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Spectral Analysis of Perturbed Multiplication Operators
Occurring in Polymerization Chemistry.

NIELS J0RGEN KOKHOLM

Copenhagen University Mathematics Department

0. Introduction. We consider an evolution equation in ^(R-i.) with a generator which
is the sum of a multiplication operator and an integral operator. Existence and uniqueness
for all times and initial values are proved together with an asymptotic formula for the
solution as t -^ oo. The proof of the large time asymptotics is partly based on the study
of a selfadjoint operator in ^(R-i-), which is the sum of a multiplication operator and an
integral operator, whose kernel is the Green's function of a second order Sturm Liouville
problem. The operators in L1 and L2 are related by conjugation with a multiplication op-
erator. The operator in L2 has purely absolutely continuous spectrum [0, oo[ and infinitely
many negative eigenvalues converging to 0 with very unusual asymptotics.

1. An evolution equation in JD^R-^). In a paper on a kinetic model for polymerization
in which the polymer molecules are built up of identical units, Thor A. Bak and Lu Binglin,
[B-L], proposed the study of the following initial value problem

{ QP r00 r
——(x,t)=-(x+2)P{x,t)+2 x / y P { y , t ) d y + 2 / e^P(y,<)A/, x,t > 0,
Ot Jx JQ

?(., 0) = Po £ V = {/ > 0 | JQ°° /(y) dy =1} is a given probability distribution.

Here P(^, t) is the probability distribution, at time <, for the length of the polymer molecule
which contains a particular (say marked) unit. We describe some of the results obtained
in [Kol] (cf. also [Ko2]).

First of all, we have existence and uniqueness for all times if we demand that
(1) ?(-,*) € L\R^.) is continuous for t ^ 0, differentable for t > 0,
(2) °̂° x\P(x, t)\ dx < oo for 0 0.

This time development preserves the set of probability distributions V (as it should for
chemical reasons). The proof of these facts goes as follows, the solution will be given
by a contraction semigroup P(-,^) == e~~tAPQ, Write the equation as P = —AiP, where
AI = x + 2 — Af — Ac and

AfP{x) = 2 f^° x / y P { y ) dy, A^P{x) = 2 ;; e^P^) dy.

When Po 6 Z^omp(^4-)? ^e integrable functions with compact support, the exponential
series for T(()Po := e^^^Ro converges and by the Trotter product formula,

T(<)Po = Y \(t{Af - x^Po = lim (e-^e^/^Po.
f ^ 72' rt—^oo
n==0
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It follows easily that T(f) preserves V n L^p(R+), so T{t} extends to a contraction
semigroup preserving P. The generator of T(() is a restriction of x - Ay, namely the
closure of the restriction to L^p(R^). Since 2 - Ac is bounded in ^(R^) and e""^2"-^)
preserves P, the theory of perturbation of contraction semigroups gives a contraction
semigroup e'^Po = limn^oo(^(V^)e''t(2'~AC)/r^)nPo preserving V and with the generator
A equal to a restriction of Ai, namely the closure of Ai restricted to L\^ (R+). This
gives existence and uniqueness for initial values in the domain -D(A) D (x + l^Z/^R^)
of A if we relax the decay condition f^° x\P{x,t)\ dx < oo for ( > 0 to ?(-,<) 6 -D(A)
when < > 0. The existence and uniqueness as stated above follows from the fact that when
t > 0, e~tAPQ is in fact exponentially bounded:

Jo00 ̂ [(c^^Po^a:)! da: < oo, when c < 1, c < t and < > 0.

This bound follows by iteration in DuhamePs principle

e-^Po^ / e-^-^T^-^AeC-^Po^+e-^T^Po,
Jo

together with the following explicit formula for T(<),

(T(f)Po)(aQ = e^Po^) + 2^-^ t°° x / y P ^ y ) dy + ̂ a-e-^ F\y - x)/yP^y) dy.
Jx Jx

Having given a well-posed mathematical formulation of the problem, the main problem
is to study the behavior of the solution as t —> oo. For chemical reasons one would expect
that P(a;,f) —> xe~~'x as t -^ oo. In fact, there exist linear functionals dn on ^(R^),
functions An in ^(R-i.) and a sequence (^n)^=2 °^ positive numbers increasing to 2 as
n —> oo such that if Po € P and A" € N, we have in I^R-^) as t —^ oo,

N

P(a;,t) = xe^ + ̂ a,(Po)An(at)e-^^ +0(e-^+1).
n=2

The An(a-) are, of course, eigenfunctions of A with eigenvalues /^n. This describes P(x^t)
up to (^(e"2*). The main point of interest for chemists is probably the value of ^2? which
gives the rate of approach to equilibrium. By numerical calculations, ^2 is close to 1.506.
The proof of this asymptotic formula rests on the introduction of an auxilliary selfadjoint
operator in ^(R-^-). When zj) C ^(R^), the function ^/xe~'xl<l^{x) belongs to I/1(R+)
and we define

H^x) = (v^e'a;/2)-lAl(^/^e^/2^(a;)) - 2^(aQ.

This operator is studied in Section 2 below, we refer to Theorem 1 there. By the spectral
theorem, we have if \n are the normalized eigenfunctions of H that

,-t(H+2)^, ̂  f;(^)^e-t(A»+2) + Fe-^^dEW.
n=l -7"

The asymptotic formula follows when Po = y^e"1/2^ belongs to ^/re'^.L^R,^) if we let
dn(Po) = (^, Xn)» An(x) = ̂ /xe~xl'l\n{x} and fin = \n +2. In general the formula follows
from (the proof of) the exponential bound of P(-,<) mentioned above, since it follows that
the distance from ?(-,<) to v^e-^.L^R-i.) is (^(e-2*) as t -> oo. We refer to [Kol] and
[Ko2] for further details.
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2. A selfadjoint operator in I^R-i-). When H is defined as in Section 1, it has the
expression

r ° ° ( -sl^xexlll{Jyeyl2)-l, o < x < y,
H^{x) = x^(x) + I v{x,y}^{y}dy, v{x,y)=<

Jo I -2^/yeyf\^xex'ZY\ 0 < y < x.

THEOREM 1. H is selfadjoint on {y € ^(R+) | xy C Î R- .̂)}. The spectrum of H is
{\n} U [0, oo [, where [0, oo[ is purely absolutely continuous, Ai = —2 and Ayi < 0 increases
to 0 as n —> oo. With £ = exp(—27r/\^7), there exist constants dkj € R for j, k G No,
J ^ fc/2 with aoo > 0 such that as n —)- oo,

oo [ k / 2 ]

^-^EE^^6^2-
A:=0 j=0

In the rest of this section we describe the proof of this theorem. Note first that Vzp(x) =
f°° v(x^ y)^(y) dy is a relatively compact perturbation of x. In fact, V{x + 1)~1 is a
Hilbert-Schmidt operator:

I t \v(x, y)/(y + I))2 dx dy < 4 F\y + I)-2 dy F e-^-^l dx = 8.
JJ Jo J—oo

The selfadjointness of H follows from a theorem of Kato and Rellich; and by a theorem
of Weyl, the essential spectrum of H is equal to the essential spectrum [0,oo[ of x. The
absence of singular continuous spectrum and discreteness of embedded eigenvalues may
be proved by various methods of spectral and scattering theory. One may prove limiting
absorption principles, i.e. boundary values at the positive real axis (away from a discrete
subset) of the resolvent (H — z)^1 in weighted Sobolev spaces,

(H - X ̂  i0r1 '' /^^(R-t-) - ̂ H^^^ 1/2 <s< 1.

(The Sobolev space H^\R) is defined by (J(l + W\u^)\2 rfQ1/2 < oo. The subspace
of u with support in [0,oo[ is ^^(R.^), and H (R+) is the space of restrictions to
R-4- of elements of ^"''^(R^.)). By theorems of Kato and Kuroda, [K-K], we get absence
of singular continuous spectrum, discreteness of embedded eigenvalues and, moreover,
existence and asymptotic completeness of the wave operators

W± = s-lim e^e-1^.
(—»•:£: oo

Asymptotic completeness means that the W^ are partial isometries with initial domain
T~i and range 'T^ac(^)- Thus the W^_ give unitary equivalences of x and the spectrally
continuous part of H . One may also prove absence of singular continuous spectrum and
discreteness of embedded eigenvalues using complex scaling, cf. Aguliar and Combes [A-
C], in fact, V is a dilation analytic perturbation of x. Finally, existence and asymptotic
completeness of the wave operators also follows from a theorem of Kato and Rosenblum ,
[K,sect. X.4.4], because {x + l)"1!̂  + I)""1 is a trace class operator.
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The hardest part of the proof of Theorem 1 is the study of the point spectrum. The
form of v { x ^ y ) suggests that it should be the Green's function of a second order Sturm-
Liouville problem. We seek an operator Lu = {pu'y + qu such that I^^/re^/2) = 0 and
L(^/x e"^/2) = 0. This determines (p,g) up to a constant factor. The choice

^ = (^Ti"')' - ̂

implies by a direct computation that LVy = y when y 6 I^R-^). We can now reformulate
the eigenvalue equation as an ordinary differential equation. For A < 0 and u = ( x — A)y?,
we have y 6 D(H) if and only if u £ ^(R-j.); and when this is true,

Hy = Xy ^=^ {x - X)y + Vy = 0 ^=^ Lu + {x - A)"^ = 0.

The last implication follows from LV = 1 on ^(R^.) and Lw == 0 =^ w = 0 when w £
Z/^R^). Thus A < 0 is an eigenvalue if and only if there exists a solution u £ Z^R^) \ {0}
of the equation (^y-^-A^o.
This equation has rational coefficients and singularities at 0, —1, A and oo. We can
compute the behavior of solutions near the singular points using the classical theory of
ordinary differential equations, cf. Coddington and Levinson [C-L]. Wether a solution on
R-(- is in Z^R-j.) is determined by the asymptotic behavior at 0 and oo.

The singularity at oo is irregular. There is a basis of solutions on R^- consisting of

^ooO^A)-^3/^/2 and u^{x. A) - a:-3/^/2 as x -> oo.

This is in fact true for all A 6 C and Uoo{x^ A) is an analytic function of A (only defined
on ]A,oo[ i f A > 0).

When A < 0 the singularity at 0 is regular. There is a basis of solution on R^ consisting
of

UQ^X^X) ~ a;1/2 and ^0(^5 A) ~ x~1^2 as x —> 0 + .

Thus A < 0 is an eigenvalue if and only if ^oo(^ A) and UQ^X^X) are proportional, or
equivalently, if and only if ^oo(0+, A) = 0.

When A = 0 the singularities at 0 and A collide, but we still get a regular singularity at
0 this time with a solution basis of the form

w{x)=x^iv7^{l+0{x)) and w{x) as x ̂  0+,

where 0{x) is analytic in a neighborhood of 0. It follows that Uoo(a*,0) is a real valued
linear combination of w and w, and so for some OQ G C \ {0},

^oo(^O) = S(aow(.r)) = (a'o 4- 0{x)) sm{-^ log x + a^ + 0{x)).

In particular, x^u^x.O) is not in I^R-^.), and so 0 is not an eigenvalue. To prove
absence of embedded eigenvalues requires a study of the singular point A too. We refer to
[Kol] and [Ko2] for this and turn towards the negative eigenvalues.
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LEMMA 2. There are infinitely many negative eigenvalues of H. The n'th eigenfunction
has exactly IT, zeroes on [0, oo[.

PROOF: Since ̂  is an increasing function of A < 0 for fixed x > 0, it follows from the
oscillation theorem of Sturm cf. [C-L,p.208] that the number of zeroes of Uoo(-, A) on [0, oo[
is a non-decreasing function of A; and when the n'th zero (counted from above) exists, it is
an increasing function of A. Now Uoo(x, -2) = {x +2)^e-^/2, which has no zeroes in R+,
so -2 is the lowest eigenvalue. On the other hand, Uoo(a;, 0) has infinitely many zeroes by
the expression above. New zeroes of Uoo(-,A) as A increases must appear at x = 0, and
the corresponding values of A are eigenvalues. Thus there are infinitely many eigenvalues.
since ̂  ~ ̂ \ > ° when 0 < x < -V7, there can be at most one zero of Hoo(-,A)
in [0, —A/7] for each A. In particular, the zeroes can not appear in pairs at x = 0 as A
increases, so the number of zeroes of Uoo(-, An) in [0, oo[ is exactly n.

We need a better estimate of the convergence of v,oo{x, A) to Moo(a;, 0) as A —> 0-. The
right idea is to use a variation of parameters approach. In principle we rewrite the equation
for Uoo(a;, A) as a first order equation for (uoo(a;, A), 2^2"'oo(^ A)) and study the equation
for W(x)~1 times this vector , where W(x) is a fundamental matrix for the equation for
(uoo(a;,0), ^Fî 'ooO^ °))- To exploit the fact that Uoo(a;,A) is real valued we formulate
this approach as follows. Find a\(x) such that

u^(x. A) = ̂ (aQw^)), u'^(x, A) = ̂ (aQw'^)).

Then a^a;) = 3^ ("^(^ A)w(a-)-Uoo(a;, A)w'(a;))/ft, where fl is a constant, and we have
the equation for a\,

aW = Q{a^x)w(x))w(x)^ - ̂ )/0.

In particular, oco(x) = OCQ =constant. It follows that when 0 < x < 1 and A < 0 we have
K(^)l ^ C\a^x}\\\\lx2. Since °̂° |A|y-2 dy = \X\/x, we get

\a\(x) - ao\ ̂  C'\\\/x when |A| < x < 1.

Inserting this into u,oo(x, A) = ^((^(^(a;)), we find that if T > 0 is large enough,

"oo(a-,A)=A(a;,A)sin(-^log.r+aoo+0(.r+|A|/a;)), T|A| < x < T-\

with A(,r, A) ̂  0 there. Thus the zeroes ofuoo(a', A) in [T|A|, T-1] is given by the condition
on the phase that - -^ log x + Ooo + 0(x + \\\/x) e wZ. If we choose aoo suitably, the
value of the phase will be A-TT at the Jb'th zero.

Similarly, we get after a change of variables x = —A/^ that

uo(a-,A)=B(a;,A)sin(-^log(-A/a;)+&o+0(a;+|A|/a;)), T|A| < x < T-1, A < 0,

with B(x, A) ̂  0 there.
Now, consider the n'th eigenvalue A,, for large n. The phase of Uoo(x, \n) at x =

e^v^e^lA^l.r-^is

±TT - ̂  log yJAJ + aoo + 0(y|AJ),
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and so if n is large enough, there is a zero x^ of Uoo(-,An) in [ev/fAnJ.e-1^!^]. Since
the n'th eigenfunction has n zeroes we get

-^\OgXn + Ooo + 0(^/1^1) - ̂ log(-A^/a;n) + bo = HTT.

Thus, with aoo = exp(2(aoo + bo)/V7), \n = -aooe" + C^e3"72), which gives the first term
in the asymptotic series of Theorem 1.

To get the full asymptotic series we write the differential equation for <x\ as an integral
equation

a^x)=a^xo)+ I Q(a^y)w(y))w(y)^--^Wdy.
JXQ

Iterating this equation gives an asymptotic series for a\ for T|A| < x < T~1,

oo Jk+1

ax{x) - ao + ̂  ̂ Wx^x^xlogxY^kl + c^x^).
j,fc=0 1=0

This implies an asymptotic series for the phase in the expression above for Uoo(x^X) and
we have a similar asymptotic series for the phase in the expression for UQ^X, A). The full
asymptotic series for \n in Theorem 1 is now proved by an iteration scheme, in which one
subsequently finds more and more terms in this series and better and better asymptotic
formulas for the zero Xn. The details may be found in [Kol] and [Ko2].
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