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1. Introduction
Let H^ = -A+Fx^ denote the free Stark Hamiltonian on L2(IRn). It is essentially

selfad joint on the Schwartz space ^(IR0). Let V be a realvalued bounded function.

Then H = H^+V is selfadjoint with domain £)(H) = £)(Hy. The time-dependent

Schrodinger equation i^— H^, ̂ (o) =^. has the solution \y(t) = e"11 .̂ The

questions we want to consider here are the following:

1° Describe the asymptotic behavior of \y(t} = e"11 \|XQ as t -^±00. This is in a

general form the basic question in scattering theory.

2° Describe the spectrum o(H) of H in detail, i.e. classify it according to the usual

categories: point spectrum, continuous spectrum, absolutely continouos and

singular continuous spectrum.

For the one-dimensional case we obtain fairly complete results, see section 4. For the

higher dimensional case we obtain some general results, see section 3, and for the

case of a half-crystal we obtain some interesting new results, see section 5.

This presentation is ^preliminary report on [j] .̂ Concerning previous papers on

Stark effect Hamiltonians with decaying potentials, we refer to the references given
in [J],.
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2. Periodic potentials and lattices
A discrete subset of R" is called a lattice, if it can be represented in the form

T={k^+k,a,+...+^aJk,,....^eZ),

where a^...,a^ are linearly independent vectors in R". A function V on R" is said to

be periodic with the period lattice T, if for all X€R" and all -c e T we have

V(x+'c)=V(x) .

The position of the lattice T relative to the x,-axis plays an important role in

our study. We introduce the following definitions. Let e^ = ( l , 0 , . . . ,o) e R". The

inner product on R" is denoted < , >.

Definition 2.1. (i) The lattice T is said to be irrational with respect to e^, if the set

{ < Cp i > I T e T } is dense in R.

(ii) The lattice T is said to be rational with respect to Cp if the set { < e,, i > I T € T}
•

is discrete in R

This is a classification, since it is easy to see that these are the only possibilities.

The translation group associated to the lattice is given by (U(-c)f)(x) = f(x--c).

Assume that the potential V above is periodic with period lattice T. Then we have
the important relation

(2.1) U(1; )HUOc)" l =H-F<e^/c>.

3. General spectral results
Throughout this section we assume that the potential V is a realvalued

function with period lattice T.

Proposition 3.1. Assume that T is irrational with respect to e^. Then o(H) = R.

Proof: By (2.1) o(H)=o(H)-F<e^>. Since o(H)^0 and { F < ^ / c > |ieT}is
dense in R, the result follows. D
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Proposition 3.2. Assume that T is rational with respect to e Assume that (-c € T I
<e^,-c > = 0} is a sublattice of dimension n-1. Assume that

oC-d^dx^+F^+VCXpX)) = R for a dense set of xe R""1. Then o(H) = R.

Remark 3.3. A sufficient condition fo^o(-d2/dx2+Fx^+V(x^,x)) = R is V(x,,x) =

(8/8x,)W(XpX) for some bounded function W with two bounded derivatives, see

[J]p
Proof: We use a direct integral decomposition with respect to the sublattice in the

proposition and the the variable x. The proof is somewhat long, so the details are
omitted. See also section 5.D

Propositions 3.1 and 3.2 cover all cases for n = 2. For n>2 not all cases are

covered. We expect to find o(H) = R in all cases. For a strong electric field it is easy to
obtain a result on the type of spectrum.

Theorem 3.4. Assume V, 3V/3x, and a^/ax^ continuous realvalued bounded

functions on R" and c^ = inf(F+(aV/3x,)(x) | x e R" }> 0. Assume o(H) = R. Then
the spectrum is purely absolutely continuous.

Proof: This result is an immediate consequence of Mourre's commutator method

[M]. We use the conjugate operator A = ia/3x,. The assumption implies that we have
the Mourre commutator estimate

i[H.A]=F+av/ax,(x)^i.
Furthermore, the second commutator i[i[H, A], A] =^2V/^x^ is a bounded operator

on L (R ) by our assumption. Thus all the essential conditions for applying Mourre

result are verified. The remaining technical conditions are easily verified. D

4. One-dimensional Stark Hamiltonians
In the one-dimensional case there are fairly complete answers to questions

I* and 2* in section 1. We shall briefly recall these results from []\. Let us recall

that the basic objects in the scattering theory for the pair of operators H and H are

the wave operators WjH, H(,) = s-lim^^e^e'^o. One asks whether these
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operators exist and are complete, i.e. Ran(Wj = ^p(H)-1-, the orthogonal complement

to the closed subspace ^C (H) spanned by the l^-eigenf unctions of H. The point

spectrum of H is denoted Op(H).

Theorem 4.1. (n= l) Assume V€ (^(R), V periodic with period a, and
.a
J ^V(x)dx = 0. ThenWjH, H^) exist and are unitary.

Theorem 4.2. (n = l) Assume V = V^+V^, where V^ satisfies the assumptions of

the previous theorem and V^ satisfies V^(x) = 0(|xf c) as x -»oo,

V^(x) =0(|x|~ ^asx^-ooforsomeoO. ThenW^H, H^) exist and are

complete. Furthermore, <?p(H) is discrete in R.

Theorem 4.3. (n = l) Assume V =W", where W is a realvalued bounded function

with four bounded derivatives. Then W^(H, H^) exist and are unitary.

Theorem 4.1 is of the expected type. It shows that the crystal becomes

"transparent" with respect to the time evolution, if one waits a long time. Theorem

4.2 shows that we can add "impurities" (in the form of V^) and retain the same

result, except the possible occurence of a discrete set of embedded eigenvalues.

Theorem 4.3 shows that the same result holds, even for sums of periodic

potentials and for a large class of almost-periodic functions. For example, one can
take

V(x)=J^ei"xd^l(<o)

where \i is a Borel measure satisfying

J m (<^ ^O^dltlKtt) < oo.

As a special case we can take
w

V(x)=2 a,sin(o<x)4.^0AAA\W<^

k- l

with
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00^^^ ^ ^
2i |aJ(o +<i> ) < oo.

k - l

5. The half-crystal model
We now consider the case where the crystal fills up half the space.

Half-solids have been briefly considered in [S], Here we add a constant electric field

orthogonal to the surface directed into the empty part of space. The results below

show that after a long time an electron will eventually move freely, irrespective of
the initial position.

Let V^ be a periodic function on IR" with period lattice T = Zxf, where f is

a lattice in R""*. We assume V,€ C^IR"). Let X be a cutoff function, i.e. X e C°°(IR)

realvalued, O^X(x , )^ l , X(x,)= 0 forx,<-6, andx(x^)= l for x,>8, where 6>0

is a fixed parameter. We take as our potential

V(x)=X(x,)V,(x).

The main result is the following

Theorem 5.1. (n^2) Let V satisfy the assumptions above. Then W^(H, H ) exist

and are unitary. Consequently, o(H) =Oy^W = IR.

The proof of this theorem will only be sketched. Let F,r denote a

fundamental region for the lattice f, chosen diffeomorphic to the n-l-dimensional

torus T" . The dual lattice is denoted T and a fundamental region F,r*, again

chosen diffeomorphic to T"" . We now use the Floquet-Bloch reduction, see for

example [Sk] for details. There exists a unitary operator W-jr from L^IR") to the

direct integral space 5%=j ®^W^, where k varies over F^r*. The operator H is
~i i f f ltransformed into W-jrHWy =J H(k)dk. In our case we do not reduce in x., so we

have ^O^IR)^ Fy) and H(k)=^<8>L,+I,®Q(k)+V(x,,x) with

^-(d^dx^+Fx^onL^and Q(k) =(- iV^-k) 2 on L^ Fy) with periodic

boundary conditions. Here k e F^*. The main step is the following lemma.
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Lemma 5.2, The wave operators ^(I-Kk). H^(k)) exist and are unitary on ^(k),

ke F^.

To prove this lemma, we verify the conditions in the abstract theorems in [j]^. The

proof of absence of embedded eigenvalues requires a separate argument Details can

be found in []]y

References
[j]^ A. Jensen, Asymptotic Completeness for a New Class of Stark Effect

Hamiltonians. Commun. Math. Phys. 107 (1986), 21-28.

[j]^ A. Jensen, Scattering Theory for Hamiltonians mth Stark Effect. Ann. Inst.

Henri Poincare. Phys. Theor. 46 (1987), 383-395.

[^3 A. Jensen. in preparation.

[M] E. Mourre, Absence of Singular Continuous Spectrum for Certain Self-Adjoint

Operators. Commun. Math. Phys. 78 (l98l), 391-408.

[S] B. Simon, Phase Space Analysis of Simple Scattering Systems: Extensions of

some Work of Enss.D^ke Math. J. 46 (1979), 119-168.

[Sk] M. M. Skriganov, Geometric and Arithmetic Methods in the Spectral Theory

of Multidimensional Periodic Operators. English translation: Proc. Steklov

Inst. Math. vol. 171,1987.

xi-6


