Theorem 3.1 says that there exists CQ > 0, SQ G R and D such
that Z{s\e) has a pole in D, which implies that CeC5) ls meromorphic in De = {s =
^ + (log £ + \/^l'7r)/^max; ^ £ -D} and has a pole near SQ + (log e + V^l^/^max. It is
evident that this pole of (e(s) stays in the domain where the singularities of (e{s) and
FD e^} coincide. Moreover we see easily that Ce^) ls holomorphic in a neighborhood of
[SQ + log£/c?max5 oo)- Thus the existence of singularities of F]^^^) is proved.
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