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Abstract
We review some results on the behavior of the ground state energy and the
ground state density for large atoms as the nuclear charge Z increases to infin-
ity. Here the atom is described by various models, namely the Thomas-Fermi,
the Thomas-Fermi-Weizsicker, the Fermi-Hellmann, the Hellmann-Weizsiacker
model, and the Schrédinger equation.

1 Introduction

The following results for large atoms, i.e., for large nuclear charge Z and large electron
number N keeping the ratio Z/N = a fixed, shall be presented:

o Asymptotic behavior of the ground state energy,
e Bounds on the execess charge,

o Asymptotic behavior of the ground state density.

The results will be presented in the context of the following models ordered roughly
according to increasing complexity:

1. The Thomas-Fermi model (Thomas [20], Fermi (7, 6]):

ere(s) = [ 3D Pplr - Lotr) 4 3o DI ()

q
p20, [p<H, 2)

q being the number of spin states of one electron, i.e., q=2.
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2. The Thomas-Fermi-Weizsicker model (von Weizsdcker [21]):

Errw(p) = / (V/o(r))? + Err(p) (3)

with the conditions (2).

3. The Fermi-Hellmann model (Fermi [7], Hellmann [8]):

5 ) e () o
Zf [ = plr)ee(r’) g g ()

2,52 max{r,r'}

p20,Y [ a(r)ir<N. (5)
1=0"Y0

4. The Hellmann-Weizsiacker model (Hellmann [8])

Euw(p) = Z / Vo' P:df‘ + Eu(p)) (6)

with condition (5).
5. The Schrodinger model
Eq(Z,N) = inf{(, HY)lY € Q(H), |[¥|| = 1} (7)
where .
H=Y (— ) + Z

=1 ij=1 Irl .1 I
1<j

(8)

N
as self-adjoint realization on A (L?(IR®) ® @'9).
=1

We remark that basic properties of the first four models — such as existence of
minimizers in suitable functions spaces — are well known (Lieb [12] and Siedentop and
Weikard [15]). — We shall mention some more results for the models 1, 2, 4, and 5
but shall concentrate mainly on the Fermi-Hellmann equations.

2 Asymptotic Behavior of the Ground State En-
ergy

Denote the infima of the functionals by roman E — the functionals are denoted by
caligraphic £. With this notation we can formulate the following results:
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Err(Z,N) = Erp(1,0)27? (9)

where a = Z/N. This is immediate by scaling, i.e., choosing p(r) = Z2p,(Z/3r)
in (1) (Fermi [6]). In particular, the Thomas-Fermi energy behaves exactly
proportional to Z7/3, if « is fixed.

Epr(Z, N) = ETF(Z, N) + DZ? + O(Zz) (10)
for fixed @ where D = 33;1; and I) = f(V1)? ~ 8.583897, 1 being the positive
solution of

67r2 3 4/3 -1
-A+ p [I¥° = Z|.|7" |4 =0 (11)
(Lieb [12]).
Ex(Z,Z) = Err(Z,2) + O(Z°F) (12)

(Siedentop and Weikard [17], Weikard [22]).

We indicate the proof of (12). To this end we observe some facts for the Fermi-
Hellmann model: The minimizer of £y fulfills the Euler-Lagrange equation

1 12 1/2

a(r) = ?q—(’ii)[sa(r)-(i%’-)—] 1=0,1,2, (13)
+

or) = 23 [ BT (14)

Moreover by Legendre transform the dual variational principle of the Hellmann
principle is

fg"w,) _ __/ (rp)2dr — 3i29(l+ 2)/ [¢( ) — (l+ 2)2 ] dr

1=0
(15)
with (r) € L*(IR"), r(r) —» Z for Z — 0, and 9(r) = O(1/r) as r — co.
For the supremum Fy(Z, ) of this functional we have

Fu(Z,p) + pN = En(Z, N); (16)
N = Z q2(1 + 2)/ [¢maz( )_ ( 2)2 ] dr,

+

where mas is the maximizer of (15).

X-3



For the proof of (12) one chooses

Z © prp(r

W) = prelr) = 2 = [7 21y (17)
for the lower bound, where prr is the minimizer of £, in the lower bound
and p; as in (13) substituting ¢, however, by ¢rp. The result follows then from
the fact that the minimizer of £y has always particle number [5° Y52, pi(r)dr
smaller than Z (see Section 3), i.e., we use allowed trial functions, and the
explicit summation over the angular momenta [. This may be done by Poisson
summation or more directly by using a convexity argument (see equation (39)
for a similar result).

ng(Z, Z) = ETF(Z, Z) + O(Zz) (18)
(Siedentop and Weikard [18, 17, 16]).

EQ(Z, N) = ETF(Z, N) + _g.zz + 0(Z47/24) (19)
where Z/N = a is fixed.

This has been conjectured by Scott [14]. The first term was established by Lieb
and Simon [13]. The proof of (19) has been given by Siedentop and Weikard
[17, 16] (see also Hughes [9] for the lower bound) for the neutral case and has
been extended to general a by Bach [1].

We wish to outline the proof for Z = N. A lower bound may be obtained by an

estimate on the indirect part of the Coulomb energy (Lieb [11]). It turns out
that

N
EQ(Z, Z) > ZY3inf o (Z hTF,i) —%/PTF*|-|_1(T)PTF(7')d37‘+O(Z5/3) (20)
1=1
hTF,i = 1®®1®hTF®1®®1

i—1 factors N-1 factors
hrp = —Z7PA + prF, (21)

where ¢rF; is the Thomas-Fermi potential (17), however for Z = 1. Thus the
first summand on the right hand side of (20) may be estimated from below
by Z*/3 times the sum of all negative eigenvalues of hrr. We observe that
(21) can be broken up into a set of uncoupled ordinary differential equations
(decompositon into angular momentum channels). A carefull WKB analysis for
high angular momenta and summing up the “bare” Coulomb eigenvalues for
low angular momenta yields the answer up to errors of order Z17/?log Z.
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The upper bound may be obtained by choosing an approptiate “trial” operator
dy
0 S d1 S 1, dl € Il(Lz(IRa) ® Gq), tl'dl S N, (22)

a so called one-particle density matrix in the inequality
1
Bo(2,N) < tel(~A — Z/\| + 3V)di] (23)

where V = px|.|!, p being the density of dy, i.e., formally p(r) = 32_, di(r, 0,7, 0).
After some intermediate steps one obtains

Eq(Z,2) < Enlp) + %zz +0(24/), (24)

Equation (12) completes the proof.

3 Bounds on the Excess Charge

Let E denote any of the above energies
N.=inf{N|E(Z,N) = E(Z,N + k) for all k € IN} (25)

The maximal excess charge is then . = N, — Z. It may be easily shown that Q.
is nonnegative in all of the above models. In the following we wish to discuss some
upper bounds on Q.. '

o The Thomas-Fermi and Fermi-Hellmann model:

RIF =Q¥ =0

(Lieb and Simon [13], Siedentop and Weikard [15]). Here we indicate the proof of
this result for the Fermi-Hellmann case. Let p1, p2, . .. be the absolute minimizer
of the Fermi-Hellmann functional. Assume N, < Z. Then

Z > ch‘/ooogpldrzgﬁ(l%lﬁ)—/;w|:<p(r)—-(—l—_i-—rlz/—2)i]:/2dr

q [°[Z— N. 1]1/2
> 1 —-— =00
- 7r/o [ T 4r2j, dr (26)

which is a contradiction. On the other hand assume N, > Z. Then thereis an R
such that ¢(r) < 0 for r > R. Then (r¢)" = 0 in this region, i.., p(r) = a + L.
Since ¢p(00) = 0 the constant a is zero and b negative. Because of the continuity

of ¢, p(r) < 0 on IRt which cannot hold. The Thomas-Fermi case can be
treated analogously.



e For the Thomas-Fermi-Weizsacker model one has

QTFV < 178.036—:2- (27)

(Benguria and Lieb [3], Solovej [19]) This bound is obtained by an universal (Z
independent) bound on the potential and a bound on the density in terms of
the potential.

¢ In the quantum mechanical case the following bounds are known
Q<2 (28)

(Lieb [10]) and
Q1= 0(2*"*) (29)

(Fefferman and Seco [5, 4]). The proof of (29) uses (19) together with the fact

that the nucleus is screened out already at small distances.

4 Asymptotic Behavior of the Ground State Den-
sity
Let d = 13%. Then:
e Thomas-Fermi model:
oke(r) < min( %, 23 (30)

for Z,r > 0, where @Zg is the Thomas-Fermi potential for charge Z. Moreover,
% is monotone in Z and the limiting function is

oFe(r) = & (31)

i
This follows immediatly from comparison arguments.

e Thomas-Fermi-Weizsacker model:

In this subsection we use units such that the constant in front of the p%/3 term
in (3) is 3/5.

4 T
Erw(r) < x(a)r™ + el 2 (32)

where x is given as

() = 972 4+ ca™ 4 0<a<a
X =\ 251 5(1—a)™ ap<a<l
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and (C,ao) is choosen sucht that x is C([0,1)) and 7 = 1 + ¥, (Benguria
and Lieb (3], Solovej [19])
o1rw(r) = Frw(r) (33)
and
27 25 37
—2, -4 _ Al 2 20 5 Ol 402
errw(r) =97 i 61" " 7eg" " + O(r

Solovej obtains also the corresponding limit for the density.

R ()

Fermi-Hellmann model:
The following results are from Bach and Siedentop [2].

o) smn{é, & +2i)} @)

There exists some R such that for » > R we have

B 2 1 (36)

©Z(r) is monotone increasing in Z

pg(r) = g +0(r™5/%)  at0, (37)
and
pF(r) =5 +o(r?) atoo. (38)

The first inequality in (35) is nnmediate by writing ¢% in terms of p;. To prove
the second inequality we use the following lemma

3/2 oo 1/2
- < Dl- e ] - <d o)

The proof of (39) uses convexity of z(1 — a:)i_/ 2for 0 < z < 1 and a careful
estimate of the error term arising at 0 and 1. (39) yields the following differential
inequality for the solution ¢ of (5)

1 2q 1 _ rl/?
—=(rp)" + _‘P3/2 _ 5,,, 1/2903/4 (1 _ry
T +

3 4
1 q(zt+1) (l+ 12\
< oy + 2 12D () - (40)
=0 +
< ___rl_(r(p)n+ 2q 3/2+-27'—1/2<p3/4
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This allows the second function of the right hand side of (35) as comparison
function, which proves (35).

The monotonicity of ¢z in Z is immediate by comparison. The convergence of
pz to Yo follows also immediatly.

To obtain (37) we use the comparison function

1 2442 &2

o T Eta (41)
with ¢ = [ﬂ + ((H)2 - 3)1/2] for the bound from above and
38 38 9
1/2
err(r) = 377 (4+7) (42)

as the comparison function from below. By the limiting function for the Thomas-
Fermi model (31) the equation (37) follows. Equation (38) follows from (35) and
the following observations. Suppose there was a radius R such that 352 pi(r) =
0 for r bigger than R. Denote by R the minimum over all such R. Since

_ A % ¥ ieo Pl(”") ’
w(r) = r Jo max{r,r} dr (43)

@¢(R) = 0. Because of the continuity of ¢ we can choose a § such that for all
z with |z — R| < §, |¢(z)| < 1/8R? holds. Thus pg, p1,... is zero also to the
left of R, which is a contradiction. Thus there exists a sequence r, such that
rn — 00 and (r,) > 1/4r2. Now use a comparison between r,, and r,4; with
comparison function 1/4r? to obtain the result.

The Schrodinger equation

Let pg be the ground state density, i.e.,
9
pg(r) = N/drf cdry Y. Wz, 01,72, 00T o) (44)

0140 N=1

where 9z is the ground state of (8). Let prr be the Thomas-Fermi density for
charge 1, Q a measurable set in IR®. Then

/‘)Z'ng(Z'l/sr)dar-—-)/r;pTF(r)dsr (45)

holds (Lieb and Simon [13]).
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