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LONG-RANGE SCATTERING OF
TWO- AND THREE-BODY

QUANTUM SYSTEMS

Volker ENSS

Institut fur Mathematik I, Freie Universitat
Arnimallee 2-6, D-1000 Berlin 33, West-Germany.

Abstract. For two- and three-particle Schrodinger operators we give an
elementary and essentially self-contained proof for existence and completeness
of the Dollard wave operators. The gradient of the long-range part of the pair
potentials has to decay like (1 + |a5|)~^, S > \/3 as \x\ —^ oo. No implicit
conditions are needed.

1 Introduction
In these lectures we prove existence and completeness of modified wave operators for
two- and three-body systems. The potentials are of long and short range. Most of
the results are already contained in [2] but the proof has been significantly simplified
and shortened and we do not need implicit conditions. One major new tool is an
absorbing phase space decomposition where each component has a positive total
time derivative up to integrable corrections. This approach has been presented for
short-range potentials in [4]. From the related method which Sigal and Softer [7]
gave for short-range N-hody systems our method differs mainly in the phase space
partition. Here it depends on position, velocity and time. The other simplification
compared to [2] is the introduction of a better intermediate time evolution which is
easier to control. As a new result all implicit conditions on bound states for two-
body subsystems are eliminated by an observation of Wiiller [8]. For simplicity of
presentation we give the proof for bounded pair potentials, the inclusion ofoperator-
or form-bounded potentials of short range is a straightforward technical exercise. As
usual, the trivial free motion of the center of mass of the whole system is separated



off. In order to present the method as clearly as possible we give a detailed exposition
for two-body systems first. Then we proceed to three particles.

In the TWO-BODY case (potential scattering) we consider Schrodinger operators

H=Ho+V=.-^^+V(x) (1.1)

on U = I^^Sy} where x 6 JK" is the relative position of the particles, m their
reduced mass, and Ag; the Laplacian with respect to x.

The bounded potential function V(x) is the sum V(x) = V^x) + V^^x) of short-
and long-range parts. We assume

sup|y'0c)| ^ L\[0, ao),dR) (1.2)
\ae\>.R

and V 1 <= C^Sy) with

|(V^)(;c)| < C (1 + M)-1-^, 7 > 0. (1.3)

The splitting into short- and long-range parts is not unique. Due to a lemma of
Hormander [5] it can be made without loss of generality such that in addition V1 G
C00^17) and

KAY^)! < C(eo) (1 + \x\)-^2^ for any Co > 0. (1.4)

Stronger decay assumptions like 7 > 1/2 for the simplest proof of asymptotic com-
pleteness will be introduced where needed. The short-range part of the potential
need not be a multiplication operator but it could be a pseudo-differential operator
with suitable decay properties describing a velocity dependent force. Under our as-
sumptions H is self-adjoint on ^^(JR") and the unitary group of time evolutions
exp{—iBt} is well defined.

Asymptotic Completeness is a complete classification theorem which distinguishes
the states in H by their asymptotic time evolution. The state space 7^ can be split
into a direct sum of components such that on each component the asymptotic evo-
lution in the future is well approximated by a simple explicitly known one (and
similarly for the past). On these subspaces the generator B is unitarily equivalent
to a free one. The equivalence can be established using the modified wave operators
n^ as introduced by Dollard. For the two-body case let U1^ be the modified free
time evolution generated by the time-dependent Hamiltonian fi^(t) :== Ho+Vi(Qt)
where Q is the velocity operator

Q := p/m = (-iV^/m' = t[J7o, x]. (1.5)

Then U0 can be calculated explicitly as a multiplication operator in velocity- or
momentum-space



UD(t, r) = exp {~zfTo(t - r) - z / ' ̂ ^(Q^)} . (1.6)

Here r is the initial and t > r the final time of the evolution which coincides with
the free time evolution in the short-range case V1 = 0. For 7 > 1/2 we give an
elementary proof for existence of the modified wave operator

0^ := s-lim exp{iHt} UD(t, 0) (1.7)

and of completeness: RanH^ = W^^jET) (the continuous spectral subspace of H).
The latter is equivalent to existence of

Urn E^O)* exp{-iIT(} ̂  (1.8)

for every ^ in (a dense subset of) W^Jf) (Section 2).
While our proof is simple and essentially self-contained one could also rely on

known detailed microlocal estimates. As was pointed out to me by A. Martinez one
shows easily existence and completeness for a larger class of long-range potentials
(Section 3).

THREE-PARTICLE SYSTEMS interacting by pair potentials V^ are treated in their
center of mass frame as well.

H^HO+^V^^^X^
i<3

(1.9)

is the Schrodinger operator acting on U == Z^JR21'), a;1 - x3 € SV is the relative
coordinate for the pair (z,j) and each V*3 satisfies (1.2)-(1.4). Explicit expressions
for Ho will be given in Section 4.

For three particles one has to distinguish between decompositions dk into k
nonempty clusters. Thus there are the total decomposition d^ three possibilities
c?2? and the non-decomposition rfi. For each d^ one has the cluster c representing
the "pair" and the trivial cluster consisting of the "third particle" alone. The de-
composition Hamiltonians H(dk) are those where the potentials are omitted which
couple particles in different clusters. Thus H(ds) = 27o, H{d^) = HQ + V^ if
(t^j) == c is the pair in c?2? B{di} == B-

If the particles i and m are in different clusters for dk then Qim(dk) denotes
the relative velocity of the centers of mass of these two clusters. (See Section 4
for further details about the kinematics.) The modified Dollard time evolutions are
generated by

^(<; 4) == BW + Y,f v^ (QimW t) (1.10)
where the decomposition-dependent ̂ ' means the sum over those pairs i < m lying
in different clusters of dk. Explicitly one obtains



UD(t,r;dk)=^^-iH(dk)(t-r)-i^ds E'^(^-W^)}. (1.11)

Let P(d^) be the bound state projection for the pair c in the decomposition d^, i.e.
Ran P(<;2) = W^B^c)) and P^) = 1. Then we show that the modified Bollard
wave operators denned as

ft°(4) := s-^ ex.p{iHt} £^((, 0; 4) P(4) (1.12)

exist if the decay rate of the long-range potentials satisfies 7 > 1/2 and are complete:

Ran ft^) © ©^ Ran ̂ (d,) = 7^(5) (1.13)

if 7 > -\/3 — 1. The physically relevant long-range potential of the Coulomb force
with -y = 1 is included. Completeness (1.13) holds if every ^ G '%c<mt(5') can be
split f = ^!(ds) + Ed, ^(^2) such that the following limits exist:

lim ^((,0;4)*exp{-iff0^(4), (1.14)
1-—+00 v /

and for every ^2

^ [l - P(d2)] exp^ijyQ^) = 0. (1.15)

This will be shown in Section 4. Clearly we have the same results with the same
proofs for negative times t —> —oo. Therefore we omit the usual indices ± at the
wave operators.

Acknowledgement. Part of this report was written when visiting the Edmund Landau
Center for Research in Mathematical Analysis, Hebrew University, Jerusalem. I am
grateful to A. Levy for his hospitality, to S. Agmon and M. Ben-Artzi for helpful
discussions, and to the BMFT, Fed. Rep. Germany, for financial support.

2 The Two-Body Problem
In this section we show existence and completeness of two-body wave operators
(1.7), (1.8) under the assumptions made in the previous section. We use asymptotic
observables to obtain a phase space localization of scattering states asymptotically in
time. The operator Q is the velocity operator (1.5). The following theorem says that
a scattering state eventually will move away from the scatterer into the region where
the total and the kinetic energies coincide. Moreover, the instantaneous velocity Q
and x / t ^ the average velocity up to time t, asymptotically coincide. In the long run a
state will be localized there where it would be under the free time evolution starting
near the origin at time zero. The choice if observables admits errors growing almost
linearly in time. Since the statement is so rough it can be easily proved using mainly
kinematics.
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Theorem 2.1. Let $ 6 U^^H) he fixed. There is a sequence r« -» oo such that
(a) for any g € C'̂ (JR)

^ || [g(H) - g(Bo)} exp{-tJTr,J |̂| = 0.

(b) For any f G 0^(1^}

j^oo II IW) - A«/Tn)] ̂ {-^n} ̂ || = 0.

Idea of proof. Disregarding domain questions one has to show for (b) convergence
to zero of

|| [(X/t) - Q] exp{-iff(}^||2

= r2 (^, exp{iJTQ [a;2 - (xQ + Qx)t + (ft2 ] exp{-iJ7Q^). (2.1)

The summands are related by differentiation:

(d/at)2 (^, ex.p{iBt} x2 exp{-iHt}^)

= (d/dt) (^, exp{iHt} (xQ + Qx) exp{-iHt}^f)

= (^, exp{iHt} (2Q2 + K) exp{-iBt}^) =: 2h^t) +2h,(t),

where K := iV xQ - ixQV9 + iV'Qx - iQxV* - (2/m)('7Vt) is relatively compact,
i.e. Kg(H) = C is compact for any bounded decaying function g. Using Taylor's
formula of second order one obtains for (2.1) with (^, x2 9)/t2 —> 0

hi(t) - t-2 f 2s ds h^(s) - r2 fis ds h^s).
Jo Jo

As a consequence of Wiener's theorem for any compact C and any self-adjoint H

lit-2 r 2s ds exp{iHs} C exp^tJ^}?^^)! ̂  0. (2.2)

Therefore the correction term with h^ asymptotically vanishes. Since [g(H) — g(Ho\
is compact as well one concludes similarly that part (a) holds. For suitable vectors
^ the function h^ is bounded and continuous. It cannot stay away from its weighted
average forever and the difference has to approach zero for an infinite sequence of
times. For the complete proof of a stronger statement see Section II of [2] or [1]. D

For each ̂  in a dense set of states in Ti^^H) there is a function g £ CS°(IR) with
g{H)>& = ^ and supp^ C (0,oo) C [0,oo) = a^H). Then g(Ho) characterizes a
spherical shell Sh in velocity space which satisfies for some VQ > 0



Sh := {(? e ̂  mQ2/^ € supp^} C {<? | \Q\ > 6^0}. (2.3)

On this shell there is a finite positive smooth decomposition of the identity {/•} -=i j
with 0 < f,{Q) < 1, E,/.,(<?) = 1 for all Q e Sh, such that for suitable
Vj 6 Sh one has supp/, £ B^(vj) (the ball of radius VQ around v,),/J72 e (^(JR1').
Corresponding to each /, define a "covering function"

F,(y) := T (m\v - ̂ ,,|2/2) € CW), (2.4)

where T satisfies y(mw2/2) = 1 (or 0 ) if w <. (\/3vo) (or w > (2vo) ) and is
monotone: F ' <_ 0, (-^)1/2 e C^(JR).

We define a shorthand for the phase space localization operators

£,(() := F,.(a;/t) /,((?), ||2/,(()|| = 1. (2.5)

Obviously one has with £,(()• = f,(Q) Fj(x/t)

\\L,(t) - L,(tY\\ = || [F,(»/(), /,((?)] || < const/< for all j. (2.6)

For the next statement we will use only that the /, are a decomposition of the
identity on Sh and that /, F, = fj. The other properties will be needed later.

Corollary 2.2. With g, /„ Fj as above and ^ = g(H) ̂  € Ti^^H)

ri^oo ||{1 - ̂ , ̂ (rn)} exp{-*^n} ̂ || = 0, (2.7)

and similarly for Lj^Tn)*, r^ as in Theorem 2.1.

Proof. With summation over finitely many j

exp{-iJ3r,.} ̂  = g(H) exp{-iHr^} 9 w g(Ho) exp{-iHr^} ̂

= E M) W) gW exp{-t^rj ̂

w ̂ LW) W) exp{-iB^}^w ̂ f,(Q) F,{X/T^) exp{-iHr^}y

= E, ̂ O")* exp{-i^Tn} ̂  « ̂  . £j(rn) exp{-i5-Tn} ̂ .

In all occurrences of w the error vanishes as r^ -»• oo by Theorem 2.1 and (2.6). D

We use the notation for norm-integrable bounded operator valued functions

A(t)€L1 or A^^O if ||A(t)|| e L\[l,oo),dt)



and analogously for A(t) w1 B(t). A(t) = O(t^) means that ^- [|A(t)|| is bounded.
It is convenient to introduce the time-dependent "tail part" Vf of the long-range
potential V1 as

Vt(x) := V\x) y(\x/vat^ ||yj| ^C{1+ \t\)-\ (2.8)

where (1 - y) 6 C^{JR), y{q) = 0 or 1 if \q\ ^ 1/2 or \q\ > 1, 0 ^ y{q) < 1,
VQ > 0 as chosen in (2.3). One easily concludes from (1.3), (1.4)

sup |(V Vt)(z)\ ̂  C (1 + \t\)-1-^ € L1 for all 7 > 0, (2.9)
Z

sup |(A Vt){z)\ ̂  (7(eo) (1 + \t\')-l-^+eo, for any £o > 0. (2.10)
Z

The inner cutoff - here between the speeds VQ and Vo/2 - can be adjusted to the
kinematics. Energies below mvo2/2 must be excluded by g(H). Then V1 and Vi
coincide in the region where the particle should be at time t according to its energy.
The size of the cutoff only affects the constants in (2.9), (2.10). The time evolution
corresonding to V^ is U(t^ r) with U(r^ r) == 1 and

H(t) :== Bo + Vt(x), i {d/dt) U(t, r) == H{t} U(t, r). (2.11)

The Propagator U exists because Vf is a boundedly differentiable operator valued
function off . Evidently U is the free time evolution exp{—z2fo(f — r)} in the short-
range case y^ == 0. U will play the role of an intermediate time evolution later
on.

Lemma 2.3. For all j = 1,...,J the following quantities are integrable in t.

V'(x) £,((), L,(t) V^x), {V\x) - V,(x)) Z,((),

L,(t} (V\x) - Vt(x)), [V\x\ L,(t)}, and [^(a), 2/,.(()] € L\

Proof. The first is evident from the decay assumption (1.2) of V^(a?) and the
fact that suppFj^x/t) C {x 6 TBV \ \x\ > 4vQt} for each j. The third vanishes
identically. Since fj{Q) in a^-space acts as convolution with the rapidly decaying
Fourier transform of fj one has

II^A) fAQ) W < 3^)11 ^ CN t^ (2.12)
for any N 6 IN. As usual, F without an index denotes the multiplication operator
with the characteristic function of the indicated region. With (2.12) also the second
and fourth statements follow. For the remaining two terms



[v\x\ z,(f)] = F,(^/() [y^), /,((?)] ̂  F,(̂ ) [y,(^), /,(Q)],

I I [Vf(x), W)} || < const(/,). sup |W<| € L1

by (2.8) and (2.9). D

The next proposition is the crucial ingredient of this approach. Any positive
operator can be written in the form A*A, we need not know A explicitly. The
essential positivity of the "total time derivatives" says that the phase space regions
characterized by Lj(t) are absorbing under all time evolutions, even certain mixed
ones, up to harmless errors which are integrable in time.

Proposition 2.4. For each Lj(t) as chosen in (2.5) and U as given in (2.11)

exp{-iHt} d/dt[exp{iHt} L,(t) exp{-iHt}} exp{iHt}

W1 exp{-i(Ho + V^t} d / d t {exp{z(fTo + V^t} L,(t) exp{-iHt}} exp{iHt}

w1 U(t, 0) d/dt[U(t, OY £,(<) exp{-^5^t}}exp{^J3^<}

w1 exp{-iHt} d/dt{exp{iHt} Lj(t) U(t, 0)}U(t, 0)*

^1 U{t, 0) d/dt{U(t, OY L,(t) U(t, 0)}U(t, OY

w1 exp{-iHot} d/dt {exp{iHot} Lj(t) exp{-iHot}} exp{iHot}

= i [H^ L,(t)] + a, L,{t) w1 A,(tY A,(t) = 0(r1). (2.13)

The operators Aj(t) can be chosen independent of the potentials.

Proof. exp{-iHt}d/dt{exp{iHt}L,(t) exp{-iHt}} exp{iHt}

= {i [H^ Lj(t)} + 9t L,(t)} + i Vs L,{t) - i £,(() V s + i[V^ L,{t}}. (2.14)

The three potential-terms are individually integrable by Lemma 2.3. Most other
time derivatives in the proposition differ from (2.14) by the absence of some of these
terms. For the third line one gets also (V1 - Vf) Lj(t) G L^ and similarly for the
fourth. In the fifth line we have i[Vt(x), Lj(t)}. It remains to show the essential
positivity of the terms which are independent of all potentials:



{i [ZTo, F,(x/t)] + ̂  F,(x/t)} /,.((?)

-{TM??-.2)]-^^-^)^-.)^}^)
.^,{^[«,,,^(^)]^(^)^.(^,,)^

x /.(0+^) ^(t)

-U^i^ \02 rt^2}] T't^2} x x ^ffn^ \TT^\-UAt) lT[(39^'2^Jj•':^^J 7"7 TJ^^+^W)-
Here ?7j(t) is the unitary Galilei transformation mapping Q —^ Q + v^ x —^ x + vjt.
In the new variables the velocity Q is restricted by the support of fj to the ball
B^(0) and x / t in the support of 71 lies in B^(0)\B^(0). The positivity is not
affected by the factors Uj(t)* • • • Uj(t) and we omit them to get

(m/f) ̂ (m^2^2) { ( x / t ) . Q - \x/t\2 } /,(<? + z;,). (2.15)

We have neglected the double commutator [Q, [Q, ,F]j because it is bounded in
norm by const/t2 and thus is integrable. Clearly (2.15) is 0(t"1). It is self-adjoint up
to integrable corrections. Positivity follows because fj > 0, F ' <, 0, and \Q\ < \x/t\
in the corresponding supports. More precisely, with the arguments of the functions
as in (2.15):

(-^) Wf^^ (-^) \x/t\2^ > 3v^^(-r1)^ > 0.

|(̂ ') (x/t).Q f,\

^ ̂ T1 \x/t\ \Q\ /, ̂ 7' \x/t\ < vo ^J-F \x/t\ f, ^-T1 \x/t\

^^^(-^I^DV^ ^ ^•2^o /^(-^)V^.
Reordering of the square roots yields correction terms which in addition to the factor
(m/() in (2.15) have one more inverse power of t and thus can be neglected. The
difference of the two expressions is bounded below by VQ2 JTj^F9) JJj > 0. D

Instead of our explicit calculation one could have used that (2.15) is a pseudodif-
ferential operator in Q and x = im(d/dQ) with positive symbol. Thus the operator
is positive up to corrections which are smaller by a factor of the small parameter
(!/().

Now we are ready to verify the Cauchy criterion for the limit of



^•(t) := exp{iBt} L,(t) exp{-iBt} ̂  (2.16)

for every ^ € 7<. The following quantity has to be smaller than e > 0 for Ti large
enough uniformly in T^ > Ti:

II T II
/ dt d/d( { exp{^5^Q 2^)exp{-ijy(} } ̂

r31 II
nn

< sup / 2 A I ($, rf/rft { exp{iBt} L,(t) exp{-iHt} } ^) |
||$[|==i •Ti ' " ) / '

^ sup / 2 dt \(Aj(t) exp{-^5rt}$, Aj(t) exp{-iHt} y)\
||$||==i ^ri

f ^ ^1/2
< sup / ^ ||A,(() exp{-^}$||2 x

||̂ ||=1 (^Ti J

Ur, ^/2
x ^ dt ||A )̂ exp{-zi^K||2 . (2.17)

i J
In the approximation we have omitted integrable integrands. In the last step the
Cauchy Schwarz inequality is used. With Propositon 2.4 the square of the second
factor is

[T2 dt (^, exp{iJ7Q A,.(()* A,(() exp{-iJ7<}^)
JTt

w />T2 dt d (^, exp{iHt} L,(t} exp{-i5-Q ̂ ) < 2 ||̂ ||2t/Ti dt

Thus ||A^(t) exp{-ijfft}^||2 e £1 and the integral vanishes as Tz > Ti -^ oo.
The same argument shows the boundedness of the first factor uniformly in ||$|| =
1, TI > TI > 1. Existence of the limit (2.16) has been verified.

Our convergence proof of (2.16) is a Hilbert space version of the fact that if
h(t) < M < oo, h^t) = a+(t) + ai(<) with a+(t) > 0, ai e L1, then ]imt^h{t)
exists and also a+(t) £ L1. We know about the positive term only that it decays like
(1/t), the integrability which follows from the convergence was not obvious. The
estimate is entirely "differential". In contrast to our older treatments one needs not
control an integrated time evolution for a long time, not even the stationary phase
estimates for the free one. Therefore we got rid of the asymmetry between free and
interacting evolutions, the full time evolution can be estimated as easily as the free
one.

We can use (2.16) to replace the sequence of times r^ —> oo in Corollary 2.2 by
a limit t —> oo, i.e.
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fe^ {1 - E, ̂ -(<)} exp {-^} ̂  = 0 (2.18)

for any ^ = g(H)^f <= K^H). The norm of (2.18) is

h - ̂  . exp {t23'Q Z,.(() exp {-iHt} ̂ [[

^ l^-E^P^Jl/AOeXp^^}^

+ Z .̂ll t-xp {t'firj Zj(rJ exp {-i.Br.J ̂  - exp {iHt} L,(t) exp {-î } ̂ ||

This tends to zero uniformly for ( >: r^ as Tn -> oo. Actually, Theorem 2.1 holds for
two-body system also for t -^ oo by an extra argument [1] which is not necessary in
our application. Obviously convergence of

Hm^ U(t, OY L,(t) exp {-iHt} ̂  =; $,(oo) (2.19)

for each j = 1,..., J is sufficient for convergence of U(t, 0)* exp {-iHt} 9 =: $(oo).
However, the proof of (2.19) is the same as that of (2.16), only the integrable cor-
rection terms are different, see Proposition 2.4. Similarly one has that

^exp{iHt}L,(t)U(t,0)^ (2.20)

exists for any $ e U. In particular we conclude from (2.19) that for large enough
T >. ̂ (e) uniformly in t>r for all j

\\Lj(t)exp{-iHt}>6- U^T)Lj{T)exp{-iHr}^\\ < s. (2.21)

This allows to show convergence (1.8) needed for completeness

m^ t^((, 0)* exp {-iHt} ̂  = ̂  g(Ho) E^((, 0)* exp {-iHt} ̂  (2.22)

by reducing it to convergence of the simpler

^ g[H,) UD{t, 0)* U(t, r) £,.(r) exp {-iHr} ̂  (2.23)

for arbitrarily large fixed r. As a preparation we derive for the intermediate time
evolution U a better asymptotic correlation between Q and x / t than expressed in
Theorem 2.1 or (2.18) which corresponds to 7' = 0 below.

Lemma 2.5. (a) For t >_ r >, 1 and each j (and similarly for Vs)

\\{Qt - x) U(t,r) 2/,(r)|| ̂  const(r) (1 + <1-^). (2.24)

(b) Let h € CS°{]R) satisfy h(0) = 1. Then for any 0 ̂  7' < -y

11



lim || \h,{C<\Q - x/t)) - l] U(t,0) $(oo)| = 0, (2.25)

Urn \\exp{-iHt}^! - h{€'\Q - x/t)) U{t, 0) $(oo) | = 0. (2.26)
t—>oo 1 1 I

Proof, (a) The norm is bounded by

\\U(T,rY[QT-x} U(T,r)L,{r}

^ || [Qr - x] Z,(r)|| + f dt \\Q + i [(Ha + K(»)), (Qt - x)} ||
JT

(.T
< const(r)+ / dt(t/m) suplVVtl ^ const(r) (l + T 1 ^ . (2.27)

For U0 we get correspondingly

IIQ + i [(JTo + Vi(Qt)), (Qt - x)] || < C t sup IVY,). (2.28)

(b) is an easy consequence of (a) and (2.21). D

Note that the potential may depend on additonal variables which commute with
Q. Then the proof of the estimate (2.24) is not affected. This situation occurs for
three-body systems e.g. in the proof of Lemma 4.6. To show (2.23) it is sufficient
to estimate for fi > r

| I " dtg(Ho) (d/dt) C^or U(t,r) L,{r)\
I I ̂ i II

^ r dt || [Vt (Qt) - Vt(x)] U(t + r,r) £,(r)||. (2.29)
Jtt

Here we have used that g(Ho) Vt (Qt) = g{Bo) Vf (Qt) because g(Ho) equals zero in
a neighborhood of the origin in velocity space. With the Baker-Campbell-Hausdorff
formula one computes

Vt(Qt)-Vt(x)=

= /1 d\{(yVt)(x(l - A) + A Qt) • (Qt - x)

+(i/2m)t(^Vt)(x(l-\)+\Qt)}. (2.30)

12



The first term would be there for commuting arguments as well, the second is the
correction due to i [Q,(, xj,} = (t/m) ̂ . Thanks to the cutoff in the potential ^
we need not consider the complicated arguments of the derivatives of the potential
and obtain

II [Vt(Qt)-V,(x)] U(t,r) £,(r)||

< sup|(VyO(z)|||(^-^)^T)Z,(r

+ const t sup | (Ay<) (z)\. (2.31)

For 7 > 1/2 the second summand decays integrably in t by (2.10) with €o < 27—1.
With (2.9) and (2.24) the first is bounded by const (1 + ()~27 and it is integrable
for 7 > 1/2. The integral (2.29) vanishes as ii -> oo and the convergence (1.8) for
completeness is established.

The existence (1.7) is well known. It also follows easily from the estimates above.
They show that the norm limit

Ui^ U(t,OY UD(t,0)gW exists. (2.32)
t-*00

For both U0 and U the results on asymptotic phase space localization of Corollary
2.2 and (2.18) hold as well. This implies existence. Thus we have proved

Theorem 2.6. Let the Bamiltonian H satisfy (1.1) - (1.3) with 7 > 1/2. Then the
modified Dollard wave operator ft0 exists (1.7) and is complete, i.e. it is unitary
from 7t to ̂ ^(H). In particular H has no singular continuous spectrum and its
continuous part is unitarily equivalent to BQ, i.e. H \ Ti^^H) = Sl0 Ho (n^)*.

Remark 2.7. So far we did not use part (b) of Lemma 2.5. Instead of the proof
above one could have studied

(d/dt)g(Ho) C^,or h(t^(Q - x / t ) ) U(t,0)

= g (u^ {i v,{Qt) h(..) - i h(..) v,(x) + i [B^ h(..)} + a, h(..)} u.
The difference of the potential terms is integrable by similar estimates as given above
for 7 > 7' ^ 1/2. The total free time derivative of h(..) is positive without any
corrections for 7' < 1 ifh decays monotone: y • VA(y) < 0.

i [^o, h(t^(Q ~ x/t))] + 9t h(t^\Q - x/t)) =

13



= - [(1 - 7')/t] ( '̂(<? - «/<)) • (V/0(^'(<? - x/t)) = 0(r1) ̂  0 (2.33)

r/iz5 last statement is not surprising because (Qt — x) is constant under the free
evolution.

While we could avoid to treat a threshold contribution with energy close to zero by
a density argument this is no longer possible if the two-body system is part of a
larger system. The corresponding phase space propagation estimate uses

W:=g(H)G(r^} (2.34)
V zt /

where g G C^°(JR), supp^ C {A € 2R| A < mvo2/2} ̂ d G ls ^e same as T in the
construction (2.4) of the other Lj(t). The interesting functions g equal one on the
bound state energies of H and on a neighborhood of zero or on a tiny neighborhood
of zero only. The localization is not spoiled by the factor g(H)» We have shown in
Proposition 6.2 of [2]

\\F(\x\ < p) g{H) F{\x\ > p + r)|| < Cn (1 + r)-^ for all N e JN (2.35)

uniformly in p. Integrable decay (which is sufficient here) is easier to prove. This
implies

Lo(t) F(\x\ > 2vQt) = 0, ||F(|a;| > 3vot) Lo(t)\\ < CN (1 +1)^. (2.36)

Also Lo (t) is absorbing.

Lemma 2.8. For 7 > 0

Dt Lo(t) = i [H, Lo(t)} + 9i Lo(t) w1 Ao(t)* Ao(<) = 0(l/t). (2.37)

Ao(t) can be chosen independent of the potential.

lim exp{iHt} Lo(t) exp{-iHt}^ (2.38)
t—>00

exists for any ^ 6 7 .̂

Proof.

Df Lo(t) = g(H) [i [ffo, G (m^/2t2)] + Qi G (ma;2/2t2)}

i , . m ( x 2 x } , -,. /77^a;2\ i^smJ{y-Q•-i}^-G>)[-^)^
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^W)^- Q. ̂ ] (-(,') (-̂ ) (..39)

In the first approximation we omitted 0(l/t2) terms from reordering the non com-
muting operators. In the second we used decay

1| [g(H) - g{Ha)} F(\x\ > vo\t\) || ^ C (1 + \t\)-^ (2.40)

i.e. the slowest decay of the potentials. (2.39) is of the same essentially positive
type as (2.15) with g(Ho) playing the role of fj(Q + Vj). The second statement is
proved as (2.16). D

Remark 2.9. If g 6 (7^°((—oo, 0)) one gets the stronger DtLo(t) W1 0 because
gW = o.

Note that in (2.37), (2.38) H cannot be replaced on the left or right by an
approximation. One does not show more than stability of that component. Never-
theless this simple lemma is very useful for the treatment of three-body systems, it
replaces e.g. the whole Section VI in [2]!

3 More on Long-Range Forces
For the completeness proof in this section we assume about the long-range potential
instead of (1.2) - (1.3) with 7 > 1/2 a slower decay otV1 but additional requirements
on its higher derivatives. For multiindices a let V1 satisfy

KJD" V^x)\ ̂  C^ (1 + \x\Y^-\ 7 > 0, 0 < H < A(^), (3.1)

with a constant A(^) depending on the dimension of space. For this class Isozaki
und Kitada [6] have constructed a Fourier integral operator J which has a solu-
tion of the eikonal equation for the classical purely long-range problem as phase
function. Its construction involves subtle estimates of classical trajectories. It is a
time-independent modifier in the definition of modified wave operators

0 := s-lim exp{tj5T(}J exp{-t5o<}^- (3.2)
t—>00

By the considerations of the previous section it is sufficient for existence and com-
pleteness of n to show existence of the limits

exp{iHt} J Lj(t) exp{-iJ?o<}$, (3-3)

exp{iHot} Lj(tY J* exp^tJ^}^ (3.4)
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as t —> oo. J is constructed such that it satisfies on outgoing states ofstricly positive
kinetic energy

( B J - J H , ) L , ( t ) ^ L 1 . (3.5)

This follows easily from the eikonal equation, see (4.1), (2.33) in [6]. It implies in
particular

i [H, J L,(t) J * } +8tJ L,{t) r %1 J A,{tY A,{t) J* ̂  0. (3.6)

The remaining arguments are much easier than in [6]. Only a minor modification of
our estimate (2.17) is needed.

| (^, exp{iHTs} J Lj(Tt) exp î̂ o'W)

- (^, ex.p{iHT,} JLffi) exp{-i^oTi}$) I2

fT, 2
w j dt (^, exp{î } J A,(()* Aj(t) exp{-i^o0$)

fT2

S dt (d/dt) ($, exp{iBot} L^t) exp{-»^o0$)JT\

x I s dt (d/dt) (^, exp{iHt} J L,{t} J* exp{-iBtW.
JT\

Since J L j ( t ) J * is uniformly bounded the proof is the same as above.

4 Three-Body Systems
We proceed in close analogy to our treatment of the two-body case above. We
construct an absorbing decomposition in phase space of scattering states at late
times such that on each component a simpler comparison dynamics approximates
the time evolution. The new feature is that we have to deal with several channels due
to the possibility of having asymptotically either all particles moving freely relative
to each other or a bounded pair moving freely relative to the third particle. They are
indexed by dz for the total decomposition or by d^ labelling the three possibilities
for pairings, respectively. For each two cluster decomposition d^ we denote by c the
non-trivial cluster of two particles. It is convenient to use Jacobi coordinates. The
internal coordinate of the cluster or "pair" is

X(c) := ̂  - x3 € Sf if c = (ij) C d^ i < j, (4.1)
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and the coordinate of the third particle relative to the center of mass of the pair c is

YW := xk - (m,^ + m,x3} / (m, + m,), k ^ c = (tj) € ^- (4.2)

Relative coordinates Y^s) for all three particles can be represented by a pair
(X(c),Y(^2)) € ^R2^ for any d^. The reduced masses ^(c) := m, m^/(m, + mj)
and ^(^2) ;= TTifc ^(c)/(mk + ̂ (c)) can be used to form invariant inner products
with norms

|)^(c)||2 := /.(c) \X(c)\\ \\YWf := ̂ ) |y(^)|2, (4.3)

||y(d3)||2 := ||̂ (c)||2 + \\YW\\\ any d,, (4.4)

where | • | denotes Euclidean norm in JBY. (4.4) turns out to be independent of d^.
The corresponding velocity operators are

Q(C) := -tV^(e) //l(c), O(^) == -lVy(^) /^(^) (4.5)

and Q{ds) may again be represented as a pair. The free Hamiltonian Ho is with the
above norm

ffo = IIW3)ir/2 = IIQ^H2^ + IIO^)!!2^

=:^o(c)+T(^)=2W) (4.6)

independent of ^2. Instead of using explicit coordinates one could have defined 2Ho
equivalently as the Laplace Beltrami operator on JB?V with metric (4.3), (4.4). It
satisfies the familiar kinematical relations

i[Ha, X(c)] = t[^o(c), X(c)] = Q(c), (4.7)

i[H^ Y(d,)] = z[r(^), YW} = <?(d2), (4.8)

z[ffo,y(^)]=W3). (4.9)

With H(c) := j&o(^)+^^ if (^j) == c one can express the non-trivial decomposition
Hamiltonians as

HW := H(c) + TW = H - ̂  V^. (4.10)

Recall that ̂ / depending on the decomposition dk denotes summation over all pairs
(i,m) which are not in a cluster of d^.

The closed countable set of thresholds T := {0} U Uc ̂ W0)) is the closure
of all subsystem eigenvalues. T C (—00,0] because our class of potentials is known
not to have positive energy bound states. (The inclusion of such bound states would
not be difficult.) We will consider only scattering states with bounded energy away
from thresholds, i.e. for ^ there is a g e C^(JR) with
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)̂̂  = ^ e H^H), suppg n T = 0. (4.11)g(B)9 = ̂  e H^H), suppg n T = 0.

Such states are dense in W^^tT), the orthogonal complement of the bound states.
Experience from physics suggests that asymptotically in time either all particles

move away from each other, or a pair is bounded and it separates from the third
particle, or a pair is in a scattering state with very small energy and the third parti-
cle runs away. We have excluded the possibility that all three particles stay together
by avoiding threshold energies. Thus in each of the cases the system decays into two
or more clusters. The short-range interaction between the clusters can be neglected
asymptotically and the long-range part results only in a simple explicitly tractable
modification of the free relative motion of the clusters. A proof of asymptotic com-
pleteness (1.12), (1.13) shows that this intuitition is correct in the mathematical
model. We construct our phase space decomposition accordingly.

Corresponding to Theorem 2.1. in the two-body case we can use again asymptotic
observables to describe propagation in phase space and the correlations between
position and velocity for a sequence of times r^ —> oo. The splitting for two body
subsystems into their bound state part W^^B^c)) and scattering part W^i^c))
is not time-invariant due to the interaction with the third particle. Therefore it is
advantageous to split off only a finite number of bound states depending on an error
bound e. We denote by

PN(d^ with Hrn P^) = PW (4.12)
JV-w

the orthogonal projection corresponding to the first N eigenvectors of the subsys-
tem Hamiltonian B(c). In the internal subsystem Hilbert space 7^(c) this is an
TV-dimensional projection. Since the state of the third particle relative to the clus-
ter is unrestricted P^^) is infinite dimensional on T-i. The numbering of the
eigenvectors does not matter.

Theorem 4.1. Let ̂  6 W^tT) he given. There is a sequence of times r^ —^ oo
and for every € > 0 there is an N = N(e) such that the following holds.

(a) For any g^ g G C^°(JBR), e > 0, and all large enough Tn

|P^) [g(B) - gWd,))} e^p{-iBr^\\ < e, (4.13)

[^(d3)){l-E^?)}-{l~E^P^^^

x exp{~tJTTj^ < 5, (4.14)
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I bW<0) - g(Bo(c))} {l - E^P^(^)} exp{-t.Hr..}d < e (4.15)

for every pair c. In (4.14) one can repface g(H(ds)) by g(B(d^) for any d,.

ft) For any d,, f e C^W), e > 0, and all large enough r^

I \f (Yw-} - f{QW)} P^d,) exp{-z^}^ < e. (4.16)
II L \ '" / J '

(c) For any f € C'o0^-1)1'), e > 0, and a// large enough Tn

I [/ (yyfc)) - /(wfc))] {1 - ̂ d^W} ^P{-iffr^l < . (4.17)

and similarly for G^XW/2^) - G^QW/2), G as in (2.34).

With suitable adjustments this theorem holds for any particle number, see [3] for
a proof. The bound states of the pairs not covered by P^da) for large N are
weakly bounded. For them H(c) « 2To(c), Q(c), and X(c)/t are all very small.
Therefore (4.14), (4.15), and (4.17) can hold for components with weakly bounded
pairs as well. Clearly N(e) grows as e ->• 0. Part (a) says that particles or dusters
of bounded particles eventually separate and relative energies are relative kinetic
energies. Parts (b) and (c) state that the particles or clusters approximately will
be localized there where they would be as classical particles starting with the given
velocity at time zero near the origin. The statements are relatively easy to prove
because they involve only Y(dk)/t, i.e. not a very precise localization for large t.

As in the two-body case we use this information to construct a finite phase space
decomposition into absorbing outgoing components. Let g € C'5°(2R) be given with

dist(supp^, T) > v^ fl8max(/t(d2)) + min/i(c)/2] > 0. (4.18)

The speed VQ > 0 will be chosen later. Consider a function g with Jg e C'("(JR)
which equals one on a neighborhood of the threshold set T and satisfies for
Ao := ̂  minc/i(c)/2: supp^ C {A € JR \ \ < Ao}. The covering function G satisfies
g(\) G(\) = g(\), G(\) = 0 for \ ̂  4Ao, G'(\) < 0, {-G"}1/2 e C7o°W, and
suppG" C {3Ao < A < 4Ao}. For any VQ > 0 the two functions g and G are as in
(2.34) and satisfy the assumptions of Lemma 2.8. The maximal speed \X(c)/t\ in
the range of G'dl^c)))2^2) is for every pair c bounded by 2vo.

Let Sh, be a bounded shell of velocities of the third particle relative to the center
of mass of the pair which contains all QW in the ranges of g(B(c)) g{H{d^)) for
every dz, i.e.

Shz D (J U U [Q € ^v I (> + f^W W12) 6 supp^} . (4.19)
d, \eT (KAQo
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Due to the choices made above we may choose Shz C {Q [ \Q\ >. 61:0} as for Sh in
(2.3). On this shell we introduce again a decomposition fo the identity {/,} with
covering functions Fj with the same properties as in Section 2. We define the phase
space localization operators for each d^

L,{t\ d,) := gWc)) Gdl^c)!!2/^2) F,(Y(d,)/t) f,(QW). (4.20)

On the range of G^X^W F,(Y(d^)/t) we have [x^x^ > \Y(d^\X(c)\ >
2vot if the particles i and m do not form the cluster c. With the analogon to (2.12)
we have

\\L^d^F(\xi-xm\<vot)\\, \\F(\xi-xm\<v^L^d^\\<CN^N^21)

for any N € JN. For a justification of the second part see (2.35).
Thus Lj(t^ d^) characterize states where the third particle is well separated from a

small pair. Short-range intercluster potentials yield integrable terms when multiplied
with Lj{t\d^\ see Lemma 4.2 below.

It remains to construct a phase space decomposition for the channel dz. The
support of g characterizes an (elliptic) shell in some Jacobi coordinate system

sha := [q e m2^ W/2 e suppg} (4.22)
which is disjoint from a neighborhood of the origin. The three functions
g(Ho(c)) Y,jfj(Q(d^)) interpreted as functions Q{Q\d^}, Q £ JEL^ equal one on a
neighborhood of the intersection of Sha with the i/- dimensional subspaces Q(c) = 0,
respectively. For small enough VQ > 0 their supports are disjoint. Denote by Shs"
the subset of Sha where all three functions differ from one. Pick VQ > 0 so small
that it satisfies (4.18) and, in addition,

\Q(c)\ > 6vo for all Q £ Sha", all c. (4.23)

With Ao == ̂  mine ̂ (c)/2 there is a finite collection of Qi e Shs" and functions
ft ̂  0, {/,}1/2 e Co00^2"), supp/, C {Q € 2R21-! \\Q - ̂ ||2/2 ^ Ao} such that

E W^d^ + E M) = 1 for (? e Shs. (4.24)
d2 t

The corresponding covering functions Fi{Q) = F(\\Q - ^||2/2) satisfy j^t =
ft, :F(A) = 1 (or 0) if A < 3Ao (or ^ 4Ao),^ < O^and (-.F')1/2 e C^ ([3Ao,4Ao]),
just as for T and Fj in Section 2. On the range of Ft(Y(d^/t) one has \X{c)\ > 4vot
for all pairs c. The phase space localization operators are defined as

Lt(t', ̂ 3) :== WW/t) ft(Q(d^)). (4.25)
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They satisfy for all pairs (i, m)

\\Lt(t; ds) F^ - a^j < 3vo()|| ^ CN r^, all N (= JN. (4.26)

Thus all short-range potentials give integrable contributions on their range. We
define as in (2.8)

V^ - X"1) := y1^* - x^ ̂  - x^ /v»t) (4.27)

which has the same properties (2.9), (2.10). As in (1.10), (4.10) E' means summa-
tion over those pairs which are not in a cluster for the given decomposition dk.

Lemma 4.2. For all j and'y > 0 the following quantities are integrable

E'^m"^•M*), L^d^^'v-",

E' (V^ - V^) £,((; 4), L^t; 4) E' (^m1' - V^),

E' [^m•^, ^(<;4)], and Y,1 [V-, L,(t-M\ e L\

Proof. The first four terms are integrable following the decay assumptions of the
potentials and (4.21), {4.26). The fifth follows with these and the last. For ds one
uses || [^"^-a;"1), ft(Q(ds))] || < const(/^)sup IVY^I 6 L\ For ̂  and (z,m) ^
c one has x^ - xm =: ̂ ^(4) + A^X(c) where ^^(4) = ±^(4), A.m a constant
depending only on the masses in the pair. Then || [^""(a;* - sc"1), fj(Q(ds))} || <
const(/,•)sup|Vy^m|el/l. The remaining contribution is || ̂ '"(a;*-®"1), ff(fi"(c))] ||
< const(^) sup IV^*"*! e L1. This last claim follows because we have for perturbed
Hamiltonians as well || [h(X(c)), g(H(c))} || ^ const(^) ||V/i||. See e.g. the proof of
Proposition 6.2 in [2]. Q

The next step is to show that the phase space localization operators (4.20), (4.25)
form an approximate decomposition of the identity on scattering states at late times.

Proposition 4.3. For ̂  = g(H)^ € H^H) let r^ -> oo be the sequence of times
as in Theorem 4.1. Then

^ ^-E^^^+EE^^^Iexp^^T^ =0. (4.28)
I l d,t j )

Proof. For given e > 0 choose N = N(e) as in Thereom 4.1.

exp{-iHr^ = {E^P^+l-E^K)}^) exp{-t27r^
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% EP^2) 5(^(^2)) exp{-ifTT4^
d,

+ g{HW} {l - E^P^)} exp{-^r,}$

= EE^(<0) /,(W2)) P^2) gWd,)) exp{-iHr^
d, j

+ E^O(C)) /,(W2)) + E^(W3)) ^(^3))
{d2,J t }

x {l-E^P^2)}exp{-tffr,}^

w E^^6)) /.(<?(^)) P^^) exp{-»ffr,}^
<w

+ E^o(c))/,•(W2)){l-E,,PJV(4)}exp{-^^TJ$
d2J l ^ >

+ E^(W3)){l-E^PW(<^2)}exp{-tffT^. (4.29)

The errors are smaller than const e for all large Tn by Theorem 4.1 (a). In the next
steps we use parts (b) and (c) as well. The summands in the second line are

gWc)) Gdl^c)!!2/^ /,(W2)) ̂ (W^l-E^P^)} exp{-zffrj^

^gWc)) G'dlJ^c)!!2^) MW) F^Yid^/T^l-^^W^pi-iHr^

^ g(H(c)) (?(...) /,(...) F,(...) {l - P ,̂)} exp{-t^r,}^ (4.30)

In the last step we have used (4.15) and

I G(\\XW/2t2) F,(Y(d,)/t) P^,) I ̂  0 for d, ̂  d,, t -^ oo. (4.31)

The latter holds for any finite N. With || {1 - G(\\X{c)\\2/2t2)}PN(d^\\ -^ 0 as
t —>• oo for finite N the summands in the first line of (4.29) are approximated by
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gWc)) Gdl^c)!!2^) /,((?(4)) F,(y(4)/Tn) P^(4) ̂ p{-iHr^.

Thus the contributions from the first two lines in (4.29) asymptotically add up to

^^ Z,(7,;4) exp{-iHr^.
C?2 J

The summands in the last line are

^(W)) WW) {l - ̂  ̂ (4)} exp{-iffr,}^

^ /z(W3)) ^(^<^3)/Tn){l-E,,p^2)}exp{-^ffr,}^

« 2/^,4) exp{-ifir,J^ (4.32)

because of Theorem 4.1 (c) and \\Ft(Y(ds)/t) P )̂!! -^ 0 as t -+ oo for finite
N and every (fz. This completes the verification of (4.28) because all errors are
bounded by a finite multiple of e uniformly for large r^. D

We shall show next that the decomposition of an old scattering state is asymp-
totically stable and that the components are absorbing. This follows from positivity
of the total time derivatives.

Proposition 4.4. For £,((; 4) as defined in (4.20), (4.25)

i [H, L,{t; 4)] + 9t L,(t; 4) ^ i [^(4), L,(t; 4)] + ̂  2/,(t; 4)

«1 A,((;4)*A,((;4)=0((-1). (4.33)

Moreover, for pairs of generators ffi(t), Hy,{t}

i H,{t) L,{t; 4) - i L,{t; 4) H,(t) + 9t £,((; 4) (4.34)

^Aj^fcrA,^^) (4.35)

if for given 4 the generators differ by intercluster potentials of short range, i.e.

2?i(t) - ̂ (() = ̂ y"^) (4.36)

where V^^t) may be V^91 or {V^1 - V^), etc..

Proof. That intercluster potentials of effective short range as well as commutators
with long-range potentials yield integrable correction terms was shown in Lemma
4.2. For 4 the essential positivity of
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i[Ho, Lt{t;d^}+9tLt(t;d^

is exactly Proposition 2.4 in higher dimension. In the two-cluster case we reduce it
to "two-body" estimates.

i[HW, L,(t^)}+9tL^d^}

= GWc)) {i [if(c). G'dl^cHI2/^2)] + c^dl^c)!!2/^2)} F, /,.

+ g G {i[T(d^ F,{YWIt)} + ̂  F,{Y(d,)/t)} f,{Q{d^).

By Lemma 2.8 and Proposition 2.4 the factors g{i [^T(c), G] + 9^ G} and
{z[r(^), Fj] +9tFj}fj are positive and 0(t"1). The other factors 2^/j and
g G, respectively, are positive up to 0(t~1) corrections. Consequently the sum of
products is positive up to an integrable correction. D

Now we are ready to show stability of the decomposition and approximation
properties of the time evolution for these components. In the short-range case
V^ == 0 this would finish the completeness proof. We define U(t^r^dk) as the
propagator generated by H{t\dk) := B(dk) +'L'V^im{x)

U(r,r) = 1, i(d/dt)U{t^dk) = H^d^) ̂ ,r;4). (4.37)

in analogy to (2.11). U(t^T\ dk) = exp{—iH(dk)(t—r)} if the intercluster potentials
are of short range.

Proposition 4.5. The following limits exist for every ^ ^.T-t

Urn exp{iBt} L^dk) exp{-iHt}^ (4.38)
t—^00

lim U(t^dkY L^dk) exp{-iHt}9 (4.39)
t-^oo

and similarly whenever the generators of the two time evolutions differ at most by
an effective short-range potential. In particular Proposition 4.3 holds in the time
limit t —> oo.

Proof. This is shown exactly as (2.16), (2.19), and (2.18) using Proposition 4.4. D

So far we have used for the long-range potentials only the decay assumption
7 > 0 in (1.3). From now on we will require 7 > 1/2 (and in the final step even
7 > \/3 — 1) to approximate U by the Dollard time evolution U0 as defined in(1.11).
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Lemma 4.6. For 7 > 1/2 and r arbitrarily large

&£, C^O;^)* U(t,r^ds) L,(r;d^ exp{-tirr}^ (4.40)

exists for the total decomposition. Moreover, for

^'W ;= S ̂  exp{î } 2^(f;<<3) exp^ij^}^ (4.41)

the limit limE .̂O;̂ )* exp{-i5^} ̂ 3) exists, i.e. (1.14) is satisfied for the
part ^'(ds) of ̂ 3).

Proof. The estimates (2.24), (2.29) - (2.31) carry over because B^dy) contains
only the tail parts of the long-range potentials. See the comment following the proof
of Lemma 2.5. In particular the estimate for t>,r

|| [(?(c) ( - X{c}} U(t,r;ds) ̂ (r^H ^ const(r) t1-^ (4.42)

corresponding to (2.24) holds for every pair c. For (4.41) see (2.21). D

The three components

^'W :=^ ̂  exp{iBt}Lj(t;d^ exp{-iBt}^f
3 ~*°°

require a finer analysis because each contains two physically different parts: either
asymptotically the pair is bounded with UD(•, •; d^) as asymptotic evolution or the
pair ends up in a low energy scattering state with evolution E/^(-, •; d$). In the short-
range case exp{-iB(d^t} can be used for both parts. However, when there are
effective long-range intercluster potentials then £/"(•, .;<^) has to be used with the
correct k, one does not have convergence for both. In the presence of infinitely namy
bound states the distinction between the parts cannot be made using a smooth cutoff
function g(B(c)). In addition, states with energy close to a threshold approach their
asymptotic behaviour very slowly. For them we will need the extra decay assumption
later. Accordingly we decompose the function g (which was chosen below equation
(4.18)) as follows

9 = 9< + go + g>, 0 ̂  g. ̂  1, g< e C'(?°((-oo,0)), g> G Co°°((0, oo)). (4.43)

The function go should have very small support around zero. The part with g>
need not be treated separately because it corresponds to the case with three pairwise
separating particles. The transition g -> g< + go only would mean a redefinition
of Lt(t; ds) with steeper cutoff functions getting closer to the critical sets and with
smaller VQ > 0. The convergences shown above remain valid, but the approximations
as e.g. in Proposition 4.3 will be good only for much later times.

No matter how small the support of go is chosen there is only a finite number
of bound states for B(c) with energy in the range of g^. It is well known that the
eigenfunctions decay exponentially in ||-X'(c)[[. We define
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L<{H d,) := ̂  g<Wc)) Gdl^c))!2^2) F,{YWIt) /,(C?(^)). (4.44)
j

By Remark 2.9 the convergence as in Proposition 4.5 holds here as well. We may
set

^<(^z) := ̂  exp{iBt} 2/<(t; dz) exp{-iHt}f (4.45)

Proposition 4.7. For any 5r< € C'^°((-oo,0)) and .AT farye enough

^ £^(<, 0; (iz)* exp{-ifi-0 ̂ <(^) e Ran P^(a2) (4.46)

ez^s, i.e. (1.14), (1.15) hold for the part 9<W of ^(d^.

Proof. Again it is sufficient to show convergence of

^(f,r;^)* U{t,r;d,) L^r;d,) (4.47)

as t —» oo for arbitrarily late T. Choose ^< € C*^°((—oo, 0)) such that g< g^ = g<.
Then

|IW^)^,r;^)^<(^(c)) U(t^d,)\\

^ El| [^<(^(C))> ^*m(yim(<^2) + >imX(c))} ||

< ̂ ' const(^<) sup IV^"*! e I/1. (4.48)

Since L{t\d^) = ̂ <(^(c)) 2/<(<;<f2) we can study instead of (4.47) for large r

UD(t^d^ g<(B(c)) U(t,T;d^) 2/<(r;^). (4.49)

The propagator V0 commutes with g^(B(c)), so we get in particular that the limit
(if it exists) Jies in Ran^fi^c)) C RanP^z) C RanP(<^) for sufficiently large N.
Denote by U the evolution generated by ff(t; d^) = H^+E' ^""(^m^)). Then
the time derivative

( d / d t ) U(t,r;d^Y g<(H(c)) U(t,r;d^ (4.50)

is bounded by terms

\\g<(B(c)) [V^Y^)) - ̂ (Y^) + \^X(c))} ||

< ||^<Wc)) x(c)\\ sup ivy-id1.

26

(4.51)



where the particles i and m, i < m lie in different clusters, x* — x^ = ^^(^2) +
Ai^X(c). Now 5<(jB'(c)) has done its duty and can be taken away again. We have
shown for t > r large

exp^zJTt}^^) w U(t^d^) 2.<(r;d2) exp{-t5r}^. (4.52)

With the velocity QimW = i [H{d^ Y^d^} we conclude convergence (4.46)
from (4.52) and integrability of

\\{v-(Q^(d,)t) - V-(Y^W)} U(t^d,) £<(T;d2)| .

This holds as in the two-body case for (2.29). D

Summing up we have shown so far that for

^°(<; ̂ 2) := E 9o{B{c)) G(\\XW/2t2) F,(YW/t) f,{QW) (4.53)
j

and for their sum I°(t\d^} := ̂  L^(t\d^) the foUowing limits exist for any ^ e
H^H} and ^ if 7 > 0.

^ exp^Q Z/°(t; ̂ ) exp{~^(}^ =: ^o^^^ ^^

Uî  ^((, 0; ̂ )* L°(t9, d^} exp{^iHt}^ =: $°(rf2). (4.55)

On T-L^H) the limit is zero. Moreover, for all other components in the decom-
position of the scattering state ^ one has asymptotic approximation of the time
evolution by the corresponding Dollard evolution if 7 > 1/2 or with the methods
of Section 3 for slower decay. This holds whenever go equals one in a neighbor-
hood of the origin. We pick it such that \g'o(\) < 0 and go(\) = 1 ( or 0) if
|A| <, \o (or > 2Ao) for some \o > 0. Let g^ n € J N , be a sequence of such
functions with shrinking supports, e.g. g^(\) == go(n\), and denote correspondingly
^(^2), ̂ W, $^2). Clearly,

U^ Hexp^^}^^) - U(t^d^^W\\ = 0. (4.56)

If lim^oo ^^n(^2) = 0 for all d^ then the completeness proof is finished. Otherwise,
there is a component for some d^ where the cluster asymptotically has zero internal
energy. We will show that this corresponds to the channel with the pair in a zero
energy bound state asymptotically.

Lemma 4.8. For z < mta(H(c)) - 1

^ $"(^2) =: ̂ °°W, ̂  ̂ 2) ==: ^00(<^2) exist and (4.57)
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Um^ H{c) (H(c) - z)-1 U(t, 0; da) ̂ (rf^ = 0. (4.58)
t—*00

Proof. Observe that for n > N(e)

||^°(^) - ̂ 2)||2 > sup ||̂ ) - ̂ WH2 - e2
m

because it is bounded and monotonically growing: Assume there were an m > n
with

11^2) - ̂ Wll2 - ||̂ 2) - ̂ m(<^2)||2 > 2a > 0.

Then we would have for all t >_ T{a)

||(<7o - gn)Wc)) G ^F, /, exp{^iIItW
j

- ll(<7o - gm)Wc)) G ̂ F, /,. exp{-iHtW ^ a > 0.
J

This is impossible because ffo-^m > go-9n • Similarly we see that for all k > m > 2n

||(^(^) ^- ̂ )) + (^O(^) _ ^(^))||2 < sup ||^(^) - ̂ (d^H2

m

and that (^"(rfz) - ̂ (^2)) and (^°(^) - ̂ "(^2)) are orthogonal because
{9m - gk) (go - gn) = 0. Consequently ||^m((^2) - f'W)\\ ̂  e for all
k >. m >, 2N(e). To show the second statement

\\B(c) (ir(c) - z)-1 U(t,0;d,) $oo(<i2)|[

^ ||ff(c) (^(c) - ̂ )-1 U{t, 0; rf2) $n(^)||

% \\H(c) (ff(c) - ,?)-1 ^"(t;^) exp{-iHtW < e

for n >, n(e) and all ( ̂  r(ra, e). D

The internal energy of the pair is changed only by the tail part of the long-range
intercluster potentials which decays in time. To reach zero in the limit this energy
must be rather small for finite times, i.e. one has qualified decay in (4.58). To
improve the decay we introduce another approximation which exploits the fact that
the internal energy can be changed effectively only if ||X(c)|| is large. Let

v- := v(\\x(w1) y-(^ - »-) + (i - ̂ )(||^(c)||/r') V^(Y^W) =
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- V^Y^W) + y(...) [V^ - x-) - y-(y.^))} (4.59)

with an outside cutoff function y as in (2.8) and an exponent 0 < 7' < 7.

\\V^ - V^ - a^H ̂  C F' (1 + ()-1-^ e L1. (4.60)

If U(t, 0; dt) is generated by H(t; d^) := H(d^ +E^m then it follows from (4.60)
that there is a $(^2) with

Hm^ || ̂ ,0;^) ̂ (rf^ - U{t^d^ $(^)|| = 0

and (4.58) holds correspondingly. Moreover,

Urn^ || [<7o(iT(c)) - 1] E7((,0;^) $(^)|| = 0

and we will use this cutoff to avoid problems with the unbounded -ET(c).

Lemma 4.9. For 7 > 7' >: (\/3 - 1)

\\H(c) g,(H(c)) U(t^d,) $(^)|| e Z1. (4.61)

Proof. Setting h := H(c) go(B(c))

\\{d/dt) U(t,0;d^ h U(t,0;d,) $(^)|| ̂ ^'\\ [l̂ , h] ^((,0;^) $(^)||.

[V-, h] = [y(||X(c)||/r'), h] {v-(Y^(d,)+\^X(c))-V-(Y^W)}

+ v(\\X(c)\\/r') [V^Y^W + A^ X(c)), h]. (4.62)

Calculating the commutators and rearranging the factors one gets as leading terms
up to constants

t--' \\y'(X(cW) {V-(Y^W + A.^(c)) - V-(Y^W)}\\

x ||0(c) y(2\\X(c)\\/f') {H(c) - z)-1 U(t,0^) $(^)||

+ II V^ll • ll<?(c) y(IWc)||/r') (H(c) - zY1 U(t,0;d,) $(^)||

^ (7(1 4-<)-1-Y ||<?(c) ̂ ||X(c)||/r') (^(c) - z)-1 U(t^d,) $(^)|| (4.63)

(and a similar term). Since the norm in (4.63) is bounded we get as a first estimate
for (4.61) the bound C (1 +1}~^'. In the next step we use this information to show
decay of the norm involving the velocity. Its square
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(^(c)/2) \\Q(c) y)(||̂ (c)||/r ) (JT(c) - z)-1 U(t;Q;d,) $(^)||2

^ | ($(^), ̂  (2T(c) - z}-1 y B(c) y We) - z)-1 U ̂ W) |

+ \\v^x(c)) ̂ (||x(c)||/r')n.
The last term is bounded by (1 + ()-'nf' and has slowest decay. For the first we get
a bound proportional to

|| [Q(c), y(||X(c)||/^)] || + ||ff(c) (B(c) - zY1 U $(^)||

^c(r^+(i+tp).
Summing up, the norm in (4.61) decays with an exponent 7 + (77')/2 > 1 if 7 >y^^-i. a

The remaining steps are simple. The last lemma permits to replace the generator
H(t) by Haft) where 2f(c) is set zero, with propagator Uo. One has existence of

$0(^2) := ̂  Uo(t, 0; ̂ ) U(t, 0; d^) $(^).

With respect to the variable X(c) the evolution UQ acts trivially as a phase factor.
Thus for e > 0 there is an R such that for all t > 0

|| F(||X(c)|| > R) U,(t,OM $(^)|| < e.

Since ||F(||X(c)|| < R) {V-(Y^W + \^X(c)) - V^(Y^W)}\\ <
C (1 +1) 1 ^ C L1 we can eliminate the dependence on any internal variables of the
pair altogether and conclude that the state asymptotically is a zero energy bound
state of the pair, because it is in the ranges of all g^(H(c)). Finally one can replace
V^^YimW) by V^QimWt) as above in the proof of Proposition 4.7 to have
the Dollard time evolution also for this term. We have shown existence of the limit

Ui^ U0^ 0; d^) exp^iJTQ ̂ °°(^) € P(^).
t-^oo

Thus also ^°°(d^ is part of ^2) in (1.14) and (1.15). If the subsystem does not
have zero energy bound states then such a term must vanish. This finishes the proof
of asymptotic completeness.

As for the two body case one can use essentially the same estimates for proving
existence of the Dollard modified wave operators for 7 > 1/2. The faster decay
is not needed because the Dollard time evolutions conserve the internal energy of
subsystems. We omit the obvious details. Thus we have shown using the well known
intertwining properties
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Theorem 4.10. Let the Hamiltonian H of the three-body system (1.9) have pair
potentials which satisfy (1.2), (1.3) for 7 > 1/2. Then the modified Dollard wave
operators flP^dk} exist (1.12). For 7 > \/3 — 1 they are complete (1.13). On the
subspaces "H{dk) := RanO^^) the Bamiltonian is unitarily equivalent to a free
three-body Bamiltonian: H \ Ti^d^) = ^(da) Ho (^(^s))*; or to a direct sum
of shifted free two-body Hamiltonians: B \ H{dz) = ̂ (^2) H{d^) (n2^))*. In
particular H has no singular continuous spectrum.
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